Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables
Abstract
1. Introduction
2. Spectral Techniques
2.1. Near Infrared Spectroscopy
2.2. Hyperspectral Data Analysis
2.3. Raman Spectroscopy
2.4. Laser-Induced Breakdown Spectroscopy
3. Spectral Imaging Technology
3.1. Visible Light Imaging Technology
3.2. Near Infrared Spectroscopic Imaging Technology
3.3. Hyperspectral Imaging Technology
3.4. Terahertz Imaging Technology
4. Challenges and Prospects
4.1. Challenges in Detecting Low-Concentration Pesticide Residues
4.2. High-Quality Data and Annotation
4.3. Fusion Modeling of Spectral Data and Spectral Images
4.4. Generalization Ability
4.5. Interpretability of Deep Learning Models
4.6. Insufficient Commercialization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, Q.; Liao, G.; Chen, L.; Qian, Y.; Yan, X.; Qiu, J. Pesticide residues in animal-derived food: Current state and perspectives. Food Chem. 2024, 438, 137974. [Google Scholar] [CrossRef] [PubMed]
- Jeyabalan, S.; Mahesh, P.; Shanthala, M.; Devarajan, T.; Suraj Shashikant, D.; Ravichandra, H.; Muniswamy, D.; Saher, I.; Akhil, S.; Supriya, M.; et al. Pesticide analysis in food samples by GC-MS, LC-MS, and tandem mass spectrometry. In Mass Spectrometry in Food Analysis; CRC Press: Boca Raton, FL, USA, 2022; pp. 211–230. [Google Scholar] [CrossRef]
- Elmastas, A.; Umaz, A.; Pirinc, V.; Aydin, F. Quantitative determination and removal of pesticide residues in fresh vegetables and fruit products by LC–MS/MS and GC–MS/MS. Environ. Monit. Assess. 2023, 195, 227. [Google Scholar] [CrossRef]
- Yu, Y.; Chai, Y.; Li, Z.; Li, Z.; Ren, Z.; Dong, H.; Chen, L. Quantitative predictions of protein and total flavonoids content in Tartary and common buckwheat using near-infrared spectroscopy and chemometrics. Food Chem. 2025, 462, 141033. [Google Scholar] [CrossRef]
- Yu, Y.; Chai, Y.; Yan, Y.; Li, Z.; Huang, Y.; Chen, L.; Dong, H. Near-infrared spectroscopy combined with support vector machine for the identification of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) adulteration using wavelength selection algorithms. Food Chem. 2025, 463, 141548. [Google Scholar] [CrossRef]
- Rehman, T.U.; Mahmud, M.S.; Chang, Y.K.; Jin, J.; Shin, J. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric. 2019, 156, 585–605. [Google Scholar] [CrossRef]
- Xu, Z.; Han, Y.; Zhao, D.; Li, K.; Li, J.; Dong, J.; Shi, W.; Zhao, H.; Bai, Y. Research progress on quality detection of livestock and poultry meat based on machine vision, hyperspectral and multi-source information fusion technologies. Foods 2024, 13, 469. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Huang, H.; Tan, Z.; Hou, C.; Zhuang, J.; Tang, Y. Raman spectroscopy and its application in fruit quality detection. Agriculture 2025, 15, 195. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, M.; Mujumdar, A.S. Intelligent detection for fresh-cut fruit and vegetable processing: Imaging technology. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5171–5198. [Google Scholar] [CrossRef]
- Li, M.; Liu, W.; Zhao, Z.; Liu, L.; Liu, X. Application of hyperspectral imaging technology in nondestructive testing of fruit quality. In Proceedings of the Tenth International Conference on Information Optics and Photonics; SPIE: Bellingham, WA, USA, 2018; p. 304. [Google Scholar] [CrossRef]
- Qi, Y.; Hu, D.; Zheng, M.; Jiang, Y.; Chen, Y.P. Deep learning assisted raman spectroscopy for rapid identification of 2D materials. Appl. Mater. Today 2024, 41, 102499. [Google Scholar] [CrossRef]
- Ye, W.; Yan, T.; Zhang, C.; Duan, L.; Chen, W.; Song, H.; Zhang, Y.; Xu, W.; Gao, P. Detection of pesticide residue level in grape using hyperspectral imaging with machine learning. Foods 2022, 11, 1609. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Ma, B.; Xu, Y.; Dang, F.; Yu, G.; Bian, H. An innovative variant based on generative adversarial network (GAN): Regression GAN combined with hyperspectral imaging to predict pesticide residue content of Hami melon. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 325, 125086. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Li, Y.; Qin, B.; Zhao, D.; Gan, Y.; Zheng, J. Pesticide detection combining the wasserstein generative adversarial network and the residual neural network based on terahertz spectroscopy. RSC Adv. 2022, 12, 1769–1776. [Google Scholar] [CrossRef] [PubMed]
- Shaik, T.; Tao, X.; Li, L.; Xie, H.; Velásquez, J.D. A survey of multimodal information fusion for smart healthcare: Mapping the journey from data to wisdom. Inf. Fusion 2024, 102, 102040. [Google Scholar] [CrossRef]
- Tan, H.; Hu, Y.; Ma, B.; Yu, G.; Li, Y. An improved DCGAN model: Data augmentation of hyperspectral image for identification pesticide residues of Hami melon. Food Control 2024, 157, 110168. [Google Scholar] [CrossRef]
- Yazici, A.; Tiryaki, G.Y.; Ayvaz, H. Determination of pesticide residual levels in strawberry (fragaria) by near-infrared spectroscopy. J. Sci. Food Agric. 2020, 100, 1980–1989. [Google Scholar] [CrossRef]
- Xue, L.; Cai, J.; Li, J.; Liu, M. Application of Particle Swarm Optimization (PSO) Algorithm to Determine Dichlorvos Residue on the Surface of Navel Orange with Vis-NIR Spectroscopy. Procedia Eng. 2012, 29, 4124–4128. [Google Scholar] [CrossRef]
- Yu, G.; Ma, B.; Chen, J.; Li, X.; Li, Y.; Li, C. Nondestructive identification of pesticide residues on the hami melon surface using deep feature fusion by Vis/NIR spectroscopy and 1D-CNN. J. Food Process Eng. 2020, 44, 13602. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, B.; Wang, H.; Zhang, Y.; Li, Y.; Yu, G. Detecting different pesticide residues on hami melon surface using hyperspectral imaging combined with 1D-CNN and information fusion. Front. Plant Sci. 2023, 14, 1105601. [Google Scholar] [CrossRef]
- Nazarloo, A.S.; Sharabiani, V.R.; Gilandeh, Y.A.; Taghinezhad, E.; Szymanek, M. Evaluation of different models for non-destructive detection of tomato pesticide residues based on near-infrared spectroscopy. Sensors 2021, 21, 3032. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Li, W.; Shen, T.; He, Z.; Zhang, M.; Zhang, H.; Sun, Y.; Liu, F. Detection of chlorpyrifos and carbendazim residues in the cabbage using visible/near-infrared spectroscopy combined with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 257, 119759. [Google Scholar] [CrossRef]
- Zhang, M.; Xue, J.; Li, Y.; Yin, J.; Liu, Y.; Wang, K.; Li, Z. Non-destructive detection and recognition of pesticide residue levels on cauliflowers using visible/near-infrared spectroscopy combined with chemometrics. J. Food Sci. 2023, 88, 4327–4342. [Google Scholar] [CrossRef]
- Lapcharoensuk, R.; Fhaykamta, C.; Anurak, W.; Chadwut, W.; Sitorus, A. Nondestructive detection of pesticide residue (chlorpyrifos) on bok choi (brassica rapa subsp. chinensis) using a portable nir spectrometer coupled with a machine learning approach. Foods 2023, 12, 955. [Google Scholar] [CrossRef]
- Soltani Nazarloo, A.; Rasooli Sharabiani, V.; Abbaspour Gilandeh, Y.; Taghinezhad, E.; Szymanek, M.; Sprawka, M. Feasibility of using VIS/NIR spectroscopy and multivariate analysis for pesticide residue detection in tomatoes. Processes 2021, 9, 196. [Google Scholar] [CrossRef]
- Zhang, L. Research on Non-Destructive Detection of Pesticide Residues on the Surface of Red Dates Based on Hyperspectral Imaging Technology. Master’s Thesis, Ningxia University, Yinchuan, China, 2014. [Google Scholar]
- Li, R.; Wang, H.; Shen, B.; Yao, X. Study on Dissipation Law of Pesticides in Cauliflower Based on Hyperspectral Image Technique. Agriculture 2023, 13, 2254. [Google Scholar] [CrossRef]
- Ji, H.; Ren, Z.; Rao, Z. Identification of pesticide residue types in spinach leaves based on hyperspectral imaging. Chin. J. Lumin. 2018, 39, 1778–1784. [Google Scholar] [CrossRef]
- Yang, Q.; Yin, L.; Hu, X.; Wang, L. Detection of drug residues in bean sprouts by hyperspectral imaging combined with 1DCNN with channel attention mechanism. Microchem. J. 2024, 206, 111497. [Google Scholar] [CrossRef]
- Sun, J.; Cong, S.; Mao, H.; Wu, X.; Yang, N. Quantitative detection of mixed pesticide residue of lettuce leaves based on hyperspectral technique. J. Food Process Eng. 2017, 41, 12654. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, X.; Jayan, H.; Yin, L.; Xue, S.; El-Seedi, H.R.; Zou, X. Recent developments and applications of surface enhanced raman scattering spectroscopy in safety detection of fruits and vegetables. Food Chem. 2024, 434, 137469. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, X.; Liu, C.; Wang, S.; Dong, S.; Huang, Q. Rapid detection of residual chlorpyrifos and pyrimethanil on fruit surface by surface-enhanced Raman spectroscopy integrated with deep learning approach. Sci. Rep. 2023, 13, 19855. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, N.; Li, Z.; Shi, J.; Tahir, H.; Sun, Y.; Zhang, Y.; Zhang, X.; Holmes, M.; Zou, X. Rapid detection of carbendazim residue in apple using surface-enhanced Raman scattering and coupled chemometric algorithm. Foods 2022, 11, 1287. [Google Scholar] [CrossRef]
- Wang, T.; Xie, C.; You, Q.; Tian, X.; Xu, X. Qualitative and quantitative analysis of four benzimidazole residues in food by surface-enhanced Raman spectroscopy combined with chemometrics. Food Chem. 2023, 424, 136479. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Fang, H.; Feng, X.; He, Y.; Liu, X.; Shi, Y.; Wei, Y.; Hong, Z.; Fan, Y. Rapid trace detection of pesticide residues on tomato by surface-enhanced raman spectroscopy and flexible tapes. J. Food Qual. 2022, 2022, 6947775. [Google Scholar] [CrossRef]
- Ma, F.; Dong, D. A measurement method on pesticide residues of apple surface based on laser-induced breakdown spectroscopy. Food Anal. Methods 2014, 7, 1858–1865. [Google Scholar] [CrossRef]
- Martino, L.J.; D’Angelo, C.A.; Marinelli, C.; Cepeda, R. Identification and detection of pesticide in chard samples by laser-induced breakdown spectroscopy using chemometric methods. Spectrochim. Acta Part B At. Spectrosc. 2021, 177, 106031. [Google Scholar] [CrossRef]
- Wu, D.; Meng, L.; Yang, L.; Wang, J.; Fu, X.; Du, X.; Li, S.; He, Y.; Huang, L. Feasibility of laser-induced breakdown spectroscopy and hyperspectral imaging for rapid detection of thiophanate-methyl residue on mulberry fruit. Int. J. Mol. Sci. 2019, 20, 2017. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, C.; Du, X.; Dong, D. Detecting and mapping harmful chemicals in fruit and vegetables using nanoparticle-enhanced laser-induced breakdown spectroscopy. Sci. Rep. 2019, 9, 906. [Google Scholar] [CrossRef]
- Kang, Z.L.; Zhao, Y.C.; Chen, L.; Guo, Y.J.; Mu, Q.S.; Wang, S.Y. Advances in Machine Learning and Hyperspectral Imaging in the Food Supply Chain. Food Eng. Rev. 2022, 14, 596–616. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Luan, Y.; Tan, Z.; Wei, W. Detection of pesticide residues in broccoli based on hyperspectral and convolutional neural network. Sci. Technol. Food Ind. 2025, 46, 1–8. [Google Scholar] [CrossRef]
- Jia, Y.; He, J.; Fu, H.; Shao, X.; Li, Z. Apple surface pesticide residue detection method based on hyperspectral imaging. In Intelligence Science and Big Data Engineering; Springer: Cham, Switzerland, 2018; pp. 539–556. [Google Scholar] [CrossRef]
- Wang, B.; Li, L. Detection of defects of cerasus humilis fruits based on hyperspectral imaging and convolutional neural networks. Inmateh Agric. Eng. 2023, 71, 103–114. [Google Scholar] [CrossRef]
- Changqi, S.; Cong, Z.; Naixue, X. Infrared and visible image fusion techniques based on deep learning: A review. Electronics 2020, 9, 2162. [Google Scholar] [CrossRef]
- Jiang, R.; Gu, M.; Zhao, Q.; Li, X.; Shen, J.; Su, Z. Hyperspectral and convolutional neural network for pesticide residue detection in Chinese cabbage. Spectrosc. Spectr. Anal. 2022, 42, 1385–1392. [Google Scholar]
- Zhang, B.; Li, J.; Fan, S.; Huang, W.; Zhang, C.; Wang, Q.; Xiao, G. Principles and applications of hyperspectral imaging technology in non-destructive detection of fruit and vegetable quality and safety. Spectrosc. Spectr. Anal. 2014, 34, 2743–2751. [Google Scholar]
- Li, Z.; Chu, B.; Zhang, H.; He, Y.; Liu, X.; Luo, W. Research on non-destructive detection of pesticide residues on the surface of gannan navel oranges by hyperspectral imaging technology. Spectrosc. Spectr. Anal. 2016, 36, 4034–4038. [Google Scholar]
- Chen, Y.; Liu, L.; Rao, Y.; Zhang, X.; Zhang, W.; Jin, X. Identifying the “dangshan” physiological disease of pear woolliness response via feature-level fusion of near-infrared spectroscopy and visual rgb image. Foods 2023, 12, 1178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Rao, Z.; Ji, H. NIR hyperspectral imaging technology combined with multivariate methods to study the residues of different concentrations of omethoate on wheat grain surface. Sensors 2019, 19, 3147. [Google Scholar] [CrossRef]
- Jiang, B.; He, J.; Yang, S.; Fu, H.; Li, T.; Song, H.; He, D. Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues. Artif. Intell. Agric. 2019, 1, 1–8. [Google Scholar] [CrossRef]
- He, W.; He, H.; Wang, F.; Wang, S.; Lyu, R. Non-destructive detection and recognition of pesticide residues on garlic chive (allium tuberosum) leaves based on short wave infrared hyperspectral imaging and one-dimensional convolutional neural network. J. Food Meas. Charact. 2021, 15, 4497–4507. [Google Scholar] [CrossRef]
- Yakun, Z.; Mengxin, G.; Libo, W.; Xiahua, C.; Tingting, L.; Fu, Z. In situ nondestructive detection of nitrogen content in soybean leaves based on hyperspectral imaging technology. Agronomy 2024, 14, 806. [Google Scholar] [CrossRef]
- Fernández-Rosales, C.; Fernandez-Moreno, A.; Álvarez-León, D.; Prieto-Sánchez, S. Tomato pesticide residue detection method based on hyperspectral imaging. In Proceedings of the 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), Madrid, Spain, 22–25 June 2022; pp. 1–6. [Google Scholar]
- Martínez Gila, D.M.; Bonillo Martínez, D.; Satorres Martínez, S.; Cano Marchal, P.; Gámez García, J. Non-invasive detection of pesticide residues in freshly harvested olives using hyperspectral imaging technology. Smart Agric. Technol. 2024, 9, 100644. [Google Scholar] [CrossRef]
- Min, L.; Zhiqiang, W.; Yu, L.; Caixia, L.; Liang, Z.; Yaxi, L. Study on detection of pesticide residues in tobacco based on hyperspectral imaging technology. Front. Plant Sci. 2024, 15. [Google Scholar] [CrossRef] [PubMed]
- Thorat, T.; Patle, B.K.; Wakchaure, M.; Parihar, L. Advancements in techniques used for identification of pesticide residue on crops. J. Nat. Pestic. Res. 2023, 4, 100031. [Google Scholar] [CrossRef]
- Wang, Y. Research on Pesticide Residue Detection Methods Based on Terahertz Spectroscopy. Master’s Thesis, China Jiliang University, Hangzhou, China, 2021. [Google Scholar]
- Mei, X. Research on Detection System for Carbendazim Pesticide Residues in Apples Based on Terahertz Spectroscopy Technology. Master’s Thesis, Northwest A&F University, Xianyang, China, 2024. [Google Scholar]
- Nie, P.; Qu, F.; Lin, L.; He, Y.; Feng, X.; Yang, L.; Gao, H.; Zhao, L.; Huang, L. Trace identification and visualization of multiple benzimidazole pesticide residues on toona sinensis leaves using terahertz imaging combined with deep learning. Int. J. Mol. Sci. 2021, 22, 3425. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zou, J.; Zhu, S.; Zhou, S. Analysis and detection of carbendazim pesticide residue distribution on tea matrix surface based on terahertz imaging technology. J. Southwest Univ. (Nat. Sci.) 2024, 46, 176–185. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, Y.; Lu, S.; Huang, Y.; Yu, X.; Mao, X.; Yu, Y.; Li, Z.; Liu, H. Convolutional neural networks in the realm of food quality and safety evaluation: Current achievements and future prospects. Trends Food Sci. Technol. 2025, 163, 105162. [Google Scholar] [CrossRef]
- Noh, H.H.; Kim, C.J.; Kim, S.-H.; Eun, H.-R.; Shin, Y.; Jeong, W.T. GC–MS/MS–based multiresidue pesticide analysis in mealworm (Tenebrio molitor) larvae: Optimization of standard QuEChERS-based method to minimize matrix effects. Food Chem. X 2025, 27, 102386. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, R.; Wang, S.; Zhang, N.; Zhang, X. A pesticide residue detection model for food based on NIR and SERS. PLoS ONE 2025, 20, e0320456. [Google Scholar] [CrossRef]
- Nagini, S.; Kalyani, N.L.; Medha, U.; Vishwajitha, J.; Sumitha, J.; Annavarapu, B.H. Exploration of Pesticide Residue Detection Methods. In Proceedings of the 2024 IEEE 4th International Conference on ICT in Business Industry & Government (ICTBIG), Indore, India, 13–14 December 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Z.; Wang, Z.; Liu, M.; Zhan, Y.; Song, S.; Wang, Z. ClusterRiceNet: A novel rice seed variety classification network based on hyperspectral imaging and spectral band clustering. Knowl.-Based Syst. 2025, 326, 113988. [Google Scholar] [CrossRef]
- Li, G.; Ye, M. MVNet: Hyperspectral Remote Sensing Image Classification Based on Hybrid Mamba-Transformer Vision Backbone Architecture. arXiv 2025, arXiv:2507.04409. [Google Scholar] [CrossRef]
- Ma, X.-H.; Chen, Z.-G.; Liu, J.-M. Wavelength selection method for near-infrared spectroscopy based on Max-Relevance Min-Redundancy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 310, 123933. [Google Scholar] [CrossRef]
- Yuan, M.; Ding, L.; Bai, R.; Yang, J.; Zhan, Z.; Zhao, Z.; Hu, Q.; Huang, L. Feature-level hyperspectral data fusion with CNN modeling for non-destructive authentication of “Weilian” from different origins. Microchem. J. 2025, 215, 114201. [Google Scholar] [CrossRef]
- Bunquin, M.A.B.; Daygon, V.D.; Opena, J.; Mitchell, J. Exploring alternative detection methods for azole-containing pesticide residue detection in food: A systematic review and future perspective. Trends Food Sci. Technol. 2025, 161, 105064. [Google Scholar] [CrossRef]
- Li, W.; Chen, Q.; Gu, G.; Sui, X. Object matching of visible–infrared image based on attention mechanism and feature fusion. Pattern Recognit. 2025, 158, 110972. [Google Scholar] [CrossRef]
- Wang, X.; Fang, L.; Zhao, J.; Pan, Z.; Li, H.; Li, Y. MMAE: A universal image fusion method via mask attention mechanism. Pattern Recognit. 2025, 158, 111041. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Huang, H.; Huang, Y.; Zhao, Y.; Liu, Z.; Jiang, S.; Wang, Y.; Ban, T.; Liu, Y.; et al. Multifunctional surface-enhanced Raman scattering imaging for detection and visualization of pesticide residues in crops. J. Hazard. Mater. 2025, 491, 138020. [Google Scholar] [CrossRef]
- Lv, M.; Pu, H.; Sun, D.-W. A durian-shaped multilayer core-shell SERS substrate for flow magnetic detection of pesticide residues on foods. Food Chem. 2024, 433, 137389. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.T.; Wang, X.L.; Chang, Y.H.; Guo, J.; Wang, C.C. Sensitive and handy detection of pesticide residue on fruit surface based on single microsphere surface-enhanced Raman spectroscopy technique. J. Colloid Interface Sci. 2022, 628, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Liu, C.; Xue, D.; Wu, H.; Zhang, Y.; Liu, M. Hyperspectral image classification based on cross-scene adaptive learning. Symmetry 2021, 13, 1878. [Google Scholar] [CrossRef]
- Braja, M.; Chatchawan, C.; Wahyu Nurkholis Hadi, S.; Wasin, W. Pesticide residues detection in agricultural products. Nat. Life Sci. Commun. 2023, 22, 049. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Monjur, O.; Khaliduzzaman, A.; Kamruzzaman, M. A comprehensive review of deep learning-based hyperspectral image reconstruction for agri-food quality appraisal. Artif. Intell. Rev. 2025, 58, 96. [Google Scholar] [CrossRef]
- Zheng, Y.; Luo, X.; Gao, Y.; Sun, Z.; Huang, K.; Gao, W.; Xu, H.; Xie, L. Lycopene detection in cherry tomatoes with feature enhancement and data fusion. Food Chem. 2025, 463, 141183. [Google Scholar] [CrossRef]
- Marchant, J.A.; Tillett, N.; Onyango, C.M. Dealing with color changes caused by natural illumination in outdoor machine vision. Cybern. Syst. Int. J. 2004, 35, 19–33. [Google Scholar] [CrossRef]
- Chen, S.; Guo, Y. Function and accuracy of neural network based on different hyper-parameters. Appl. Comput. Eng. 2025, 131, 124–132. [Google Scholar] [CrossRef]
- Reyes, I.V.P.D.; Sison, A.M.; Medina, R.P. A novel fused random pooling method for convolutional neural network to improve image classification accuracy. In Proceedings of the 2019 IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Kuala Lumpur, Malaysia, 20–21 December 2019; pp. 1–5. [Google Scholar]
- Hao, Y.; Dong, L.; Wei, F.; Xu, K. Self-attention attribution: Interpreting information interactions inside transformer. Proc. AAAI Conf. Artif. Intell. 2021, 35, 12963–12971. [Google Scholar] [CrossRef]
- Jingxia, G.; Nan, J.; Jinniu, B. Transformer based on channel-spatial attention for accurate classification of scenes in remote sensing image. Sci. Rep. 2022, 12, 15473. [Google Scholar] [CrossRef] [PubMed]
- Tehreem, Q.; Narmeen Zakaria, B. Understanding the black-box: Towards interpretable and reliable deep learning models. PeerJ Comput. Sci. 2023, 9, e1629. [Google Scholar] [CrossRef]
- Emrullah, Ş.A.; Naciye Nur, A.; Durmuş, Ö. Unlocking the black box: An in-depth review on interpretability, explainability, and reliability in deep learning. Neural Comput. Appl. 2024, 37, 859–965. [Google Scholar] [CrossRef]
- Dário, P. Deep tutti-frutti II: Explainability of CNN architectures for fruit dry matter predictions. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2025, 337, 126068. [Google Scholar] [CrossRef]
- Alejandro Barredo, A.; Natalia, D.-R.; Javier Del, S.; Adrien, B.; Siham, T.; Alberto, B.; Salvador, G.; Sergio, G.-L.; Daniel, M.; Richard, B.; et al. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Rajeshram, V.; Raghul, R.; Rajalingam, M.; Vengadesan, M. Smart pest control system: Deep learning algorithms for pest detection and pesticide selection. In Proceedings of the 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS), Gobichettipalayam, India, 12–13 December 2024; pp. 854–858. [Google Scholar]
- Ma, L.; Li, W.; Yuan, J.; Zhu, J.; Wu, Y.; He, H.; Pan, X. Recent Advances in Machine Learning-Assisted Design and Development of Polymer Materials. Macromol. Rapid Commun. 2025. Online ahead of print. [Google Scholar] [CrossRef]
- Pandya, J.K.; Khandelwal, S.S.; Tipu, R.K.; Pandya, K.S. Advancing Water Quality Management: An Integrated Approach Using Ensemble Machine Learning and Real-Time Interactive Visualization. IEEE Access 2025, 13, 92406–92428. [Google Scholar] [CrossRef]
- Han, Y.; Tian, Y.; Li, Q.; Yao, T.; Yao, J.; Zhang, Z.; Wu, L. Advances in Detection Technologies for Pesticide Residues and Heavy Metals in Rice: A Comprehensive Review of Spectroscopy, Chromatography, and Biosensors. Foods 2025, 14, 1070. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Liu, C.; Liu, W.; Zheng, L. Advancements in Intelligent Sensing Technologies for Food Safety Detection. Research 2025, 8, 0713. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Li, Z.; Qin, Q.; Yu, Y.; Guo, Y.; Cai, S.; Li, Z. Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables. Foods 2025, 14, 2679. https://doi.org/10.3390/foods14152679
He H, Li Z, Qin Q, Yu Y, Guo Y, Cai S, Li Z. Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables. Foods. 2025; 14(15):2679. https://doi.org/10.3390/foods14152679
Chicago/Turabian StyleHe, Haiyan, Zhoutao Li, Qian Qin, Yue Yu, Yuanxin Guo, Sheng Cai, and Zhanming Li. 2025. "Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables" Foods 14, no. 15: 2679. https://doi.org/10.3390/foods14152679
APA StyleHe, H., Li, Z., Qin, Q., Yu, Y., Guo, Y., Cai, S., & Li, Z. (2025). Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables. Foods, 14(15), 2679. https://doi.org/10.3390/foods14152679