Evaluation of Broad-Spectrum Pesticides Based on Unified Multi-Analytical Procedure in Fruits and Vegetables for Acute Health Risk Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Pesticides
2.2. Reagents and Materials
2.3. Samples
2.4. Sample Preparation
Assortment Groups | Typical Assortment Categories | Typical Representative Assortments | Interfering Substances |
---|---|---|---|
FRUITS | |||
High water content | Pome fruit | Apples, pears | Anthocyanin, proteins, sugars |
Stone fruits | Cherries, plums, sweet cherries | Anthocyanin, proteins, sugars | |
High acid content and high water content | Small fruits and berries | Blueberries, chokeberries, grapes, raspberries, strawberries | Anthocyanin, sugars |
VEGETABLES | |||
High water content | Brassica vegetables | Broccoli, cauliflowers, head cabbages, kales | Chlorophylls, sulfur compounds |
Bulb vegetables | Garlic, onions | Chlorophylls, sulfur compounds | |
Fruit vegetables | Cabbages, cucumbers, pumpkins, tomatoes, zucchini | Carotenoids, lutein, lycopene | |
Leafy vegetables and herbs | Dill, lettuces | Carotenoids, chlorophylls, protein | |
Legumes vegetables | Broad beans, green beans, green peans, lupine | Carotenoids, chlorophylls, protein | |
Root and tuber vegetables | Beetroots, carrots, celeries, horseradishes, parsley roots, parsnips, potatoes | Betalains, carotenoids, chlorophylls, sulfur compounds | |
Stem vegetables | Leeks | Chlorophylls, sulfur compounds |
2.5. Instrumentation and Conditions for the GC/LC/MS/MS Techniques
2.6. Health Risk Assessment for Children and Adults Consuming Fruits and Vegetables
3. Results and Discussion
3.1. Method Validation Data and Quality Assurance
3.2. Pesticides in Fruits and Vegetables
3.3. Multiple Pesticide Residues in Fruit and Vegetable Samples
3.4. Pesticides Not Approved for Fruits and Vegetables in the EU
3.5. Acute Risk Assessment of Children and Adults Resulting from the Consumption of Fruits and Vegetables with Residues Exceeding MRL
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rychlik, E.; Stoś, K.; Woźniak, A.; Mojska, H. Normy Żywienia Dla Populacji Polski; Narodowy Instytut Zdrowia Publicznego PZH—Państwowy Instytut Badawczy: Warszawa, Poland, 2024; ISBN 978-83-65870-78-0. [Google Scholar]
- Jankowska, M.; Łozowicka, B. The Influence of Technological Processing on the Concentration Levels of Natural and Synthetic Toxic Substances Present in Agricultural Plants and Their Products and Determination Methods of Toxins. Prog. Plant Prot. 2021, 67, 40–52. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Muraki, I.; Imamura, F.; Manson, J.E.; Hu, F.B.; Willett, W.C.; Van Dam, R.M.; Sun, Q. Fruit Consumption and Risk of Type 2 Diabetes: Results from Three Prospective Longitudinal Cohort Studies. BMJ 2013, 347, f5001. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Statistics 2019: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2019; ISBN 978-92-4-156570-7. [Google Scholar]
- Iwaniuk, P.; Łuniewski, S.; Kaczyński, P.; Łozowicka, B. The Influence of Humic Acids and Nitrophenols on Metabolic Compounds and Pesticide Behavior in Wheat under Biotic Stress. Agronomy 2023, 13, 1378. [Google Scholar] [CrossRef]
- Iwaniuk, P.; Łozowicka, B. Biochemical Compounds and Stress Markers in Lettuce upon Exposure to Pathogenic Botrytis Cinerea and Fungicides Inhibiting Oxidative Phosphorylation. Planta 2022, 255, 61. [Google Scholar] [CrossRef] [PubMed]
- Montiel-Leon, J.M.; Duy, S.V.; Munoz, G.; Verner, M.-A.; Hendawi, M.Y.; Moya, H.; Amyot, M.; Sauve, S. Occurrence of pesticides in fruits and vegetables from organic and conventional agriculture by QuEChERS extraction liquid chromatography tandem mass spectrometry. Food Control 2019, 104, 74–82. [Google Scholar] [CrossRef]
- Loughlin, T.M.M.; Peluso, M.L.; Etchegoyen, M.A.; Alonso, L.L.; de Castro, M.C.; Percudani, M.C.; Marino, D.J.G. Pesticide residues in fruits and vegetables of the argentine domestic market: Occurrence and quality. Food Control 2018, 93, 129–138. [Google Scholar] [CrossRef]
- Bakirci, G.T.; Acay, D.B.Y.; Bakirci, F.; Otles, S. Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem. 2014, 160, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Łozowicka, B.; Hrynko, I.; Rutkowska, E.; Jankowska, M.; Kaczyński, P. Pesticide residues in crops produced in the north-eastern Poland (2013). Prog. Plant Prot. 2014, 54, 319–325. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P. Pesticides in Agriculture and Environment: Impacts on Human Health. In Contaminants in Agriculture and Environment: Health Risks and Remediation; Agro Environ Media—Agriculture and Ennvironmental Science Academy: Haridwar, India, 2019; pp. 76–95. [Google Scholar]
- Leoci, R.; Ruberti, M. Pesticides: An Overview of the Current Health Problems of Their Use. J. Geosci. Environ. Prot. 2021, 9, 1–20. [Google Scholar] [CrossRef]
- Baltazar, M.T.; Dinis-Oliveira, R.J.; de Lourdes Bastos, M.; Tsatsakis, A.M.; Duarte, J.A.; Carvalho, F. Pesticides Exposure as Etiological Factors of Parkinson’s Disease and Other Neurodegenerative Diseases-A Mechanistic Approach. Toxicol. Lett. 2014, 230, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. Pesticides: An Update of Human Exposure and Toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef] [PubMed]
- Arab, A.; Mostafalou, S. Pesticides and Insulin Resistance-Related Metabolic Diseases: Evidences and Mechanisms. Pest. Biochem. Physiol. 2023, 195, 105521. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.; Kaczyński, P.; Hrynko, I.; Rutkowska, E.; Iwaniuk, P.; Ilyasova, G.; Łozowicka, B. Dietary Risk Assessment of Children and Adults Consuming Fruit and Vegetables with Multiple Pesticide Residues. Chemosphere 2024, 369, 143858. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jiao, Y.; Qiu, S.; Han, M.; Hou, X.; He, G.; Qin, S. Multi-Pesticide Residue Screening, Identification, and Quantification Analysis in Various Fruits and Vegetables by UHPLC-Q Exactive HRMS. Anal. Methods 2024, 16, 5990–5998. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, J.; Wei, J.; Tong, K.; Xie, Y.; Chang, Q.; Yu, X.; Li, B.; Lu, M.; Fan, C.; et al. Multi-Residue Analytical Method Development and Dietary Exposure Risk Assessment of 345 Pesticides in Mango by LC-Q-TOF/MS. Food Control 2025, 170, 111016. [Google Scholar] [CrossRef]
- Łozowicka, B.; Ilyasova, G.; Kaczyński, P.; Jankowska, M.; Rutkowska, E.; Hrynko, I.; Mojsak, P.; Szabuńko, J. Multi-Residue Methods for the Determination of over Four Hundred Pesticides in Solid and Liquid High Sucrose Content Matrices by Tandem Mass Spectrometry Coupled with Gas and Liquid Chromatograph. Talanta 2016, 151, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.K.; Tripathy, V.; Sharma, K.; Gupta, R.; Yadav, R.; Devi, S.; Walia, S. Long-Term Monitoring of 155 Multi-Class Pesticide Residues in Indian Vegetables and Their Risk Assessment for Consumer Safety. Food Chem. 2022, 373, 131518. [Google Scholar] [CrossRef] [PubMed]
- Łozowicka, B.; Kaczyński, P.; Wołejko, E.; Jankowska, M.; Iwaniuk, P.; Hrynko, I.; Rutkowska, E.; Łuniewski, S.; Ilyasova, G.; Jabłońska-Trypuć, A.; et al. Comprehensive Toxicological Multi-Year Study on Pesticides in Apples: Control, Trends and Dietary Risk Assessment. Food Chem. 2025, 464, 141897. [Google Scholar] [CrossRef] [PubMed]
- Alajlouni, A.M.; Abu-Oudeh, A.F.; Abu-Hardan, M.S.; Al-Sakaji, A.A. Residue Levels and Risk Assessment of Pesticides in Fruits from the Aqaba Region in Jordan. J. Food Compos. Anal. 2024, 135, 106642. [Google Scholar] [CrossRef]
- Udovicki, B.; Tomic, N.; Brkic, D.; Sredojevic, A.; Kaludjerovic, M.; Spirovic Trifunovic, B.; Smigic, N.; Djekic, I. Cumulative Risk Assessment of Dietary Exposure of the Adult Population in Serbia to Pesticides That Have Chronic Effects on the Thyroid Gland through Fresh Fruits and Vegetables. Food Chem. Toxicol. 2024, 186, 114541. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Modification of Multiresidue QuEChERS Protocol to Minimize Matrix Effect and Improve Recoveries for Determination of Pesticide Residues in Dried Herbs Followed by GC-MS/MS. Food Anal. Methods 2018, 11, 709–724. [Google Scholar] [CrossRef]
- Theurillat, X.; Dubois, M.; Huertas-Pérez, J.F. A Multi-Residue Pesticide Determination in Fatty Food Commodities by Modified QuEChERS Approach and Gas Chromatography-Tandem Mass Spectrometry. Food Chem. 2021, 353, 129039. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.K.M.M.; Hong, S.M.; Lee, H.S.; Moon, B.C.; Kim, D.; Kwon, H. Identification and Characterization of Matrix Components in Spinach during QuEChERS Sample Preparation for Pesticide Residue Analysis by LC-ESI-MS/MS, GC-MS and UPLC-DAD. J. Food Sci. Technol. 2018, 55, 3930–3938. [Google Scholar] [CrossRef] [PubMed]
- Besil, N.; Cesio, V.; Heinzen, H.; Fernandez-Alba, A.R. Matrix Effects and Interferences of Different Citrus Fruit Coextractives in Pesticide Residue Analysis Using Ultrahigh-Performance Liquid Chromatography-High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 4819–4829. [Google Scholar] [CrossRef] [PubMed]
- Perumal, S.; Arunkumar, M.; Mehta, T.; Thasale, R.; Kottadiyil, D. Optimization and Validation of a QuEChERS Method for Health Risk Assessment of Pesticide Residues in Tomato, Eggplant, and Okra Samples from Gujarat, India. J. Food Compos. Anal. 2025, 142, 107413. [Google Scholar] [CrossRef]
- Kottadiyil, D.; Mehta, T.; Thasale, R. Determination and Dietary Risk Assessment of 52 Pesticide Residues in Vegetable and Fruit Samples by GC-MS/MS and UHPLC-QTOF/MS from Gujarat, India. J. Food Compos. Anal. 2023, 115, 104957. [Google Scholar] [CrossRef]
- Kardani, F.; Jelyani, A.Z.; Dahanzadeh, M. Determination of 250 Pesticide Residues in the Iranian Vegetables Assessed during 2019-2020 Using the Modified QuEChERS Method along with Gas Chromatography—Mass Spectrometry. Appl. Food Res. 2022, 2, 100106. [Google Scholar] [CrossRef]
- López-Blanco, R.; Nortes-Méndez, R.; Robles-Molina, J.; Moreno-González, D.; Gilbert-López, B.; García-Reyes, J.F.; Molina-Díaz, A. Evaluation of Different Cleanup Sorbents for Multiresidue Pesticide Analysis in Fatty Vegetable Matrices by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1456, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, C.; Miliadis, G.E. Development and Validation of an Easy Multiresidue Method for the Determination of Multiclass Pesticide Residues Using GC-MS/MS and LC-MS/MS in Olive Oil and Olives. Talanta 2013, 112, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mnyandu, H.M.; Mahlambi, P.N. Optimization and Application of QuEChERS and SPE Methods Followed by LC-PDA for the Determination of Triazines Residues in Fruits and Vegetables from Pietermaritzburg Local Supermarkets. Food Chem. 2021, 360, 129818. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Łozowicka, B.; Rutkowska, E.; Jankowska, M.; Hrynko, I.; Kaczyński, P. Toxicological Evaluation of Multi-Class Pesticide Residues in Vegetables and Associated Human Health Risk Study for Adults and Children. Hum. Ecol. Risk Assess. 2016, 22, 1480–1505. [Google Scholar] [CrossRef]
- Hrynko, I.; Kaczyński, P.; Łozowicka, B. A Global Study of Pesticides in Bees: QuEChERS as a Sample Preparation Methodology for Their Analysis—Critical Review and Perspective. Sci. Total Environ. 2021, 792, 148385. [Google Scholar] [CrossRef] [PubMed]
- European Commission Directorate General for Health and Food Safety. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 26 April 2025).
- Łozowicka, B.; Rutkowska, E.; Hrynko, I.; Rusiłowska, J.; Pietraszko, A.; Jankowska, M.; Czerwińska, M.; Nowakowska, O.; Kaczyński, P. Optimization of the Method for the Simultaneous Determination of 490 Pesticides in Beer. Prog. Plant Prot. 2021, 61, 53–61. [Google Scholar] [CrossRef]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Optimization of the Method for the Simultaneous Determination of 248 Pesticides in Dry Fruit. Prog. Plant Prot. 2022, 62, 57–65. [Google Scholar] [CrossRef]
- EFSA; Anastassiadou, M.; Brancato, A.; Carrasco Cabrera, L.; Ferreira, L.; Greco, L.; Jarrah, S.; Kazocina, A.; Leuschner, R.; Magrans, J.O.; et al. Pesticide Residue Intake Model-EFSA PRIMo Revision 3.1. EFSA Support. Publ. 2019, 16, 1605E. [Google Scholar] [CrossRef]
- Hrynko, I.; Kaczyński, P.; Łuniewski, S.; Łozowicka, B. Removal of Triazole and Pyrethroid Pesticides from Wheat Grain by Water Treatment and Ultrasound-Supported Processes. Chemosphere 2023, 333, 138890. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, E.; Wołejko, E.; Kaczyński, P.; Łuniewski, S.; Łozowicka, B. High and Low Temperature Processing: Effective Tool Reducing Pesticides in/on Apple Used in a Risk Assessment of Dietary Intake Protocol. Chemosphere 2023, 313, 137498. [Google Scholar] [CrossRef] [PubMed]
- European Commission Guidance Document SANTE 11312/2021 v2—Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. Version 2 Implemented by 1 January 2024. Available online: https://food.ec.europa.eu/document/download/d4786faf-c574-4222-a5c6-45086b3920b8_en?filename=pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf (accessed on 26 April 2025).
- Szpyrka, E.; Kurdziel, A.; Matyaszek, A.; Podbielska, M.; Rupar, J.; Słowik-Borowiec, M. Evaluation of Pesticide Residues in Fruits and Vegetables from the Region of South-Eastern Poland. Food Control 2015, 48, 137–142. [Google Scholar] [CrossRef]
- Jallow, M.F.A.; Awadh, D.G.; Albaho, M.S.; Devi, V.Y.; Ahmad, N. Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait. Int. J. Environ. Res. Public Health 2017, 14, 833. [Google Scholar] [CrossRef] [PubMed]
- Alokail, M.S.; Elhalwagy, M.E.A.; Abd-Alrahman, S.H.; Alnaami, A.M.; Hussain, S.D.; Amer, O.E.; Sabico, S.; Al-Daghri, N.M. Pesticide Residues and Associated Health Effects in Marketed Fruits in Saudi Arabia. Arab. J. Chem. 2024, 17, 105993. [Google Scholar] [CrossRef]
- Isci, G.; Golge, O.; Kabak, B. Infant and Toddler Health Risks Associated with Pesticide Residue Exposure through Fruit- and Vegetable-Based Baby Food. J. Food Compos. Anal. 2025, 137, 106870. [Google Scholar] [CrossRef]
- EFSA; Carrasco Cabrera, L.; Di Piazza, G.; Dujardin, B.; Marchese, E.; Medina Pastor, P. The 2022 European Union Report on Pesticide Residues in Food. EFSA J. 2024, 22, e8753. [Google Scholar] [CrossRef]
- Nagesh, P.; Edelenbosch, O.Y.; Dekker, S.C.; de Boer, H.J.; Mitter, H.; van Vuuren, D.P. Extending shared socio-economic pathways for pesticide use in Europe: Pest-Agri-SSPs. J. Environ. Manag. 2023, 342, 118078. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Feng, D.; Wang, X.; Wang, M.; Chen, M.; Chen, Y.; Ma, Y.; Mei, B.; Chen, R.; Gao, M.; et al. Pesticide Residue and Dietary Intake Risk of Vegetables Grown in Shanghai under Modern Urban Agriculture in 2018–2021. Heliyon 2024, 10, e25505. [Google Scholar] [CrossRef] [PubMed]
- Poornima, W.V.D.S.; Liyanaarachchi, G.V.V.; Somasiri, H.P.P.S.; Hewajulige, I.G.N.; Tan, D.K.Y. Fresh Fruit and Vegetable Safety Concerns in Sri Lanka; Review of Pesticide Contamination. J. Food Compos. Anal. 2024, 128, 106004. [Google Scholar] [CrossRef]
- Shalaby, S.E.M.; Abdou, G.Y.; El-Metwally, I.M.; Abou-Elella, G.M.A. Health Risk Assessment of Pesticide Residues in Vegetables Collected from Dakahlia, Egypt. J. Plant Prot. Res. 2021, 61, 254–264. [Google Scholar] [CrossRef]
- Ibrahim, E.A.; Shalaby, S.E.M. Monitoring and Accumulative Risk Assessment of Pesticide Residues Detected in the Common Vegetables Grown in the Eastern Nile Delta, Egypt. Food Chem. Adv. 2023, 3, 100518. [Google Scholar] [CrossRef]
- Khatun, P.; Islam, A.; Sachi, S.; Islam, M.Z.; Islam, P. Pesticides in Vegetable Production in Bangladesh: A Systemic Review of Contamination Levels and Associated Health Risks in the Last Decade. Toxicol. Rep. 2023, 11, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Łozowicka, B.; Kaczyński, P.; Iwaniuk, P.; Rutkowska, E.; Socha, K.; Orywal, K.; Farhan, J.A.; Perkowski, M. Nutritional Compounds and Risk Assessment of Mycotoxins in Ecological and Conventional Nuts. Food Chem. 2024, 458, 140222. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.H.; Eun, J.B.; Zaky, A.A.; Hussein, A.S.; Hacimüftüoğlu, A.; Abd El-Aty, A.M. A Comprehensive Review of Pesticide Residues in Peppers. Foods 2023, 12, 970. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh, E.S.A.; Ramadan, M.M.; El-Sobki, A.E.; Shalaby, A.A.; McCoy, M.R.; Hamed, I.A.; Ashour, M.B.; Hammock, B.D. Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks. Molecules 2022, 27, 8072. [Google Scholar] [CrossRef] [PubMed]
- Ssemugabo, C.; Bradman, A.; Ssempebwa, J.C.; Sillé, F.; Guwatudde, D. Pesticide Residues in Fresh Fruit and Vegetables from Farm to Fork in the Kampala Metropolitan Area, Uganda. Int. J. Environ. Res. Public Health 2022, 19, 1350. [Google Scholar] [CrossRef] [PubMed]
- Gondo, T.F.; Kamakama, M.; Oatametse, B.; Samu, T.; Bogopa, J.; Keikotlhaile, B.M. Pesticide Residues in Fruits and Vegetables from the Southern Part of Botswana. Food Addit. Contam. B 2021, 14, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Toptanci, İ.; Kiralan, M.; Ramadan, M.F. Levels of Pesticide Residues in Fruits and Vegetables in the Turkish Domestic Markets. Environ. Sci. Pollut. Res. 2021, 28, 39451–39457. [Google Scholar] [CrossRef] [PubMed]
- Kazar Soydan, D.; Turgut, N.; Yalçın, M.; Turgut, C.; Karakuş, P.B.K. Evaluation of Pesticide Residues in Fruits and Vegetables from the Aegean Region of Turkey and Assessment of Risk to Consumers. Environ. Sci. Pollut. Res. 2021, 28, 27511–27519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Si, W.; Chen, L.; Shen, G.; Bai, B.; Zhou, C. Determination and Dietary Risk Assessment of 284 Pesticide Residues in Local Fruit Cultivars in Shanghai, China. Sci. Rep. 2021, 11, 9681. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhou, X.; Zhao, D.; Feng, T.; Zhou, J.; Sun, T.; Wang, J.; Wang, C. Seasonal Variation and Exposure Risk Assessment of Pesticide Residues in Vegetables from Xinjiang Uygur Autonomous Region of China during 2010–2014. J. Food Compos. Anal. 2017, 58, 1–9. [Google Scholar] [CrossRef]
- European Parliament and the Council. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009R1107 (accessed on 26 April 2025).
- European Parliament and the Council. Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 Implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as Regards the List of Approved Active Substances. Available online: https://eur-lex.europa.eu/eli/reg_impl/2011/540/oj (accessed on 26 April 2025).
- European Food Safety Authority. The 2017 European Union Report on Pesticide Residues in Food. EFSA J. 2019, 17, e05743. [Google Scholar] [CrossRef] [PubMed]
- Wołejko, E.; Łozowicka, B.; Jabłońska-Trypuć, A.; Pietruszyńska, M.; Wydro, U. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. Int. J. Environ. Res. Public Health 2022, 19, 12209. [Google Scholar] [CrossRef] [PubMed]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [PubMed]
- Uwamahoro, C.; Jo, J.-H.; Jang, S.-I.; Jung, E.-J.; Lee, W.-J.; Bae, J.-W.; Kwon, W.-S.; Uwamahoro, C.; Jo, J.-H.; Jang, S.-I.; et al. Assessing the Risks of Pesticide Exposure: Implications for Endocrine Disruption and Male Fertility. Int. J. Mol. Sci. 2024, 25, 6945. [Google Scholar] [CrossRef] [PubMed]
- Sivanandam, L.K.; Arunkumar, H.; Marlecha, P.; Madamanchi, V.; Maheshwari, C.; Naseer, M.Q.; Sanker, V.; Dave, T. Indoxacarb poisoning causing methemoglobinemia treated with parenteral vitamin C: A case report. J. Med. Case Rep. 2024, 18, 157. [Google Scholar] [CrossRef] [PubMed]
- Kukawka, R.; Spychalski, M.; Stróżyk, E.; Byzia, E.; Zając, A.; Kaczyński, P.; Łozowicka, B.; Pospieszny, H.; Śmiglak, M. Synthesis, characterization and biological activity of bifunctional ionic liquids based on dodine ion. Pest Manag. Sci. 2021, 78, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Lovakovic, B.T.; Pizent, A.; Kasuba, V.; Kopjar, N.; Micek, V.; Mendas, G.; Dvorscak, M.; Mikolic, A.; Milic, M.; Zunec, S.; et al. Effects of sub-chronic exposure to terbuthylazine on DNA damage, oxidative stress and parent compound/metabolite levels in adult male rats. Food Chem. Toxicol. 2017, 108, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, F.; Ran, L.; Yang, C.; Tang, C.; Ke, X.; Chen, J.; Xiao, W.; He, L.; Xu, Z. Systemic evaluation of novel acaricide hexythiazox for bioactivity improvement and risk reduction at the enantiomer level. Sci. Total Environ. 2024, 926, 171907. [Google Scholar] [CrossRef] [PubMed]
- Hrynko, I.; Kaczyński, P.; Pietruszyńska, M.; Łozowicka, B. The Effect of Food Thermal Processes on the Residue Concentration of Systemic and Non-Systemic Pesticides in Apples. Food Control 2023, 143, 109267. [Google Scholar] [CrossRef]
- Kaczyński, P.; Iwaniuk, P.; Hrynko, I.; Łuniewski, S.; Łozowicka, B. The Effect of the Multi-Stage Process of Wheat Beer Brewing on the Behavior of Pesticides According to Their Physicochemical Properties. Food Control 2024, 160, 110356. [Google Scholar] [CrossRef]
- Jankowska, M.; Łozowicka, B. The Processing Factors of Canning and Pasteurization for the Most Frequently Occurring Fungicides and Insecticides in Apples and Their Application into Dietary Risk Assessment. Food Chem. 2022, 371, 131179. [Google Scholar] [CrossRef] [PubMed]
- Human Health Risk Assessment of Pesticide Residues in Fruit, Vegetable and Cereal Samples from Poland—A 5-Year Survey. J. Plant Prot. Res. 2023, 62, 385–392. [CrossRef]
Assortment | Case | Children | Adults | ||||||
---|---|---|---|---|---|---|---|---|---|
MS Critical Diet | Body Weight (kg) | Large Portion (g person−1) | MS Critical Diet | Body Weight (kg) | Large Portion (g person−1) | ||||
Fruits | Apple | 2a | NL toddler | 10.2 | 209.4 | FR adult | 66.4 | 664.0 | |
Plum | 2a | IE child | 20.0 | 170.6 | DE women 14–50 | 67.5 | 879.1 | ||
Raspberry | 1 | IE child | 20.0 | 184.7 | FI men | 84.7 | 456.8 | ||
Vegetables | Beans | 1 | NL toddler | 10.2 | 116.6 | NL general population | 65.8 | 507.6 | |
Dill | 1 | NL toddler | 10.2 | 4.9 | NL general population | 65.8 | 21.5 | ||
Kale | 2b | DE child | 16.15 | 142.1 | DE general population | 76.4 | 294.1 | ||
Lentil | 3 | UK 11–14 years | 48.0 | 321.5 | FR adult | 66.4 | 408.4 | ||
Parsnip | 2b | UK infant | 8.7 | 44.9 | UK vegetarian | 66.7 | 188.0 | ||
Tomato | 2a | BE toddlers | 17.8 | 180.0 | LT adult | 70.0 | 450.0 | ||
Acute risk assessment equation for commodities with different unit weight (U): Case 1 for crops with U ≤ 25 g IESTI = [LP × HR × CF]/bw Case 2 for crops U > 25 g Case 2a where U < LP IESTI = [U × HR × CF + (LP − U) × HR × CF]/bw Case 2b where U > LP IESTI = [LP × HR × CF × VF]/bw Case 3 for food products that are usually bulked or blended before they are consumed (e.g., cereals, pulses). IESTI = [LP × HR × CF]/bw | Parameters: IESTI—International Estimated Short-Term Intake; LP—Large Portion (97.5th percentile of eaters) (g kg−1 bw); HR—Highest Residue according to residue definition for enforcement in the composite sample (mg kg−1); CF—Conversion Factor residue definition enforcement to residue definition risk assessment. VF—Variability Factor; VF = 1 when U < 25 g; VF = 7 when U between 25 and 250 g; VF = 5 when U above 250g; bw—body weight for the subgroup of the population related to the LP or mean consumption (kg). |
No. | Assortment | Pesticide | Toxicological Effects | Number of Samples Exceeding MRL | Detected Concentration (mg kg−1) | MRL (mg kg−1) | MRL Exceeding (%) |
---|---|---|---|---|---|---|---|
Fruits | |||||||
1 | Apple | Indoxacarb |
| 1 | 0.026 | 0.01 | 160 |
2 | Raspberry | Flutriafol |
| 1 | 0.030 | 0.01 | 200 |
3 | Plum | Dodine |
| 1 | 0.052 | 0.01 | 420 |
Vegetables | |||||||
1 | Green bean | Dimethoate |
| 1 | 0.410 | 0.01 | 4000 |
Metalaxyl | - | 1 | 0.110 | 0.02 | 450 | ||
Omethoate |
| 1 | 0.098 | 0.01 | 880 | ||
2 | Kale | Flonicamid | - | 1 | 0.091 | 0.03 | 203 |
3 | Dill | Beta-cyfluthrin |
| 1 | 0.160 | 0.02 | 700 |
Chlorpyrifos |
| 22 | 0.022–0.79 | 0.01 | 120–7900 | ||
Linuron |
| 3 | 0.045–0.093 | 0.02 | 125–365 | ||
Terbuthylazine |
| 1 | 0.043 | 0.02 | 115 | ||
Tetraconazole | - | 2 | 0.058–0.930 | 0.02 | 190–4550 | ||
4 | Lupine | Pirimiphos-methyl |
| 1 | 0.170 | 0.01 | 1600 |
5 | Parsnip | Chlorpyrifos |
| 1 | 0.031 | 0.01 | 210 |
Linuron |
| 1 | 0.130 | 0.01 | 1200 | ||
Propiconazole |
| 1 | 0.024 | 0.01 | 140 | ||
6 | Tomato | Hexythiazox |
| 1 | 0.280 | 0.1 | 180 |
Assortment | Pesticide a | Concentration Range (mg kg−1) | Number of Samples Tested | Number of Samples with Not Approved Pesticide in the EU | % of Samples Within Assortment with Not Approved Pesticides | % of Fruit/Vegetable Samples with Not Approved Pesticides |
---|---|---|---|---|---|---|
FRUITS | ||||||
Rasberry | Alpha-cypermethrin (I) | 0.045 | 36 | 1 | 2.8 | 0.3 |
Flutriafol (F) | 0.03 | 1 | 2.8 | 0.3 | ||
Carbendazim (F) | 0.11 | 1 | 2.8 | 0.3 | ||
Chlorpyrifos (I) | 0.014 | 1 | 2.8 | 0.3 | ||
Cherry | Fenpyrazamine (F) | 0.42 | 32 | 1 | 3.1 | 0.3 |
Carbendazim (F) | 0.006–0.01 | 3 | 9.4 | 0.8 | ||
Apple | Indoxacarb (I) | 0.007 | 10 | 1 | 10.0 | 0.3 |
Thiacloprid (I) | 0.014–0.026 | 2 | 20.0 | 0.5 | ||
Plum | Indoxacarb (I) | 0.006 | 39 | 1 | 2.6 | 0.3 |
Carbendazim (F) | 0.018–0.042 | 2 | 5.1 | 0.5 | ||
Thiophanate-methyl (F) | 0.017 | 1 | 2.6 | 0.3 | ||
Blueberry | Carbendazim (F) | 0.007 | 48 | 1 | 2.1 | 0.3 |
VEGETABLES | ||||||
Dill | 2,6-dichlorobenzamide (H) | 0.01–0.8 | 138 | 24 | 17.4 | 3.2 |
Beta-cyfluthrin (I) | 0.16 | 1 | 0.7 | 0.1 | ||
Chlorpyrifos (I) | 0.006–0.8 | 60 | 43.5 | 8.0 | ||
Chlorothalonil (F) | 0.009 | 1 | 0.7 | 0.1 | ||
Dimethomorph (F) | 0.006–0.009 | 2 | 1.4 | 0.3 | ||
Carbendazim (F) | 0.007–0.039 | 3 | 2.2 | 0.4 | ||
Linuron (H) | 0.007–0.093 | 7 | 5.1 | 0.9 | ||
Metalaxyl (F) | 0.074 | 1 | 0.7 | 0.1 | ||
Metolachlor (H) | 0.007 | 1 | 0.7 | 0.1 | ||
Metribuzin (H) | 0.006–0.048 | 10 | 7.2 | 1.3 | ||
Thiacloprid (I) | 0.009 | 1 | 0.7 | 0.1 | ||
Thiophanate-methyl (F) | 0.015 | 1 | 0.7 | 0.1 | ||
Tomato | 2,6-dichlorobenzamide (H) | 0.012 | 54 | 1 | 1.9 | 0.1 |
Chlorpyrifos (I) | 0.006 | 1 | 1.9 | 0.1 | ||
Dimethomorph (F) | 0.006–0.5 | 14 | 25.9 | 1.9 | ||
Dithiocarbamates (F) | 0.05–0.06 | 3 | 5.6 | 0.4 | ||
Famoxadone (F) | 0.009 | 1 | 1.9 | 0.1 | ||
Fenpyrazamine (F) | 0.021 | 1 | 1.9 | 0.1 | ||
Imidacloprid (I) | 0.015 | 1 | 1.9 | 0.1 | ||
Carbendazim (F) | 0.011 | 1 | 1.9 | 0.1 | ||
Thiophanate-methyl (F) | 0.11 | 1 | 1.9 | 0.1 | ||
Cucumber | 2,6-dichlorobenzamide (H) | 0.007–0.016 | 23 | 4 | 17.4 | 0.5 |
Chlorpyrifos (I) | 0.007 | 1 | 4.3 | 0.1 | ||
Chlorothalonil (F) | 0.018 | 1 | 4.3 | 0.1 | ||
Dimethomorph (F) | 0.006–0.027 | 5 | 21.7 | 0.7 | ||
Broad bean | Thiacloprid (I) | 0.014 | 10 | 1 | 10.0 | 0.1 |
Horseradish | p,p’ DDE (I) | 0.029 | 15 | 1 | 6.7 | 0.1 |
Green bean | Imidacloprid (I) | 0.014 | 24 | 1 | 4.2 | 0.1 |
2,6-dichlorobenzamide (H) | 0.016 | 1 | 4.2 | 0.1 | ||
Dimethoate (I) | 0.41 | 1 | 4.2 | 0.1 | ||
Omethoate (I) | 0.098 | 1 | 4.2 | 0.1 | ||
Kale | Metribuzin (H) | 0.009 | 10 | 1 | 10.0 | 0.1 |
Carrot | Chlorpyrifos (I) | 0.011 | 3 | 1 | 33.0 | 0.1 |
Parsnip | Linuron (H) | 0.015–0.13 | 12 | 2 | 16.7 | 0.3 |
Chlorpyrifos (I) | 0.031 | 1 | 8.3 | 0.1 | ||
Propiconazole (F) | 0.024 | 1 | 8.3 | 0.1 | ||
Thiacloprid (I) | 0.015 | 1 | 8.3 | 0.1 | ||
Parsley | Mepanipirim (F) | 0.009 | 1 | 1 | 100.0 | 0.1 |
Leek | Pirimiphos-methyl (I) | 0.015 | 27 | 1 | 3.7 | 0.1 |
Spinetoram (I) | 0.021 | 1 | 3.7 | 0.1 | ||
Imidacloprid (I) | 0.015 | 1 | 3.7 | 0.1 | ||
Lettuce | 2,6-dichlorobenzamide (H) | 0.015–0.027 | 6 | 3 | 50.0 | 0.4 |
Cyfluthrin (I) | 0.33 | 1 | 16.7 | 0.1 | ||
Metalaxyl (F) | 0.18 | 1 | 16.7 | 0.1 | ||
Potato | Dimethomorph (F) | 0.007–0.008 | 8 | 2 | 25.0 | 0.3 |
Assortment | MRL (mg kg−1) | Residue Level (mg kg−1) | Pesticide | ADI (mg kg−1 bw day−1) | ARfD (mg kg−1 bw) | Case | Children IESTI (%ARfD) | Children IESTInew (%ARfD) | Adults IESTI (%ARfD) | Adults IESTInew (%ARfD) |
---|---|---|---|---|---|---|---|---|---|---|
FRUITS | ||||||||||
Apples | 0.01 | 0.026 | Indoxacarb a | 0.005 | 0.005 | 2a | 56.0 | 12.3 | 14.6 | 6.0 |
Plum | 0.01 | 0.052 | Dodine | 0.1 | 0.1 | 2a | 2.2 | 0.3 | 0.9 | 0.4 |
Raspberry | 0.01 | 0.03 | Flutriafol a | 0.01 | 0.05 | 1 | 0.6 | 0.2 | 0.3 | 0.1 |
VEGETABLES | ||||||||||
Beans | 0.01 | 0.41 | Dimethoate a | 0.001 | 0.01 | 1 | 46.9 | 1.1 | 31.6 | 0.8 |
0.02 | 0.11 | Metalaxyl | 0.08 | 0.5 | 1 | 0.3 | 0.1 | 0.2 | 0.0 | |
0.01 | 0.098 | Omethoate a | 0.0004 | 0.002 | 1 | 56.0 | 5.7 | 37.8 | 3.9 | |
Dill | 0.02 | 0.16 | Beta-cyfluthrin a | 0.01 | 0.01 | 1 | 0.7 | 0.1 | 0.5 | 0.1 |
0.01 | 0.022–0.80 | Chlorpyrifos a | 0.001 | 0.005 | 1 | 0.2–7.7 | 0.1 | 0.1–5.2 | 0.1 | |
0.02 | 0.045–0.093 | Linuron a | 0.003 | 0.003 | 1 | 0.7–1.5 | 0.3 | 0.5–1.0 | 0.2 | |
0.02 | 0.043 | Terbuthylazine | 0.004 | 0.008 | 1 | 0.3 | 0.1 | 0.2 | 0.1 | |
0.02 | 0.058–0.093 | Tetraconazole | 0.004 | 0.05 | 1 | 0.1–0.9 | 0.0 | 0.0–0.6 | 0.0 | |
Kale | 0.03 | 0.091 | Flonicamid | 0.025 | 0.025 | 2b | 16.0 | 3.2 | 7.0 | 1.4 |
Lentil | 0.01 | 0.01 | Pirimiphos methyl | 0.004 | 0.15 | 3 | 0.1 | 0.1 | 0.0 | 0.0 |
Parsnip | 0.01 | 0.031 | Chlorpyrifos a | 0.001 | 0.005 | 2b | 22.4 | 3.1 | 8.7 | 1.7 |
0.01 | 0.13 | Linuron a | 0.003 | 0.003 | 2b | 156.5 | 5.2 | 60.9 | 2.8 | |
0.01 | 0.024 | Propiconazole a | 0.04 | 0.1 | 2b | 0.9 | 0.2 | 0.3 | 0.1 | |
Tomato | 0.1 | 0.28 | Hexythiazox | 0.03 | 0.03 | 2a | 54.3 | 10.1 | 14.8 | 6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łozowicka, B.; Kaczyński, P.; Jankowska, M.; Rutkowska, E.; Iwaniuk, P.; Konecki, R.; Rogowska, W.; Zhagyparova, A.; Absatarova, D.; Łuniewski, S.; et al. Evaluation of Broad-Spectrum Pesticides Based on Unified Multi-Analytical Procedure in Fruits and Vegetables for Acute Health Risk Assessment. Foods 2025, 14, 2528. https://doi.org/10.3390/foods14142528
Łozowicka B, Kaczyński P, Jankowska M, Rutkowska E, Iwaniuk P, Konecki R, Rogowska W, Zhagyparova A, Absatarova D, Łuniewski S, et al. Evaluation of Broad-Spectrum Pesticides Based on Unified Multi-Analytical Procedure in Fruits and Vegetables for Acute Health Risk Assessment. Foods. 2025; 14(14):2528. https://doi.org/10.3390/foods14142528
Chicago/Turabian StyleŁozowicka, Bożena, Piotr Kaczyński, Magdalena Jankowska, Ewa Rutkowska, Piotr Iwaniuk, Rafał Konecki, Weronika Rogowska, Aida Zhagyparova, Damira Absatarova, Stanisław Łuniewski, and et al. 2025. "Evaluation of Broad-Spectrum Pesticides Based on Unified Multi-Analytical Procedure in Fruits and Vegetables for Acute Health Risk Assessment" Foods 14, no. 14: 2528. https://doi.org/10.3390/foods14142528
APA StyleŁozowicka, B., Kaczyński, P., Jankowska, M., Rutkowska, E., Iwaniuk, P., Konecki, R., Rogowska, W., Zhagyparova, A., Absatarova, D., Łuniewski, S., Pietkun, M., & Hrynko, I. (2025). Evaluation of Broad-Spectrum Pesticides Based on Unified Multi-Analytical Procedure in Fruits and Vegetables for Acute Health Risk Assessment. Foods, 14(14), 2528. https://doi.org/10.3390/foods14142528