Comparative Proteomics Identified Proteins in Mung Bean Sprouts Under Different Concentrations of Urea
Abstract
1. Introduction
2. Results and Discussion
2.1. Quality Traits of Mung Bean Sprout
2.2. Nitrogen Composition of Mung Bean Sprout
2.3. Identification and Function of Differentially Expressed Proteins (DEPs)
2.3.1. Protein Identification and Quantification
2.3.2. Differentially Expressed Proteins and Correlations
2.3.3. Enrichment Analysis of DEPs
2.3.4. GO Analysis of DEPs Under Different Concentrations of Urea
3. Materials and Methods
3.1. Urea Treatment and Culture Conditions
3.2. Mung Bean Sprouts and Culture Conditions
3.3. Analysis Method
3.4. Total Protein Extraction
3.5. Protein Digestion
3.6. Peptide Desalting and Quantification
3.7. DIA Mass Detection
3.8. Protein Identification
3.9. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geng, J.; Li, J.; Zhu, F.; Chen, X.; Du, B.; Tian, H.; Li, J. Plant sprout foods: Biological activities, health benefits, and bioavailability. J. Food Biochem. 2021, 46, e13777. [Google Scholar] [CrossRef]
- Li, H.; Cao, D.; Yi, J.; Cao, J.; Jiang, W. Identification of the flavonoids in mungbean (Phaseolus radiatus L.) soup and their antioxidant activities. Food Chem. 2012, 135, 2942–2946. [Google Scholar] [CrossRef] [PubMed]
- Penas, E.; Gómez, R.; Frías, J.; Vidal-Valverde, C. Effects of combined treatments of high pressure, temperature and antimicrobial products on germination of mung bean seeds and microbial quality of sprouts. Food Control 2010, 21, 82–88. [Google Scholar] [CrossRef]
- Hao, S. Bean Sprouts: A Life-Enhancing Vegetable; Hunan Agricultural Machinery: Changsha, China, 2006; p. 30. [Google Scholar]
- Zhou, N. Eating Bean Sprouts Helps Longevity; Jiangsu Seasoned Foods: Zhenjiang, China, 2006; p. 39. [Google Scholar]
- Kapravelou, G.; Martinez, R.; Perazzoli, G.; González, C.S.; Llopis, J.; Cantarero, S.; Goua, M.; Bermano, G.; Prados, J.; Melguizo, C.; et al. Germination improves the polyphenolic profile and functional value of mung bean (Vigna radiata L.). Antioxidants 2020, 9, 746. [Google Scholar] [CrossRef]
- Song, R.F.; Ahmed, W.; Tan, Y.J.; Zhao, Z.X. Different levels of nitrogen fertilizer in nursery stage positively affect the activity of defense-related enzymes and resistance of tobacco plant to Phytophthora nicotianae. Chiang Mai J. Sci. 2022, 49, 551–564. [Google Scholar] [CrossRef]
- Ohyama, T. Nitrogen as a major essential element of plants. In Nitrogen Assimilation in Plants; Ohyama, T., Sueyoshi, K., Eds.; Research Signpost: Kerala, India, 2010; pp. 2–17. [Google Scholar]
- Sun, Y.; Wang, M.; Mur, L.A.J.; Shen, Q.; Guo, S. Unravelling the roles of nitrogen nutrition in plant disease defences. Int. J. Mol. Sci. 2020, 21, 572. [Google Scholar] [CrossRef]
- Gul, F.; Khan, I.U.; Li, G.; Ullah, R.; Ibrahim, M.A.; Ullah, K.; Khan, Z.; Du, D. Co-application of Parthenium biochar and urea effectively mitigate cadmium toxicity during wheat growth. Ecotoxicol. Environ. Saf. 2024, 285, e117092. [Google Scholar] [CrossRef]
- Zhao, L.S.; Li, K.; Wang, Q.M.; Song, X.-Y.; Su, H.-N.; Xie, B.-B.; Zhang, X.-Y.; Huang, F.; Chen, X.-L.; Zhou, B.-C.; et al. Nitrogen starvation impacts the photosynthetic performance of Porphyridium cruentum as revealed by chlorophyll a fluorescence. Sci. Rep. 2017, 7, 8542. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.Q.; Cao, J.B.; Sun, Y.N. Progress on the detection of prohibited growth regulator-type additives in bean sprouts. Food Mach. 2020, 36, 224–228. [Google Scholar] [CrossRef]
- Li, X.; Fu, L.; Hao, T.Y. The evaluation of growth, distribution, and sterilizer treatment effect on mung bean sprouts Growth and distribution of microorganisms in and evaluation of the effect of disinfectant treatment and evaluation. Food Mach. 2017, 33, 51–55. [Google Scholar] [CrossRef]
- He, G.Q.; Hung, R.; Long, C.Y. Dietary exposure assessment of plant growth regulators in commercially available bean sprouts. South China Prev. Med. 2016, 42, 124–128. [Google Scholar] [CrossRef]
- Song, X.Y.; Song, X.F.; Yao, K. Residues and risk monitoring assessment of plant growth regulators in bean sprouts. Mod. Agric. Sci. Technol. 2020, 6, 229–230. [Google Scholar]
- GB 2763-2021; National Food Safety Standard–Maximum Residue Limits for Pesticides in Food. China Agricultural Publishing: Beijing, China, 2021.
- Hsu, P.-H.; Kang, L.-K.; Lim, W.-T.; Hwang, P.-A. Proteomics analysis reveals the mechanism of growth retardation under a specific nitrogen environment for Caulerpa lentillifera. Algal Res. 2023, 69, 102953. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.; Mu, B.; Wang, F.; Feng, N.; Zheng, D. Nitrogen limitation affects carbon and nitrogen metabolism in mung bean (Vigna radiata L.). J. Plant Physiol. 2023, 290, e154105. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, C.; Ji, D.; Hang, N.; Xie, C. Proteomic profile analysis of Pyropia haitanensis in response to high-temperature stress. J. Appl. Phycol. 2014, 26, 607–618. [Google Scholar] [CrossRef]
- Du, H.; Liang, H.; Jiang, Y.; Qu, X.; Yan, H.; Liu, X. Proteome responses of Gracilaria lemaneiformis exposed to lead stress. Mar. Pollut. Bull. 2018, 135, 311–317. [Google Scholar] [CrossRef]
- Zhang, S.C.; Li, M.J.; Guo, J.K.; Shi, Z.L.; Fu, X.Y.; Di, R.Y.; Li, Y.M. Comparative transcriptome analysis of Triticum aestivum in response to nitrogen stress. Russ. J. Plant Physiol. 2016, 63, 365–374. [Google Scholar] [CrossRef]
- Good, A.G.; Shrawat, A.K.; Muench, D.G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 2004, 9, 597–605. [Google Scholar] [CrossRef]
- Han, S.F.; Li, S.W.; Wu, L.Q.; Wen, H.D.; Xiao, K. Response and physiological mechanisms of nitrogen efficiency and uptake to nitrogen supply in different wheat varieties. Chin. J. Appl. Ecol. 2007, 18, 807–812. [Google Scholar] [CrossRef]
- Xiong, S.P.; Wu, K.Y.; Wang, X.C.; Zhang, J.; Du, P.; Wu, Y.X.; Ma, X.M. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Sci. Agric. Sin. 2016, 49, 2267–2279. [Google Scholar]
- Hodge, A.; Robinson, D.; Fitter, A. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 2000, 5, 304–308. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Ding, Y.; Yin, X.; Raza, S. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). Field Crops Res. 2017, 206, 1–10. [Google Scholar] [CrossRef]
- Rodriguez, C.; Frias, J.; Vidal-Valverde, C.; Hernández, A. Correlations between some nitrogen fractions, lysine, histidine, tyrosine, and ornithine contents during the germination of peas, beans, and lentils. Food Chem. 2008, 108, 245–252. [Google Scholar] [CrossRef]
- Li, M.; Dong, H.; Xie, X.; Wu, Z.; Ye, C.; Tang, G. Study of nitrate, nitrite pollution and eating safety in bean sprouts. Guangdong Agric. Sci. 2010, 37, 181–184. [Google Scholar] [CrossRef]
- GB 2762-2022; National Food Safety Standard Limits of Contaminants in Food. China Agricultural Publishing: Beijing, China, 2022.
- Taiz, L. Plant Physiology and Development; Sinauer Associates: New York, NY, USA, 2023. [Google Scholar]
- Sun, X.L.; He, Z.F.; Yang, L.; Wu, H.; Li, H.J. Quantitative proteomic analysis to identify potential biomarkers linked to quality traits of beef tripe from different sources. Food Chem. 2024, 449, 139224. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Q.; Wang, S.W.; Jiang, Y.Y. Nutritional changes and evaluation in legumes and cereals during germination. Sci. Exch. 2004, 11, 35–36. [Google Scholar]
- Tan-Wilson, A.L.; Wilson, K.A. Mobilization of seed protein reserves. Physiol. Plant 2012, 145, 140–153. [Google Scholar] [CrossRef]
- Klok, A.J.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P. Simultaneous growth and neutral lipid accumulation in microalgae. Bioresour. Technol. 2013, 134, 233–243. [Google Scholar] [CrossRef]
- Seki, M.; Umezawa, T.; Urano, K.; Shinozaki, K. Regulatory metabolic networks in drought stress responses. Curr. Opin. Plant Biol. 2007, 10, 296–302. [Google Scholar] [CrossRef]
- Chen, T.H.H.; Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell Environ. 2011, 34, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Bräutigam, A.; Gowik, U. Photorespiration connects C3 and C4 photosynthesis. J. Exp. Bot. 2016, 67, 2953–2962. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.H. Functions of CYP450 in Plant Abiotic Stress and Detoxification Metabolism. J. Anhui Agric. Sci. 2020, 48, 10–13. [Google Scholar] [CrossRef]
- Dinkeloo, K.; Boyd, S.; Pilot, G. Update on amino acid transporter functions and on possible amino acid sensing mechanisms in plants. Semin. Cell Dev. Biol. 2018, 74, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, A.I.; RafudeenA, M.S.; Golldack, D.; Weber, A. Physiological aspects of raffinose family oligosaccharides in plants: Protection against abiotic stress. Plant Biol. 2014, 16, 1–8. [Google Scholar] [CrossRef]
- Nishzawa, A.; Yabuta, Y.; Shigeoka, S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 2008, 147, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.W. Raffinose Family Oligosaccharides (RFOs) Are Putative Abiotic Stress Protectants: Case Studies on Frost Tolerance and Water Deficit in Ajuga reptans and Arabidopsis thaliana. Ph.D. Thesis, University of Zurich, Zurich, Switzerland, 2010. [Google Scholar]
- Lim, D.K.Y.; Schuhmann, H.; Thomas-Hall, S.R.; Chan, K.C.; Wass, T.J.; Aguilera, F.; Adarme-Vega, T.C.; Dal’MOlin, C.G.; Thorpe, G.J.; Batley, J.; et al. RNA-Seq and metabolic flux analysis of Tetraselmis sp. M8 during nitrogen starvation reveals a two-stage lipid accumulation mechanism. Bioresour. Technol. 2017, 244, 1281–1293. [Google Scholar] [CrossRef]
- Wheeler, G.L.; Jones, M.A.; Smirnoff, N. The biosynthetic pathway of vitamin C in higher plants. Nature 1998, 393, 365–369. [Google Scholar] [CrossRef]
- Sorensen, J. Use of the NMIN-method for optimization of vegetable nitrogen nutrition. Acta Hortic. 1992, 339, 179–192. [Google Scholar] [CrossRef]
- Yin, L.; Wang, S.; Eltayeb, A.E.; Uddin, I.; Yamamoto, Y.; Tsuji, W.; Takeuchi, Y.; Tanaka, K. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 2010, 231, 609–621. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, X.; Yu, H.; Jiang, W.; Sun, N.; Liu, X.; Liu, X.; Zhang, X.; Wang, Y.; Gu, X. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network. Plant Cell Physiol. 2015, 56, 455–467. [Google Scholar] [CrossRef]
- Batth, R.; Singh, K.; Kumari, S.; Mustafiz, A. Transcript profiling reveals the presence of abiotic stress and developmental stage specific ascorbate oxidase genes in plants. Front. Plant Sci. 2017, 8, 198. [Google Scholar] [CrossRef] [PubMed]
- Paquette, S.M.; Jensen, K.; Bak, S. A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases. Phytochemistry 2009, 70, 1940–1947. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, M.; Sato, F. Unusual P450 reactions in plant secondary metabolism. Arch. Biochem. Biophys. 2011, 507, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Cui, X.; Lin, S.; Gan, S.; Xing, H.; Dou, D.; Lam, H.-M. GmCYP82A3, a soybean cytochrome P450 family gene involved in the jasmonic acid and ethylene signaling pathway, enhances plant resistance to biotic and abiotic stresses. PLoS ONE 2016, 11, e0162253. [Google Scholar] [CrossRef]
- Rao, M.J.; Xu, Y.; Tang, X.; Huang, Y.; Liu, J.; Deng, X.; Xu, Q. CsCYT75B1, a Citrus CYTOCHROME P450 gene, is involved in accumulation of antioxidant flavonoids and induces drought tolerance in transgenic Arabidopsis. Antioxidants 2020, 9, 161. [Google Scholar] [CrossRef]
- GB 5009.33-2016; National Food Safety Standard–Determination of Nitrite and Nitrate in Foods. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- Wu, J.R.; Liang, F.Y.; Lin, Q. Determination of Urea Content in Bean Sprouts by Ultra-High Performance Liquid Chromatography Tandem Mass-Spectrometry. China Food Saf. Mag. 2022, 33, 64–67. [Google Scholar] [CrossRef]
- NY/T 2637-2014; Refractometric Method for Determination of Total Soluble Solids in Fruits and Vegetables. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2014.
- AOAC 992.15-1992; Crude Protein in Meat and Meat Products. AOAC: Rockville, MD, USA, 1996.
- Hung, S.; Wu, Y.N.; Liu, M. Quantitative Determination of Total Free-Amino Acid in Nervilia fordii (Hance) Schltr. by Ninhydrin Colorimetric Method. Chin. J. Inf. Tradit. Chin. Med. 2010, 17, 50–52. [Google Scholar] [CrossRef]
Urea Concentration | Day 5 Height (cm) | Day 6 Height (cm) | Day 7 Height (cm) |
---|---|---|---|
L0 | 11.10 dB ± 0.15 | 13.75 cA ± 0.14 | 14.03 dA ± 0.06 |
L1 | 12.90 bC ± 0.22 | 15.40 bB ± 0.12 | 15.72 cA ± 0.14 |
L2 | 13.90 aB ± 0.08 | 15.55 bA ± 0.20 | 15.97 bA ± 0.23 |
L3 | 13.90 aC ± 0.14 | 16.00 aB ± 0.11 | 16.84 aA ± 0.17 |
L4 | 12.36 cC ± 0.11 | 12.58 dB ± 0.24 | 13.02 eA ± 0.24 |
Urea Level | Protein Content (G/100 g) | Free Amino Acid Content (Mg/G) | Soluble Solids (%) | Urea Content (Mg/Kg) | Nitrite Content (Mg/Kg) |
---|---|---|---|---|---|
L0 | 2.06 e ± 0.08 | 5.044 e ± 0.122 | 3.3 b ± 0.1 | 2.218 e ± 0.044 | 0.327 c ± 0.006 |
L1 | 2.26 d ± 0.07 | 5.373 d ± 0.134 | 3.9 a ± 0.1 | 3.682 d ± 0.052 | 0.329 c ± 0.009 |
L2 | 2.54 c ± 0.10 | 5.734 c ± 0.055 | 3.9 a ± 0.1 | 3.912 c ± 0.032 | 0.431 b ± 0.011 |
L3 | 3.40 a ± 0.11 | 5.994 b ± 0.089 | 3.9 a ± 0.1 | 6.960 a ± 0.022 | 1.065 a ± 0.020 |
L4 | 2.66 b ± 0.05 | 6.419 a ± 0.102 | 3.9 a ± 0.1 | 6.883 b ± 0.045 | 0.399 bc ± 0.008 |
Accession | Description | Fold Change log2FC | |||
---|---|---|---|---|---|
L0 vs. L1 | L0 vs. L2 | L0 vs. L3 | L0 vs. L4 | ||
A0A1S3TC65 | Cationic amino acid transporter 4 | 5.14 | 6.70 | 5.62 | 5.00 |
A0A1S3TFY1 | Cytochrome P450 83B1 | −1.95 | −2.79 | −2.66 | −1.07 |
A0A1S3TT98 | Betaine aldehyde dehydrogenase 1, chloroplastic | −1.02 | −1.43 | −1.51 | −1.02 |
A0A1S3UAA5 | L-ascorbate oxidase | −1.62 | −1.26 | −1.33 | −1.15 |
A0A1S3UPX5 | Glycosyltransferase | −1.33 | −16.61 | −16.61 | −16.61 |
A0A3Q0FG40 | Patatin | −16.61 | −16.61 | −16.61 | −16.61 |
A0A3Q0FIL2 | Seed linoleate 9S-lipoxygenase-3-like | −1.45 | −1.60 | −2.02 | −2.42 |
Q6T418 | Plant defensin | −1.39 | −1.83 | −2.78 | −1.56 |
Q9LKI1 | Chlorophyll a-b binding protein, chloroplastic | 2.48 | 1.47 | 2.32 | 2.99 |
Q9XQB2 | Chlorophyll a-b binding protein, chloroplastic | 5.14 | 6.70 | 5.62 | 5.00 |
Q9XQB3 | Chlorophyll a-b binding protein, chloroplastic | 2.12 | 1.83 | 1.30 | 2.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Chen, C.; Zhou, X.; Zheng, K.; Liang, X.; Wei, J. Comparative Proteomics Identified Proteins in Mung Bean Sprouts Under Different Concentrations of Urea. Molecules 2025, 30, 3176. https://doi.org/10.3390/molecules30153176
Wu L, Chen C, Zhou X, Zheng K, Liang X, Wei J. Comparative Proteomics Identified Proteins in Mung Bean Sprouts Under Different Concentrations of Urea. Molecules. 2025; 30(15):3176. https://doi.org/10.3390/molecules30153176
Chicago/Turabian StyleWu, Lifeng, Chunquan Chen, Xiaoyu Zhou, Kailun Zheng, Xiaohan Liang, and Jing Wei. 2025. "Comparative Proteomics Identified Proteins in Mung Bean Sprouts Under Different Concentrations of Urea" Molecules 30, no. 15: 3176. https://doi.org/10.3390/molecules30153176
APA StyleWu, L., Chen, C., Zhou, X., Zheng, K., Liang, X., & Wei, J. (2025). Comparative Proteomics Identified Proteins in Mung Bean Sprouts Under Different Concentrations of Urea. Molecules, 30(15), 3176. https://doi.org/10.3390/molecules30153176