Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,065)

Search Parameters:
Keywords = vegetable residues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1730 KiB  
Article
Prioritization and Sensitivity of Pesticide Risks from Root and Tuber Vegetables
by Milica Lučić and Antonije Onjia
J. Xenobiot. 2025, 15(4), 125; https://doi.org/10.3390/jox15040125 - 3 Aug 2025
Viewed by 438
Abstract
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in [...] Read more.
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in 19 samples, while 29 samples exceeded established maximum residue levels (MRLs). Acute and chronic dietary risks were assessed for both adults and children. Although individual hazard quotients (HQs) for adults and children remained below the threshold of concern (HQ < 1), the cumulative acute risk reached up to 63.1% of the Acute Reference Dose (ARfD) for children and 51.1% ARfD for adults, with ginger and celery posing the highest risks. Similarly, cumulative chronic risks remained below the safety threshold, with the Acceptable Daily Intake (ADI) percentages reaching a maximum of 5.9% ADI for adults and increased vulnerability of 11.0% ADI among children. Monte Carlo simulations were applied to account for variability and uncertainty in chronic exposure estimates. The hazard index (HI) results showed that adverse health effects for both population groups remained within acceptable safety limits (HI < 1), although higher susceptibility was observed in children. Sensitivity analysis identified body weight and vegetable consumption rates as the most influential factors affecting chronic risk variability. Full article
Show Figures

Figure 1

30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Viewed by 244
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

25 pages, 28131 KiB  
Article
Landslide Susceptibility Assessment in Ya’an Based on Coupling of GWR and TabNet
by Jiatian Li, Ruirui Wang, Wei Shi, Le Yang, Jiahao Wei, Fei Liu and Kaiwei Xiong
Remote Sens. 2025, 17(15), 2678; https://doi.org/10.3390/rs17152678 - 2 Aug 2025
Viewed by 391
Abstract
Landslides are destructive geological hazards, making accurate landslide susceptibility assessment essential for disaster prevention and mitigation. However, existing studies often lack scientific rigor in negative sample construction and have unclear model applicability. This study focuses on Ya’an City, Sichuan Province, China, and proposes [...] Read more.
Landslides are destructive geological hazards, making accurate landslide susceptibility assessment essential for disaster prevention and mitigation. However, existing studies often lack scientific rigor in negative sample construction and have unclear model applicability. This study focuses on Ya’an City, Sichuan Province, China, and proposes an innovative approach to negative sample construction using Geographically Weighted Regression (GWR), which is then integrated with Tabular Network (TabNet), a deep learning architecture tailored to structured tabular data, to assess landslide susceptibility. The performance of TabNet is compared against Random Forest, Light Gradient Boosting Machine, deep neural networks, and Residual Networks. The experimental results indicate that (1) the GWR-based sampling strategy substantially improves model performance across all tested models; (2) TabNet trained using the GWR-based negative samples achieves superior performance over all other evaluated models, with an average AUC of 0.9828, exhibiting both high accuracy and interpretability; and (3) elevation, land cover, and annual Normalized Difference Vegetation Index are identified as dominant predictors through TabNet’s feature importance analysis. The results demonstrate that combining GWR and TabNet substantially enhances landslide susceptibility modeling by improving both accuracy and interpretability, establishing a more scientifically grounded approach to negative sample construction, and providing an interpretable, high-performing modeling framework for geological hazard risk assessment. Full article
Show Figures

Figure 1

40 pages, 1885 KiB  
Review
Potential Application of Plant By-Products in Biomedicine: From Current Knowledge to Future Opportunities
by Silvia Estarriaga-Navarro, Teresa Valls, Daniel Plano, Carmen Sanmartín and Nieves Goicoechea
Antioxidants 2025, 14(8), 942; https://doi.org/10.3390/antiox14080942 (registering DOI) - 31 Jul 2025
Viewed by 315
Abstract
Plant by-products have gained significant attention due to their rich content in bioactive compounds, which exhibit promising antioxidant, antimicrobial, and antitumor properties. In European countries, vegetable waste generation ranged from 35 to 78 kg per capita in 2022, highlighting both the scale of [...] Read more.
Plant by-products have gained significant attention due to their rich content in bioactive compounds, which exhibit promising antioxidant, antimicrobial, and antitumor properties. In European countries, vegetable waste generation ranged from 35 to 78 kg per capita in 2022, highlighting both the scale of the challenge and the potential for valorization. This review provides an overview of key studies investigating the potential of plant residues in biomedicine, highlighting their possible contents of antioxidant compounds, their antimicrobial and antitumor properties, as well as their applications in dermocosmetics and nutraceuticals. However, despite their potential, several challenges must be addressed, such as the standardization of extraction protocols, as bioactive compound profiles can vary with plant source, processing conditions, and storage methods. Effective segregation and storage protocols for household organic waste also require optimization to ensure the quality and usability of plant by-products in biomedicine. Emerging 4.0 technologies could help to identify suitable plant by-products for biomedicine, streamlining their selection process for high-value applications. Additionally, the transition from in vitro studies to clinical trials is hindered by gaps in the understanding of Absorption, Distribution, Metabolism, and Excretion (ADME) properties, as well as interaction and toxicity profiles. Nonetheless, environmental education and societal participation are crucial to enabling circular bioeconomy strategies and sustainable biomedical innovation. Full article
Show Figures

Graphical abstract

22 pages, 3506 KiB  
Review
Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables
by Haiyan He, Zhoutao Li, Qian Qin, Yue Yu, Yuanxin Guo, Sheng Cai and Zhanming Li
Foods 2025, 14(15), 2679; https://doi.org/10.3390/foods14152679 - 30 Jul 2025
Viewed by 349
Abstract
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and [...] Read more.
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and equipment. In recent years, the combination of spectroscopic techniques and imaging technologies with machine learning algorithms has developed rapidly, providing a new attempt to solve this problem. This review focuses on the research progress of the combination of spectroscopic techniques (near-infrared spectroscopy (NIRS), hyperspectral imaging technology (HSI), surface-enhanced Raman scattering (SERS), laser-induced breakdown spectroscopy (LIBS), and imaging techniques (visible light (VIS) imaging, NIRS imaging, HSI technology, terahertz imaging) with machine learning algorithms in the detection of pesticide residues in fruits and vegetables. It also explores the huge challenges faced by the application of spectroscopic and imaging technologies combined with machine learning algorithms in the intelligent perception of pesticide residues in fruits and vegetables: the performance of machine learning models requires further enhancement, the fusion of imaging and spectral data presents technical difficulties, and the commercialization of hardware devices remains underdeveloped. This review has proposed an innovative method that integrates spectral and image data, enhancing the accuracy of pesticide residue detection through the construction of interpretable machine learning algorithms, and providing support for the intelligent sensing and analysis of agricultural and food products. Full article
Show Figures

Figure 1

21 pages, 11816 KiB  
Article
The Dual Effects of Climate Change and Human Activities on the Spatiotemporal Vegetation Dynamics in the Inner Mongolia Plateau from 1982 to 2022
by Guangxue Guo, Xiang Zou and Yuting Zhang
Land 2025, 14(8), 1559; https://doi.org/10.3390/land14081559 - 29 Jul 2025
Viewed by 190
Abstract
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This [...] Read more.
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This study employs Sen’s slope estimation, BFAST analysis, residual trend method and Geodetector to analyze the spatial patterns of Normalized Difference Vegetation Index (NDVI) variability and distinguish between climatic and anthropogenic influences. Key findings include the following: (1) From 1982 to 2022, vegetation cover across the IMP exhibited a significant greening trend. Zonal analysis showed that this spatial heterogeneity was strongly regulated by regional hydrothermal conditions, with varied responses across land cover types and pronounced recovery observed in high-altitude areas. (2) In the western arid regions, vegetation trends were unstable, often marked by interruptions and reversals, contrasting with the sustained greening observed in the eastern zones. (3) Vegetation growth was primarily temperature-driven in the eastern forested areas, precipitation-driven in the central grasslands, and severely limited in the western deserts due to warming-induced drought. (4) Human activities exerted dual effects: significant positive residual trends were observed in the Hetao Plain and southern Horqin Sandy Land, while widespread negative residuals emerged across the southern deserts and central grasslands. (5) Vegetation change was driven by climate and human factors, with recovery mainly due to climate improvement and degradation linked to their combined impact. These findings highlight the interactive mechanisms of climate change and human disturbance in regulating terrestrial vegetation dynamics, offering insights for sustainable development and ecosystem education in climate-sensitive systems. Full article
Show Figures

Figure 1

25 pages, 1903 KiB  
Article
Pesticide Residues in Fruits and Vegetables from Cape Verde: A Multi-Year Monitoring and Dietary Risk Assessment Study
by Andrea Acosta-Dacal, Ricardo Díaz-Díaz, Pablo Alonso-González, María del Mar Bernal-Suárez, Eva Parga-Dans, Lluis Serra-Majem, Adriana Ortiz-Andrellucchi, Manuel Zumbado, Edson Santos, Verena Furtado, Miriam Livramento, Dalila Silva and Octavio P. Luzardo
Foods 2025, 14(15), 2639; https://doi.org/10.3390/foods14152639 - 28 Jul 2025
Viewed by 329
Abstract
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African [...] Read more.
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African island nation increasingly reliant on imported produce. A total of 570 samples of fruits and vegetables—both locally produced and imported—were collected from major markets across the country between 2017 and 2020 and analyzed using validated multiresidue methods based on gas chromatography coupled to Ion Trap mass spectrometry (GC-IT-MS/MS), and both gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS and LC-QqQ-MS/MS). Residues were detected in 63.9% of fruits and 13.2% of vegetables, with imported fruits showing the highest contamination levels and diversity of compounds. Although only one sample exceeded the maximum residue limits (MRLs) set by the European Union, 80 different active substances were quantified—many of them not authorized under the current EU pesticide residue legislation. Dietary exposure was estimated using median residue levels and real consumption data from the national nutrition survey (ENCAVE 2019), enabling a refined risk assessment based on actual consumption patterns. The cumulative hazard index for the adult population was 0.416, below the toxicological threshold of concern. However, when adjusted for children aged 6–11 years—taking into account body weight and relative consumption—the cumulative index approached 1.0, suggesting a potential health risk for this vulnerable group. A limited number of compounds, including omethoate, oxamyl, imazalil, and dithiocarbamates, accounted for most of the risk. Many are banned or heavily restricted in the EU, highlighting regulatory asymmetries in global food trade. These findings underscore the urgent need for strengthened residue monitoring in Cape Verde, particularly for imported products, and support the adoption of risk-based food safety policies that consider population-specific vulnerabilities and mixture effects. The methodological framework used here can serve as a model for other low-resource countries seeking to integrate analytical data with dietary exposure in a One Health context. Full article
(This article belongs to the Special Issue Risk Assessment of Hazardous Pollutants in Foods)
Show Figures

Figure 1

17 pages, 2025 KiB  
Article
Retainment of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Properties from Oil-Fermented Cupriavidus necator Using Additional Ethanol-Based Defatting Process
by Tae-Rim Choi, Gaeun Lim, Yebin Han, Jong-Min Jeon, Shashi Kant Bhatia, Hyun June Park, Jeong Chan Joo, Hee Taek Kim, Jeong-Jun Yoon and Yung-Hun Yang
Polymers 2025, 17(15), 2058; https://doi.org/10.3390/polym17152058 - 28 Jul 2025
Viewed by 300
Abstract
Engineering of Cupriavidus necator could enable the production of various polyhydroxyalkanoates (PHAs); particularly, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HH)), a biopolymer with enhanced mechanical and thermal properties compared to poly(3-hydroxybutyrate) (PHB), can be efficiently produced from vegetable oils. However, challenges remain in the [...] Read more.
Engineering of Cupriavidus necator could enable the production of various polyhydroxyalkanoates (PHAs); particularly, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HH)), a biopolymer with enhanced mechanical and thermal properties compared to poly(3-hydroxybutyrate) (PHB), can be efficiently produced from vegetable oils. However, challenges remain in the recovery process, particularly in removing residual oil and minimizing degradation of the polymer structure during extraction steps. This study investigated the effects of ethanol-based defatting on the recovery and polymeric properties of P(3HB-co-3HH). The proposed method involves the addition of ethanol to the cell broth to effectively remove residual oil. Ethanol improved the separation of microbial cells from the broth, thereby streamlining the downstream recovery process. Using ethanol in the washing step increased the recovery yield and purity to 95.7% and 83.4%, respectively (compared to 87.4% and 76.2% for distilled water washing), representing improvements of 8.3% and 7.2%. Ethanol washing also resulted in a 19% higher molecular weight compared to water washing, indicating reduced polymer degradation. In terms of physical properties, the elongation at break showed a significant difference: 241.9 ± 27.0% with ethanol washing compared to water (177.7 ± 10.3%), indicating ethanol washing retains flexibility. Overall, an ethanol washing step for defatting could simplify the recovery steps, increase yield and purity, and retain mechanical properties, especially for P(3HB-co-3HH) from oils. Full article
Show Figures

Figure 1

20 pages, 7039 KiB  
Article
Development of a Rapid and Sensitive Visual Pesticide Detection Card Using Crosslinked and Surface-Decorated Electrospun Nanofiber Mat
by Yunshan Wei, Huange Zhou, Jingxuan Kang, Yongmei Wu and Kun Feng
Foods 2025, 14(15), 2628; https://doi.org/10.3390/foods14152628 - 26 Jul 2025
Viewed by 450
Abstract
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and [...] Read more.
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and surface-decorated polyvinyl alcohol/citric acid nanofiber mat (PCNM) was employed as a novel immobilization matrix for acetylcholinesterase (AChE). The PCNM, crosslinked at 130 °C for 50 min, exhibited appropriate microstructure and water stability, making it suitable for AChE immobilization. The activation of carboxyl groups by surface decoration resulted in a 2.5-fold increase in enzyme loading capacity. Through parameter optimization, the detection limits for phoxim and methomyl were determined to be 0.007 mg/L and 0.10 mg/L, respectively. The detection card exhibited superior sensitivity and a reduced detection time (11 min) when compared to a commercially available pesticide detection card. Furthermore, the detection results of pesticide residues in fruit and vegetable samples confirmed its feasibility and superiority over commercial alternatives, suggesting its great potential for practical application in the on-site detection of pesticide residues. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

22 pages, 2743 KiB  
Article
Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions
by Fernando Sánchez-Suárez, María del Valle Palenzuela, Cristina Campos-Vazquez, Inés M. Santos-Dueñas, Víctor Manuel Ramos-Muñoz, Antonio Rosal and Rafael Andrés Peinado
Agriculture 2025, 15(15), 1604; https://doi.org/10.3390/agriculture15151604 - 25 Jul 2025
Viewed by 324
Abstract
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving [...] Read more.
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving initial thermophilic pre-composting, followed by vermicomposting using Eisenia fetida for 90 days. The conditions were optimized to ensure aerobic decomposition and maintain proper moisture levels (70–85%) and temperature control. This resulted in end products that met the legal standards required for agricultural use. However, population dynamics revealed significantly higher worm reproduction and biomass in the WIR treatment, suggesting superior substrate quality. When applied to grapevines, WIR vermicompost increased soil organic matter, nitrogen availability, and overall fertility. Under rainfed conditions, it improved vegetative growth, yield, and must quality, with increases in yeast assimilable nitrogen (YAN), sugar content, and amino acid levels comparable to those achieved using chemical fertilizers, as opposed to the no-fertilizer trial. Foliar analyses at veraison revealed stronger nutrient uptake, particularly of nitrogen and potassium, which was correlated with improved oenological parameters compared to the no-fertilizer trial. In contrast, WIR + SS compost was less favorable due to lower worm activity and elevated trace elements, despite remaining within legal limits. These results support the use of vermicompost derived solely from wine residues as a sustainable alternative to chemical fertilizers, in line with the goals of the circular economy in viticulture. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

32 pages, 6622 KiB  
Article
Health Monitoring of Abies nebrodensis Combining UAV Remote Sensing Data, Climatological and Weather Observations, and Phytosanitary Inspections
by Lorenzo Arcidiaco, Manuela Corongiu, Gianni Della Rocca, Sara Barberini, Giovanni Emiliani, Rosario Schicchi, Peppuccio Bonomo, David Pellegrini and Roberto Danti
Forests 2025, 16(7), 1200; https://doi.org/10.3390/f16071200 - 21 Jul 2025
Viewed by 312
Abstract
Abies nebrodensis L. is a critically endangered conifer endemic to Sicily (Italy). Its residual population is confined to the Madonie mountain range under challenging climatological conditions. Despite the good adaptation shown by the relict population to the environmental conditions occurring in its habitat, [...] Read more.
Abies nebrodensis L. is a critically endangered conifer endemic to Sicily (Italy). Its residual population is confined to the Madonie mountain range under challenging climatological conditions. Despite the good adaptation shown by the relict population to the environmental conditions occurring in its habitat, Abies nebrodensis is subject to a series of threats, including climate change. Effective conservation strategies require reliable and versatile methods for monitoring its health status. Combining high-resolution remote sensing data with reanalysis of climatological datasets, this study aimed to identify correlations between vegetation indices (NDVI, GreenDVI, and EVI) and key climatological variables (temperature and precipitation) using advanced machine learning techniques. High-resolution RGB (Red, Green, Blue) and IrRG (infrared, Red, Green) maps were used to delineate tree crowns and extract statistics related to the selected vegetation indices. The results of phytosanitary inspections and multispectral analyses showed that the microclimatic conditions at the site level influence both the impact of crown disorders and tree physiology in terms of water content and photosynthetic activity. Hence, the correlation between the phytosanitary inspection results and vegetation indices suggests that multispectral techniques with drones can provide reliable indications of the health status of Abies nebrodensis trees. The findings of this study provide significant insights into the influence of environmental stress on Abies nebrodensis and offer a basis for developing new monitoring procedures that could assist in managing conservation measures. Full article
Show Figures

Figure 1

22 pages, 2108 KiB  
Article
Evaluation of Broad-Spectrum Pesticides Based on Unified Multi-Analytical Procedure in Fruits and Vegetables for Acute Health Risk Assessment
by Bożena Łozowicka, Piotr Kaczyński, Magdalena Jankowska, Ewa Rutkowska, Piotr Iwaniuk, Rafał Konecki, Weronika Rogowska, Aida Zhagyparova, Damira Absatarova, Stanisław Łuniewski, Marcin Pietkun and Izabela Hrynko
Foods 2025, 14(14), 2528; https://doi.org/10.3390/foods14142528 - 18 Jul 2025
Viewed by 422
Abstract
Fruits and vegetables are crucial components of a healthy diet, which are susceptible to pests. Therefore, the application of pesticides is a basic manner of crop chemical protection. The aim of this study was a comprehensive analysis of pesticide occurrence in 1114 samples [...] Read more.
Fruits and vegetables are crucial components of a healthy diet, which are susceptible to pests. Therefore, the application of pesticides is a basic manner of crop chemical protection. The aim of this study was a comprehensive analysis of pesticide occurrence in 1114 samples of fruits and vegetables. A unified multi-analytical protocol was used composed of primary–secondary amine/graphitized carbon black/magnesium sulfate to purify samples with diversified profile of interfering substances. Moreover, the obtained analytical data were used to evaluate the critical acute health risk in subpopulations of children and adults within European limits criteria. Out of 550 pesticides analyzed, 38 and 69 compounds were noted in 58.6% of fruits and 44.2% of vegetables, respectively. Acetamiprid (14.1% of all detections) and captan (11.3%) occurred the most frequently in fruits, while pendimethalin (10.6%) and azoxystrobin (8.6%) occurred the most frequently in vegetables. A total of 28% of vegetable and 43% of fruit samples were multiresidues with up to 13 pesticides in dill, reaching a final concentration of 0.562 mg kg−1. Maximum residue level (MRL) was exceeded in 7.9% of fruits and 7.3% of vegetables, up to 7900% MRL for chlorpyrifos in dill (0.79 mg kg−1). Notably, 8 out of 38 pesticides found in fruits (21%; 1.2% for carbendazim) and 24 out of 69 compounds in vegetables (35%, 7.4% for chlorpyrifos) were not approved in the EU. Concentrations of pesticides exceeding MRL were used to assess acute health risk for children and adults. Moreover, the incidence of acute health risk was proved for children consuming parsnip with linuron (156%). In other cases, it was below 100%, indicating that Polish food is safe. The work provides reliable and representative scientific data on the contamination of fruits and vegetables with pesticides. It highlights the importance of legislative changes to avoid the occurrence of not approved pesticides in the EU, increasing food and health safety. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

22 pages, 4732 KiB  
Article
Improving Winter Wheat Yield Estimation Under Saline Stress by Integrating Sentinel-2 and Soil Salt Content Using Random Forest
by Chuang Lu, Maowei Yang, Shiwei Dong, Yu Liu, Yinkun Li and Yuchun Pan
Agriculture 2025, 15(14), 1544; https://doi.org/10.3390/agriculture15141544 - 18 Jul 2025
Viewed by 298
Abstract
Accurate estimation of winter wheat yield under saline stress is crucial for addressing food security challenges and optimizing agricultural management in regional soils. This study proposed a method integrating Sentinel-2 data and field-measured soil salt content (SC) using a random forest (RF) method [...] Read more.
Accurate estimation of winter wheat yield under saline stress is crucial for addressing food security challenges and optimizing agricultural management in regional soils. This study proposed a method integrating Sentinel-2 data and field-measured soil salt content (SC) using a random forest (RF) method to improve yield estimation of winter wheat in Kenli County, a typical saline area in China’s Yellow River Delta. First, feature importance analysis of a temporal vegetation index (VI) and salinity index (SI) across all growth periods were achieved to select main parameters. Second, yield models of winter wheat were developed in VI-, SI-, VI + SI-, and VI + SI + SC-based groups. Furthermore, error assessment and spatial yield mapping were analyzed in detail. The results demonstrated that feature importance varied by growth periods. SI dominated in pre-jointing periods, while VI was better in the post-jointing phase. The VI + SI + SC-based model achieved better accuracy (R2 = 0.78, RMSE = 720.16 kg/ha) than VI-based (R2 = 0.71), SI-based (R2 = 0.69), and VI + SI-based (R2 = 0.77) models. Error analysis results suggested that the residuals were reduced as the input parameters increased, and the VI + SI + SC-based model showed a good consistency with the field-measured yields. The spatial distribution of winter wheat yield using the VI + SI + SC-based model showed significant differences, and average yields in no, slight, moderate, and severe salinity areas were 7945, 7258, 5217, and 4707 kg/ha, respectively. This study can provide a reference for winter wheat yield estimation and crop production improvement in saline regions. Full article
Show Figures

Figure 1

21 pages, 6962 KiB  
Article
Spatiotemporal Variation in Fractional Vegetation Coverage and Quantitative Analysis of Its Driving Forces: A Case Study in the Tabu River Basin, Northern China, 1986–2023
by Zihe Wang, Yangwen Jia, Cunwen Niu, Jiajia Liu, Jing Jin, Zilong Liao, Mingxin Wang, Guohua Li and Jing Zhang
Remote Sens. 2025, 17(14), 2490; https://doi.org/10.3390/rs17142490 - 17 Jul 2025
Viewed by 397
Abstract
The Tabu River Basin (TRB) is one of the most ecologically fragile areas in the arid regions of northern China; it is a key component of the desert steppe north of the Yinshan Mountains. The fractional vegetation coverage (FVC) represents a vital indicator [...] Read more.
The Tabu River Basin (TRB) is one of the most ecologically fragile areas in the arid regions of northern China; it is a key component of the desert steppe north of the Yinshan Mountains. The fractional vegetation coverage (FVC) represents a vital indicator of ecological health in the TRB. In this study, we explored the impacts of climate change and human activities on vegetation growth and utilized Landsat data (30 m) from the Google Earth Engine to generate a long-term FVC dataset (1986–2023) in the TRB. Furthermore, we established a framework for quantitatively identifying the effects of climate change and anthropogenic activities on the FVC in desert steppe regions. The results revealed that: (1) the FVC exhibits considerable spatial heterogeneity, with higher values observed in the southeastern and southwestern areas and lower values in the northern part; (2) over the past 38 years, the annual average FVC has shown fluctuations, with a slight declining trend, while the Hurst exponent indicates a reverse persistence pattern in the FVC across the TRB; and (3) the correlation between the FVC and the temperature is marginally stronger than that with precipitation, and the influence of climate change on promoting the FVC outweighs the role of human activities. These results offer valuable insights for ecological restoration and sustainable development efforts and provide scientific support for monitoring vegetation in the region. Full article
Show Figures

Graphical abstract

21 pages, 5627 KiB  
Article
Effects of a Post-Harvest Management Practice on Structural Connectivity in Catchments with a Mediterranean Climate
by Daniel Sanhueza, Lorenzo Martini, Andrés Iroumé, Matías Pincheira and Lorenzo Picco
Forests 2025, 16(7), 1171; https://doi.org/10.3390/f16071171 - 16 Jul 2025
Viewed by 311
Abstract
Forest harvesting can alter sedimentary processes in catchments by reducing vegetation cover and exposing the soil surface. To mitigate these effects, post-harvest residue management is commonly used, though its effectiveness needs individual evaluation. This study assessed how windrowed harvest residues influence structural sediment [...] Read more.
Forest harvesting can alter sedimentary processes in catchments by reducing vegetation cover and exposing the soil surface. To mitigate these effects, post-harvest residue management is commonly used, though its effectiveness needs individual evaluation. This study assessed how windrowed harvest residues influence structural sediment connectivity in two forest catchments in south-central Chile with a Mediterranean climate. Using digital terrain models and the Index of Connectivity, scenarios with and without windrows were compared. Despite similar windrow characteristics, effectiveness varied between catchments. In catchment N01 (12.6 ha, average slope 0.28 m m−1), with 13.6% windrow coverage, connectivity remained unchanged, but in contrast, catchment N02 (14 ha, average slope 0.27 m m−1), with 21.9% coverage, showed a significant connectivity reduction. A key factor was windrows’ orientation: 83.9% aligned with contour lines in N02 versus 58.6% in N01. Distance to drainage channels also played a role, with the decreasing effect of connectivity at 50–60 m in N02. Bootstrap analysis confirmed significant differences between catchments. These results suggest that windrow configuration, particularly contour alignment, may be more critical than coverage percentage. For effective connectivity reduction, especially on moderate to steep slopes, forest managers should prioritize contour-aligned windrows. This study enhances our understanding of structural sediment connectivity and offers practical insights for sustainable post-harvest forest management. Full article
(This article belongs to the Special Issue Erosion and Forests: Drivers, Impacts, and Management)
Show Figures

Figure 1

Back to TopTop