Genome-Wide Identification of G3BP Family in U’s Triangle Brassica Species and Analysis of Its Expression in B. napus
Abstract
1. Introduction
2. Results
2.1. Identification of G3BPs in U’s Triangle Brassica Species
2.2. Phylogenetic Relationship Analysis
2.3. Analysis of Gene Structure and Conserved Motifs
2.4. Chromosome Location, Gene Duplication, and Selection Pressure Analysis
2.5. Prediction of Upstream miRNAs
2.6. Analysis of SSR Loci
2.7. Expression Patterns of BnaG3BP Genes in Various Tissues/Organs
2.8. Expression Patterns of BnaG3BP Genes in Response to Biotic Stresses
2.9. Expression Patterns of BnaG3BP Genes in Response to Abiotic Stresses
2.10. Expression Patterns of BnaG3BP Genes Involved in Seed Germination Traits
2.11. Expression Patterns of BnaG3BP Genes Involved in Yellow Seed Trait
2.12. Expression Patterns of BnaG3BP Genes Involved in Seed ALA Trait
2.13. Expression Patterns of BnaG3BP Genes Involved in Seed Oil Content Traits
2.14. Expression Patterns of BnaG3BP Genes in BnaTT1 Transgenic Lines
2.15. Validation of Selected Cold-Responsive Genes
3. Discussion
4. Materials and Methods
4.1. Acquisition of the Reference Genomes of Brassica Species and A. thaliana
4.2. Identification of G3BP Gene Family in Brassica Species and A. thaliana
4.3. Bioinformatics Analysis
4.4. Phylogenetic Analysis
4.5. Expression Profiling Based on Transcriptome Data
4.6. The qRT-PCR Analysis
4.7. Chlorophyll Fluorescence Imaging
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abulfaraj, A.A.; Ohyanagi, H.; Goto, K.; Mineta, K.; Gojobori, T.; Hirt, H.; Rayapuram, N. Comprehensive evolutionary analysis and nomenclature of plant G3BPs. Life Sci. Alliance 2022, 5, e202101328. [Google Scholar] [CrossRef] [PubMed]
- Tourrière, H.; Chebli, K.; Zekri, L.; Courselaud, B.; Blanchard, J.M.; Bertrand, E.; Tazi, J. The RasGAP-associated endoribonuclease G3BP mediates stress granule assembly. J. Cell Biol. 2023, 222, e200212128072023new. [Google Scholar] [CrossRef] [PubMed]
- Abulfaraj, A.A.; Hirt, H.; Rayapuram, N. G3BPs in plant stress. Front. Plant Sci. 2021, 12, 680710. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, Z.; Li, Z.; Zhang, Q.; Hu, J.; Xiao, Y.; Cai, D.; Wu, J.; King, G.J.; Li, H.; et al. Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus. Plant Biotechnol. J. 2018, 16, 1336–1348. [Google Scholar] [CrossRef]
- Williams, P.H.; Hill, C.B. Rapid-cycling populations of Brassica. Science 1986, 232, 1385–1389. [Google Scholar] [CrossRef]
- Gao, P.; Quilichini, T.D.; Yang, H.; Li, Q.; Nilsen, K.T.; Qin, L.; Babic, V.; Liu, L.; Cram, D.; Pasha, A.; et al. Evolutionary divergence in embryo and seed coat development of U’s Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. New Phytol. 2022, 233, 30–51. [Google Scholar] [CrossRef]
- He, Z.; Ji, R.; Havlickova, L.; Wang, L.; Li, Y.; Lee, H.T.; Song, J.; Koh, C.; Yang, J.; Zhang, M.; et al. Genome structural evolution in Brassica crops. Nat. Plants 2021, 7, 757–765. [Google Scholar] [CrossRef]
- Lian, J.; Lu, X.; Yin, N.; Ma, L.; Lu, J.; Liu, X.; Li, J.; Lu, J.; Lei, B.; Wang, R.; et al. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. Plant Sci. 2017, 254, 32–47. [Google Scholar] [CrossRef]
- Marondedze, C.; Thomas, L.; Serrano, N.L.; Lilley, K.S.; Gehring, C. The RNA-binding protein repertoire of Arabidopsis thaliana. Sci. Rep. 2016, 6, 29766. [Google Scholar] [CrossRef]
- Mateos, J.L.; Staiger, D. Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association. Plant Cell 2023, 35, 1708–1726. [Google Scholar] [CrossRef]
- Lou, L.; Ding, L.; Wang, T.; Xiang, Y. Emerging roles of RNA-binding proteins in seed development and performance. Int. J. Mol. Sci. 2020, 21, 6822. [Google Scholar] [CrossRef] [PubMed]
- Nagaharu, U.; Nagaharu, N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 1935, 7, 389–452. [Google Scholar]
- Chen, S.; Nelson, M.N.; Chèvre, A.M.; Jenczewski, E.; Li, Z.; Mason, A.S.; Meng, J.; Plummer, J.A.; Pradhan, A.; Siddique, K.H.M.; et al. Trigenomic bridges for Brassica improvement. Crit. Rev. Plant Sci. 2011, 30, 524–547. [Google Scholar] [CrossRef]
- Kim, C.K.; Seol, Y.J.; Perumal, S.; Lee, J.; Waminal, N.E.; Jayakodi, M.; Lee, S.C.; Jin, S.; Choi, B.S.; Yu, Y.; et al. Re-exploration of U’s Triangle Brassica species based on chloroplast genomes and 45S nrDNA sequences. Sci. Rep. 2018, 8, 7353. [Google Scholar] [CrossRef]
- Yan, L.; Jiao, B.; Duan, P.; Guo, G.; Zhang, B.; Jiao, W.; Zhang, H.; Wu, H.; Zhang, L.; Liang, H.; et al. Control of grain size and weight by the RNA-binding protein EOG1 in rice and wheat. Cell Rep. 2024, 43, 114856. [Google Scholar] [CrossRef]
- Laloum, T.; Carvalho, S.D.; Martín, G.; Richardson, D.N.; Cruz, T.M.D.; Carvalho, R.F.; Stecca, K.L.; Kinney, A.J.; Zeidler, M.; Barbosa, I.C.R.; et al. The SCL30a SR protein regulates ABA-dependent seed traits and germination under stress. Plant Cell Environ. 2023, 46, 2112–2127. [Google Scholar] [CrossRef]
- Chao, H.; Li, T.; Luo, C.; Huang, H.; Ruan, Y.; Li, X.; Niu, Y.; Fan, Y.; Sun, W.; Zhang, K.; et al. BrassicaEDB: A gene expression database for Brassica crops. Int. J. Mol. Sci. 2020, 21, 5831. [Google Scholar] [CrossRef]
- Girard, I.J.; Tong, C.; Becker, M.G.; Mao, X.; Huang, J.; de Kievit, T.; Fernando, W.G.D.; Liu, S.; Belmonte, M.F. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection. J. Exp. Bot. 2017, 68, 5079–5091. [Google Scholar] [CrossRef]
- Becker, M.G.; Zhang, X.; Walker, P.L.; Wan, J.C.; Millar, J.L.; Khan, D.; Granger, M.J.; Cavers, J.D.; Chan, A.C.; Fernando, D.W.G.; et al. Transcriptome analysis of the Brassica napus-Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance. Plant J. 2017, 90, 573–586. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, Q.; Su, X.; Cheng, Y.; Wu, H.; Huang, Z.; Xu, A.; Dong, J.; Yu, C. Microscopic and transcriptomic comparison of powdery mildew resistance in the progenies of Brassica carinata × B. napus. Int. J. Mol. Sci. 2022, 23, 9961. [Google Scholar] [CrossRef]
- Boter, M.; Calleja-Cabrera, J.; Carrera-Castaño, G.; Wagner, G.; Hatzig, S.V.; Snowdon, R.J.; Legoahec, L.; Bianchetti, G.; Bouchereau, A.; Nesi, N.; et al. An integrative approach to analyze seed germination in Brassica napus. Front. Plant Sci. 2019, 10, 1342. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Wu, H.X.; Zhang, X.H.; Guo, R.H.; Li, K.; Fu, Y.L.; Huang, Z.; Xu, A.X.; Dong, J.G.; Yu, C.Y. Comparative transcriptomics uncovers upstream factors regulating BnFAD3 expression and affecting linolenic acid biosynthesis in yellow-seeded rapeseed (Brassica napus L.). Plants 2024, 13, 760. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yu, S.; Wang, J.; Li, M.; Qu, C.; Li, J.; Liu, L. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. BMC Plant Biol. 2021, 21, 246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ali, U.; Zhang, G.; Yu, L.; Fang, S.; Iqbal, S.; Li, H.; Lu, S.; Guo, L. Transcriptome analysis reveals genes commonly responding to multiple abiotic stresses in rapeseed. Molcular. Breed. 2019, 39, 158. [Google Scholar] [CrossRef]
- Lu, K.; Wei, L.; Li, X.; Wang, Y.; Wu, J.; Liu, M.; Zhang, C.; Chen, Z.; Xiao, Z.; Jian, H.; et al. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat. Commun. 2019, 10, 1154. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, B.; Win, A.N.; Fu, C.; Lian, J.; Liu, X.; Wang, R.; Zhang, X.; Chai, Y. Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: Cloning, characterization and expression. PLoS ONE 2018, 13, e0191432. [Google Scholar] [CrossRef]
Category | B. napus | B. juncea | B. caritana | B. rapa | B. oleracea | B. nigra | A. thaliana |
---|---|---|---|---|---|---|---|
Total | 27 | 23 | 20 | 13 | 13 | 10 | 8 |
I | 8 | 7 | 7 | 4 | 4 | 3 | 1 |
II | 5 | 3 | 2 | 2 | 2 | 1 | 2 |
III | 2 | 2 | 2 | 1 | 1 | 1 | 1 |
IV | 6 | 5 | 4 | 3 | 3 | 2 | 1 |
V | 4 | 4 | 4 | 2 | 2 | 2 | 1 |
VI | 2 | 2 | 1 | 1 | 1 | 1 | 2 |
Gene ID | NOE_Count | WT_Count | log2FC | p Value | p Adj |
---|---|---|---|---|---|
BnaC05g10060D | 67.51 | 207.70 | −1.62 | 4.25 × 10−8 | 5.58 × 10−7 |
Gene ID | BOE_Count | WT_Count | log2FC | p Value | p Adj |
---|---|---|---|---|---|
BnaA03g39880D | 100.39 | 205.50 | −1.03 | 0.00 | 0.01 |
BnaC07g17480D | 76.33 | 172.32 | −1.17 | 0.00 | 0.01 |
BnaC07g30950D | 92.37 | 190.97 | −1.05 | 0.00 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inkabanga, A.T.; Zhang, Q.; Wang, S.; Li, Y.; Chen, J.; Huang, L.; Li, X.; Deng, Z.; Yang, X.; Luo, M.; et al. Genome-Wide Identification of G3BP Family in U’s Triangle Brassica Species and Analysis of Its Expression in B. napus. Plants 2025, 14, 2247. https://doi.org/10.3390/plants14142247
Inkabanga AT, Zhang Q, Wang S, Li Y, Chen J, Huang L, Li X, Deng Z, Yang X, Luo M, et al. Genome-Wide Identification of G3BP Family in U’s Triangle Brassica Species and Analysis of Its Expression in B. napus. Plants. 2025; 14(14):2247. https://doi.org/10.3390/plants14142247
Chicago/Turabian StyleInkabanga, Alain Tseke, Qiheng Zhang, Shanshan Wang, Yanni Li, Jingyi Chen, Li Huang, Xiang Li, Zihan Deng, Xiao Yang, Mengxin Luo, and et al. 2025. "Genome-Wide Identification of G3BP Family in U’s Triangle Brassica Species and Analysis of Its Expression in B. napus" Plants 14, no. 14: 2247. https://doi.org/10.3390/plants14142247
APA StyleInkabanga, A. T., Zhang, Q., Wang, S., Li, Y., Chen, J., Huang, L., Li, X., Deng, Z., Yang, X., Luo, M., Peng, L., Ren, K., Chai, Y., & Xue, Y. (2025). Genome-Wide Identification of G3BP Family in U’s Triangle Brassica Species and Analysis of Its Expression in B. napus. Plants, 14(14), 2247. https://doi.org/10.3390/plants14142247