Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (538)

Search Parameters:
Keywords = vascular–metabolic risk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 307 KiB  
Review
High-Intensity Interval Training as Redox Medicine: Targeting Oxidative Stress and Antioxidant Adaptations in Cardiometabolic Disease Cohorts
by Dejan Reljic
Antioxidants 2025, 14(8), 937; https://doi.org/10.3390/antiox14080937 - 30 Jul 2025
Viewed by 306
Abstract
High-intensity interval training (HIIT) has emerged as a promising non-pharmacological intervention for improving cardiometabolic health. In populations with diabetes, cardiovascular disease, obesity, or metabolic dysfunction, redox imbalance—characterized by elevated oxidative stress and impaired antioxidant defense—is a key contributor to disease progression. This narrative [...] Read more.
High-intensity interval training (HIIT) has emerged as a promising non-pharmacological intervention for improving cardiometabolic health. In populations with diabetes, cardiovascular disease, obesity, or metabolic dysfunction, redox imbalance—characterized by elevated oxidative stress and impaired antioxidant defense—is a key contributor to disease progression. This narrative review synthesizes current evidence on the effects of HIIT on oxidative stress and antioxidant capacity across diverse cardiometabolic disease cohorts. While findings are heterogeneous, the majority of studies demonstrate that HIIT intervention can reduce levels of oxidative stress markers and enhance antioxidant enzyme expression. These redox adaptations may underpin improvements in vascular endothelial function, inflammation, and metabolic regulation. Importantly, variations in intensity, duration, and health status influence these responses, highlighting the need for individualized exercise prescriptions. Safety considerations are emphasized, including the necessity for medical clearance, gradual progression, and individualized training prescriptions in higher-risk individuals. In conclusion, HIIT shows potential as a targeted strategy to restore redox homeostasis and improve cardiometabolic outcomes, although further research is needed to clarify optimal protocols and the underlying mechanisms. Full article
10 pages, 539 KiB  
Article
Impact of Metabolic Syndrome on Renal and Cardiovascular Outcomes in Renal Transplant Recipients: A Single-Center Study in Japan
by Toshihide Naganuma, Tomoaki Iwai, Daijiro Kabata, Yuichi Machida, Yoshiaki Takemoto and Junji Uchida
J. Clin. Med. 2025, 14(15), 5303; https://doi.org/10.3390/jcm14155303 - 27 Jul 2025
Viewed by 271
Abstract
Background: Several epidemiological studies have indicated that metabolic syndrome (MetS) after renal transplantation is caused by an accumulation of non-immunological risks of renal transplantation, and affects the prognosis of the kidney and the patient by increasing the risk of arteriosclerosis and cardiovascular complications. [...] Read more.
Background: Several epidemiological studies have indicated that metabolic syndrome (MetS) after renal transplantation is caused by an accumulation of non-immunological risks of renal transplantation, and affects the prognosis of the kidney and the patient by increasing the risk of arteriosclerosis and cardiovascular complications. The incidence of MetS in Japanese renal transplant recipients is 14.9 to 23.8%, but its effects on cardiovascular events and kidney prognosis are not clear. Here, we report the results of a longitudinal study on MetS in renal transplant recipients. Methods: A retrospective cohort study was conducted in 104 stable renal transplant recipients who attended our outpatient department from January 2006 to June 2007 and were diagnosed with MetS at least 6 months after renal transplantation until 31 December 2020, or did not have MetS. The impact of MetS on composite vascular events was examined using multivariate Cox proportional hazards analysis. Results: The hazard ratios for the impact of MetS on composite vascular events diagnosed by NCEP Japan, NCEP Original, NCEP Asia, and IDF criteria on composite vascular events were 2.78 (95% CI: 1.15 to 6.75, p = 0.024), 2.65 (95% CI: 1.04 to 6.80, p = 0.042), 2.37 (95% CI: 0.93 to 6.01, p = 0.070), and 1.91 (95% CI: 0.77 to 4.75, p = 0.164), respectively. P for interaction was used to test the influence of each indicator, but was not statistically significant. Conclusions: MetS is a robust risk factor for graft loss and development of cardiovascular events in Japanese renal transplant recipients, even during long-term follow-up. This finding emphasizes the importance of monitoring and managing MetS in this population to improve long-term outcomes. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

18 pages, 2650 KiB  
Article
Prevention of Metabolic Impairment by Dietary Nitrate in Overweight Male Mice Improves Stroke Outcome
by Ellen Vercalsteren, Dimitra Karampatsi, Carolina Buizza, Gesine Paul, Jon O. Lundberg, Thomas Nyström, Vladimer Darsalia and Cesare Patrone
Nutrients 2025, 17(15), 2434; https://doi.org/10.3390/nu17152434 - 25 Jul 2025
Viewed by 318
Abstract
Background/objectives: Being overweight increases the predisposition to obesity and type 2 diabetes (T2D), which significantly elevate stroke risk and the likelihood of severe post-stroke disability. Dietary nitrate (NO3) supplementation can mitigate obesity and metabolic impairments, making it a promising [...] Read more.
Background/objectives: Being overweight increases the predisposition to obesity and type 2 diabetes (T2D), which significantly elevate stroke risk and the likelihood of severe post-stroke disability. Dietary nitrate (NO3) supplementation can mitigate obesity and metabolic impairments, making it a promising approach to halt overweight people from developing overt obesity/T2D, thereby potentially also improving stroke outcome. We determined whether NO3 supplementation prevents overweight mice from progressing into obesity and T2D and whether this intervention improves stroke outcome. Methods: An overweight condition was induced via 6 weeks of a high-fat diet (HFD), after which animals were randomized to either a HFD or a HFD with NO3 supplementation. After 24 weeks, when HFD-mice without NO3 developed obesity and T2D, all animals were subjected to transient middle cerebral artery occlusion and stroke outcome was assessed via behavioral testing and infarct size. The effect of NO3 on post-stroke neuroinflammation, neurogenesis, and neovascularization was analyzed by immunohistochemistry. Results: Sustained NO3 supplementation in overweight mice did not prevent obesity or insulin resistance. However, it attenuated weight gain, prevented hyperglycemia, and significantly improved functional recovery after stroke, without affecting infarct size. Moreover, NO3 decreased post-stroke neuroinflammation by reducing microglial infiltration. NO3 did not affect stroke-induced neurogenesis or vascularization. Conclusion: These results highlight the potential of NO3 supplementation to prevent metabolic impairment in the overweight population and improve stroke prognosis in this large group of people at risk of stroke and severe stroke sequelae. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

15 pages, 798 KiB  
Article
Associations Between Serum Gut-Derived Tryptophan Metabolites and Cardiovascular Health Markers in Adolescents with Obesity
by Jeny E. Rivera, Renny Lan, Mario G. Ferruzzi, Elisabet Børsheim, Emir Tas and Eva C. Diaz
Nutrients 2025, 17(15), 2430; https://doi.org/10.3390/nu17152430 - 25 Jul 2025
Viewed by 293
Abstract
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating [...] Read more.
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating gut-derived Trp metabolites and markers of cardiometabolic, vascular, and platelet health in adolescents with obesity. Methods: Data were analyzed from 28 adolescents (ages 13–18; mean BMI = 36 ± 6.4 kg/m2). Fasting blood was collected to assess lipid profiles using a clinical analyzer and insulin resistance using the homeostatic model assessment for insulin resistance (HOMA-IR). Gut-derived Trp metabolites were measured by UPLC–mass spectrometry, peak oxygen uptake (VO2 peak) by gas exchange during an incremental cycle ergometer test, and body composition by dual-energy X-ray absorptiometry. Platelet spare respiratory capacity (SRC), endothelial function, and liver fat were measured using high-resolution respirometry, flow-mediated dilation (FMD) of the brachial artery, and magnetic resonance imaging respectively. Results: Indole-3-propionic acid was inversely associated with diastolic blood pressure (rho = −0.39, p = 0.047), total cholesterol (rho = −0.55, p = 0.002), and LDL-C (rho = −0.57, p = 0.0014), independent of sex and obesity severity. Indoxyl sulfate was positively correlated with fasting glucose (rho = 0.47, p = 0.012), and adolescents with impaired fasting glucose had 1.6-fold higher IS levels. Indole-3-acetaldehyde declined with age (rho = −0.50, p = 0.007), and Indole-3-acetic acid and indole were higher in Hispanics vs. non-Hispanics. No significant associations were observed between Trp metabolites and FMD, VO2 peak, or SRC. Conclusions: Gut-derived Trp metabolites, particularly indole-3-propionic and indoxyl sulfate, are associated with markers of cardiometabolic risk in adolescents with obesity. These findings support their potential relevance in early-onset cardiovascular disease risk. Full article
Show Figures

Figure 1

9 pages, 412 KiB  
Article
Euglycemic Hyperinsulinemia Lowers Blood Pressure and Impedes Microvascular Perfusion More Effectively in Persons with Cardio-Metabolic Disease
by Zhenqi Liu, Linda A. Jahn and Eugene J. Barrett
Endocrines 2025, 6(3), 36; https://doi.org/10.3390/endocrines6030036 - 24 Jul 2025
Viewed by 335
Abstract
In healthy humans, insulin at physiological concentrations exerts acute vasodilatory actions on both resistance and terminal arterioles, leading, respectively, to increased total blood flow and the microvascular network volume being perfused. The process of increasing capillary network volume is frequently referred to as [...] Read more.
In healthy humans, insulin at physiological concentrations exerts acute vasodilatory actions on both resistance and terminal arterioles, leading, respectively, to increased total blood flow and the microvascular network volume being perfused. The process of increasing capillary network volume is frequently referred to as “capillary recruitment”. Together these two vascular actions of insulin enhance the delivery of oxygen, nutrients, and insulin itself to tissues. Both processes are diminished by insulin resistance. Here we examined interactions between insulin’s acute (within 2 h) actions on blood pressure (both central and peripheral) and on capillary recruitment in healthy controls and in four distinct groups of people with heightened cardio-metabolic disease (CMD) risk: individuals with obesity, metabolic syndrome, and type 1 or type 2 diabetes. Insulin increased microvascular blood volume (MBV) more effectively in controls than in each of the four CMD risk groups (p < 0.001). Conversely, insulin lowered both central and peripheral systolic pressure (p < 0.05 or less) in each of the CMD risk groups but not in the controls. The insulin-induced blood pressure decrements were greater in the metabolic syndrome, type 2 diabetes, and obesity groups (p < 0.05 or less) than in the controls. The greater blood pressure declines likely reflect decreased sympathetic baroreceptor reflex tone. These effects on blood pressure combined with the diminished dilation of terminal arterioles due to microvascular insulin resistance in the CMD risk subjects led to decreased distal microvascular perfusion as evidenced by changes in MBV. These findings highlight the complex interplay between insulin’s actions on resistance and terminal arterioles in individuals with a high CMD risk, underscoring the importance of addressing microvascular dysfunction in these conditions. Full article
(This article belongs to the Special Issue Feature Papers in Endocrines 2025)
Show Figures

Figure 1

30 pages, 981 KiB  
Review
Genetic Architecture of Ischemic Stroke: Insights from Genome-Wide Association Studies and Beyond
by Ana Jagodic, Dorotea Zivalj, Antea Krsek and Lara Baticic
J. Cardiovasc. Dev. Dis. 2025, 12(8), 281; https://doi.org/10.3390/jcdd12080281 - 23 Jul 2025
Viewed by 227
Abstract
Ischemic stroke is a complex, multifactorial disorder with a significant heritable component. Recent developments in genome-wide association studies (GWASs) have identified several common variants associated with clinical outcomes, stroke subtypes, and overall risk. Key loci implicated in biological pathways related to vascular integrity, [...] Read more.
Ischemic stroke is a complex, multifactorial disorder with a significant heritable component. Recent developments in genome-wide association studies (GWASs) have identified several common variants associated with clinical outcomes, stroke subtypes, and overall risk. Key loci implicated in biological pathways related to vascular integrity, lipid metabolism, inflammation, and atherogenesis include 9p21 (ANRIL), HDAC9, SORT1, and PITX2. Although polygenic risk scores (PRSs) hold promise for early risk prediction and stratification, their clinical utility remains limited by Eurocentric bias and missing heritability. Integrating multiomics approaches, such as functional genomics, transcriptomics, and epigenomics, enhances our understanding of stroke pathophysiology and paves the way for precision medicine. This review summarizes the current genetic landscape of ischemic stroke, emphasizing how evolving methodologies are shaping its prevention, diagnosis, and treatment. Full article
(This article belongs to the Special Issue Feature Review Papers in the ‘Genetics’ Section)
Show Figures

Figure 1

19 pages, 3827 KiB  
Article
A Refined Carbohydrate-Rich Diet Reduces Vascular Reactivity Through Endothelial Oxidative Stress and Increased Nitric Oxide: The Involvement of Inducible Nitric Oxide Synthase
by Karoline Neumann, Nina Bruna de Souza Mawandji, Ingridy Reinholz Grafites Schereider, Emanuelle Coutinho de Oliveira, Julia Martins Vieira, Andressa Bolsoni-Lopes, Jones Bernardes Graceli, Julia Antonietta Dantas, Lorena Silveira Cardoso, Dalton Valentim Vassallo and Karolini Zuqui Nunes
Nutrients 2025, 17(15), 2395; https://doi.org/10.3390/nu17152395 - 22 Jul 2025
Viewed by 312
Abstract
Background/Objectives: The consumption of refined carbohydrates has increased globally. It is associated with inflammation and oxidative stress, both recognized as risk factors for cardiovascular disease. This study investigated the effects of a refined carbohydrate-rich diet on the vascular reactivity of rat aorta. Methods: [...] Read more.
Background/Objectives: The consumption of refined carbohydrates has increased globally. It is associated with inflammation and oxidative stress, both recognized as risk factors for cardiovascular disease. This study investigated the effects of a refined carbohydrate-rich diet on the vascular reactivity of rat aorta. Methods: We acclimatized adult male Wistar rats for two weeks and then randomly assigned them to two experimental groups: a control (CT) group and a high-carbohydrate diet (HCD) group. The CT group received standard laboratory chow for 15 days, while the HCD group received a diet composed of 45% sweetened condensed milk, 10% refined sugar, and 45% standard chow. After the dietary exposure period, we evaluated the vascular reactivity of aortic rings, gene expression related to inflammation, superoxide dismutase activity, and biochemical parameters, including cholesterol, triglycerides, fasting glucose, and glucose and insulin tolerance. Results: The results demonstrate a reduction in vascular reactivity caused by endothelial alterations, including increased NO production, which was observed as higher vasoconstriction in the presence of L-NAME and aminoguanidine and upregulation of iNOS gene expression. In addition, increased production of free radicals, such as O2-, was observed, as well as immune markers like MCP-1 and CD86 in the HCD group. Additionally, the HCD group showed an increase in the TyG index, suggesting early metabolic impairment. GTT and ITT results revealed higher glycemic levels, indicating early signs of insulin resistance. Conclusions: These findings indicate that short-term consumption of a refined carbohydrate-rich diet may trigger oxidative stress and endothelial dysfunction, thereby increasing the risk of cardiovascular complications. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

19 pages, 2781 KiB  
Review
From Control to Cure: Insights into the Synergy of Glycemic and Antibiotic Management in Modulating the Severity and Outcomes of Diabetic Foot Ulcers
by Idris Ajibola Omotosho, Noorasyikin Shamsuddin, Hasniza Zaman Huri, Wei Lim Chong and Inayat Ur Rehman
Int. J. Mol. Sci. 2025, 26(14), 6909; https://doi.org/10.3390/ijms26146909 - 18 Jul 2025
Viewed by 529
Abstract
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the [...] Read more.
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the AGE-RAGE-NF-κB axis, increases oxidative stress, and impairs macrophage polarization from the pro-inflammatory M1 to the reparative M2 phenotype, collectively disrupting normal wound healing processes. The local wound environment is further worsened by antibiotic-resistant polymicrobial infections, which sustain inflammatory signaling and promote extracellular matrix degradation. The rising threat of antimicrobial resistance complicates infection management even further. Recent studies emphasize that optimal glycemic control using antihyperglycemic agents such as metformin, Glucagon-like Peptide 1 receptor agonists (GLP-1 receptor agonists), and Dipeptidyl Peptidase 4 enzyme inhibitors (DPP-4 inhibitors) improves overall metabolic balance. These agents also influence angiogenesis, inflammation, and tissue regeneration through pathways including AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), and vascular endothelial growth factor (VEGF) signaling. Evidence indicates that maintaining glycemic stability through continuous glucose monitoring (CGM) and adherence to antihyperglycemic treatment enhances antibiotic effectiveness by improving immune cell function and reducing bacterial virulence. This review consolidates current molecular evidence on the combined effects of glycemic and antibiotic therapies in DFUs. It advocates for an integrated approach that addresses both metabolic and microbial factors to restore wound homeostasis and minimize the risk of severe outcomes such as amputation. Full article
Show Figures

Figure 1

20 pages, 695 KiB  
Review
The Pathogenic Role of C-Reactive Protein in Diabetes-Linked Unstable Atherosclerosis
by Melania Sibianu and Mark Slevin
Int. J. Mol. Sci. 2025, 26(14), 6855; https://doi.org/10.3390/ijms26146855 - 17 Jul 2025
Viewed by 349
Abstract
C-reactive protein (CRP) has long been recognized as a biomarker of systemic inflammation and cardiovascular disease (CVD) risk. However, emerging evidence highlights the distinct and potent pro-inflammatory role of its monomeric form (mCRP), which is predominantly tissue-bound and directly implicated in vascular injury [...] Read more.
C-reactive protein (CRP) has long been recognized as a biomarker of systemic inflammation and cardiovascular disease (CVD) risk. However, emerging evidence highlights the distinct and potent pro-inflammatory role of its monomeric form (mCRP), which is predominantly tissue-bound and directly implicated in vascular injury and plaque destabilization. This narrative review explores the interactions and overlapping pathways that converge within and modulate CRP, mCRP, the associated pathophysiology of diabetes mellitus, and cardiovascular disease. We examine how mCRP promotes endothelial dysfunction, leukocyte recruitment, platelet activation, and macrophage polarization, thereby contributing to the formation of unstable atherosclerotic plaques. Furthermore, we discuss the critical influence of diabetes in amplifying mCRP’s pathogenic effects through metabolic dysregulation, chronic hyperglycemia, and enhanced formation of advanced glycation end products (AGEs). The synergistic interaction of mCRP with the AGE-receptor for AGE (RAGE) axis exacerbates oxidative stress and vascular inflammation, accelerating atherosclerosis progression and increasing cardiovascular risk in diabetic patients. Understanding these mechanistic pathways implicates mCRP as both a biomarker and therapeutic target, particularly in the context of diabetes-associated CVD. This review highlights the need for further research into targeted interventions that disrupt the mCRP-[AGE-RAGE] inflammatory cycle to reduce plaque instability and improve cardiovascular outcomes in high-risk populations. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

36 pages, 1400 KiB  
Review
Molecular Insights into the Potential Cardiometabolic Effects of GLP-1 Receptor Analogs and DPP-4 Inhibitors
by Małgorzata Król, Patrycja Kupnicka, Justyna Żychowska, Patrycja Kapczuk, Izabela Szućko-Kociuba, Eryk Prajwos and Dariusz Chlubek
Int. J. Mol. Sci. 2025, 26(14), 6777; https://doi.org/10.3390/ijms26146777 - 15 Jul 2025
Viewed by 408
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality, with type 2 diabetes mellitus (T2DM) and obesity significantly increasing the risk of CVD. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase-4 inhibitors (DPP-4is) have gained attention for their potential cardioprotective effects. [...] Read more.
Cardiovascular diseases (CVDs) are the leading cause of global mortality, with type 2 diabetes mellitus (T2DM) and obesity significantly increasing the risk of CVD. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase-4 inhibitors (DPP-4is) have gained attention for their potential cardioprotective effects. Therefore, this review aims to explore the molecular mechanisms underlying the cardiovascular benefits of these agents. A literature review was conducted searching PubMed databases from 1990 to January 2025, including research on the effects of GLP-1 RA and DPP-4i on cardiovascular health, specifically concerning atherosclerosis, coronary artery disease, vascular health, cardiac arrhythmias, myocardial infarction (MI), and heart failure, with a focus on the biochemical and molecular effects of these drugs. We analyzed 131 scientific publications, which indicate that GLP-1 RA and DPP-4i significantly reduce cardiovascular risk and major adverse cardiovascular events (MACEs), including atherosclerosis, myocardial infarction, and cardiac arrhythmias. These clinical outcomes are attributed to the mitigation of oxidative stress, inflammation, and endothelial dysfunction as well as improvement in mitochondrial function and lipid metabolism. GLP-1 RAs offer substantial cardiovascular benefits, making them valuable in managing T2DM and reducing CVD risk. Their integration into treatment regimens for CVD can reduce hospitalization rates, improve quality of life, and extend life expectancy. DPP-4is, while beneficial, are less effective in cardiovascular protection. Further research is needed to optimize therapeutic strategies and broaden the clinical application of these agents in cardiometabolic care. Full article
Show Figures

Figure 1

18 pages, 8113 KiB  
Article
An Interpretable Machine Learning Model Based on Inflammatory–Nutritional Biomarkers for Predicting Metachronous Liver Metastases After Colorectal Cancer Surgery
by Hao Zhu, Danyang Shen, Xiaojie Gan and Ding Sun
Biomedicines 2025, 13(7), 1706; https://doi.org/10.3390/biomedicines13071706 - 12 Jul 2025
Viewed by 427
Abstract
Objective: Tumor progression is regulated by systemic immune status, nutritional metabolism, and the inflammatory microenvironment. This study aims to investigate inflammatory–nutritional biomarkers associated with metachronous liver metastasis (MLM) in colorectal cancer (CRC) and develop a machine learning model for accurate prediction. Methods [...] Read more.
Objective: Tumor progression is regulated by systemic immune status, nutritional metabolism, and the inflammatory microenvironment. This study aims to investigate inflammatory–nutritional biomarkers associated with metachronous liver metastasis (MLM) in colorectal cancer (CRC) and develop a machine learning model for accurate prediction. Methods: This study enrolled 680 patients with CRC who underwent curative resection, randomly allocated into a training set (n = 477) and a validation set (n = 203) in a 7:3 ratio. Feature selection was performed using Boruta and Lasso algorithms, identifying nine core prognostic factors through variable intersection. Seven machine learning (ML) models were constructed using the training set, with the optimal predictive model selected based on comprehensive evaluation metrics. An interactive visualization tool was developed to interpret the dynamic impact of key features on individual predictions. The partial dependence plots (PDPs) revealed a potential dose–response relationship between inflammatory–nutritional markers and MLM risk. Results: Among 680 patients with CRC, the cumulative incidence of MLM at 6 months postoperatively was 39.1%. Multimodal feature selection identified nine key predictors, including the N stage, vascular invasion, carcinoembryonic antigen (CEA), systemic immune–inflammation index (SII), albumin–bilirubin index (ALBI), differentiation grade, prognostic nutritional index (PNI), fatty liver, and T stage. The gradient boosting machine (GBM) demonstrated the best overall performance (AUROC: 0.916, sensitivity: 0.772, specificity: 0.871). The generalized additive model (GAM)-fitted SHAP analysis established, for the first time, risk thresholds for four continuous variables (CEA > 8.14 μg/L, PNI < 44.46, SII > 856.36, ALBI > −2.67), confirming their significant association with MLM development. Conclusions: This study developed a GBM model incorporating inflammatory-nutritional biomarkers and clinical features to accurately predict MLM in colorectal cancer. Integrated with dynamic visualization tools, the model enables real-time risk stratification via a freely accessible web calculator, guiding individualized surveillance planning and optimizing clinical decision-making for precision postoperative care. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

23 pages, 1259 KiB  
Review
Integrative Review of Molecular, Metabolic, and Environmental Factors in Spina Bifida and Congenital Diaphragmatic Hernia: Insights into Mechanisms and Emerging Therapeutics
by Angelika Buczyńska, Iwona Sidorkiewicz, Przemysław Kosiński, Adam Jacek Krętowski and Monika Zbucka-Krętowska
Cells 2025, 14(14), 1059; https://doi.org/10.3390/cells14141059 - 10 Jul 2025
Viewed by 536
Abstract
Spina Bifida (SB) and Congenital Diaphragmatic Hernia (CDH) are complex congenital anomalies that pose significant challenges in pediatric healthcare. This review synthesizes recent advancements in understanding the genetic, metabolic, and environmental factors contributing to these conditions, with the aim of integrating mechanistic insights [...] Read more.
Spina Bifida (SB) and Congenital Diaphragmatic Hernia (CDH) are complex congenital anomalies that pose significant challenges in pediatric healthcare. This review synthesizes recent advancements in understanding the genetic, metabolic, and environmental factors contributing to these conditions, with the aim of integrating mechanistic insights into therapeutic innovations. In SB, key findings highlight the roles of KCND3, a critical regulator of spinal cord development, and VANGL2, essential for planar cell polarity and neural tube closure. MicroRNAs such as miR-765 and miR-142-3p are identified as key regulators of these genes, influencing neural development. Additionally, telomere shortening—a marker of cellular senescence—alongside disruptions in folate metabolism and maternal nutritional deficiencies, significantly increases the risk of SB. These findings underscore the crucial role of telomere integrity in maintaining neural tissue homeostasis during embryonic development. For CDH, genetic deletions, including those on chromosome 15q26, and chromosomal abnormalities have been shown to disrupt lung and vascular development, profoundly impacting neonatal outcomes. MicroRNAs miR-379-5p and miR-889-3p are implicated in targeting essential genes such as IGF1 and FGFR2, which play pivotal roles in pulmonary function. Promising emerging therapies, including degradable tracheal plugs and fibroblast growth factor-based treatments, offer potential strategies for mitigating pulmonary hypoplasia and improving clinical outcomes. This review underscores the intricate interplay of genetic, metabolic, and environmental pathways in SB and CDH, identifying critical molecular targets for diagnostics and therapeutic intervention. By integrating findings from genetic profiling, in vitro models, and clinical studies, it aims to inform future research directions and optimize patient outcomes through collaborative, multidisciplinary approaches. Full article
Show Figures

Figure 1

13 pages, 933 KiB  
Article
Bisphosphonate Use and Cardiovascular Outcomes According to Kidney Function Status in Post-Menopausal Women: An Emulated Target Trial from the Multi-Ethnic Study of Atherosclerosis
by Elena Ghotbi, Nikhil Subhas, Michael P. Bancks, Sammy Elmariah, Jonathan L. Halperin, David A. Bluemke, Bryan R Kestenbaum, R. Graham Barr, Wendy S. Post, Matthew Budoff, João A. C. Lima and Shadpour Demehri
Diagnostics 2025, 15(13), 1727; https://doi.org/10.3390/diagnostics15131727 - 7 Jul 2025
Viewed by 456
Abstract
Background/Objectives: Bisphosphonates may influence vascular calcification and atheroma formation via farnesyl pyrophosphate synthase inhibition in the mevalonate pathway regulating bone and lipid metabolism. However, the clinical impact of NCB use on cardiovascular outcomes remains uncertain, largely due to methodological heterogeneity in prior studies. [...] Read more.
Background/Objectives: Bisphosphonates may influence vascular calcification and atheroma formation via farnesyl pyrophosphate synthase inhibition in the mevalonate pathway regulating bone and lipid metabolism. However, the clinical impact of NCB use on cardiovascular outcomes remains uncertain, largely due to methodological heterogeneity in prior studies. We aimed to evaluate the association between nitrogen-containing bisphosphonate (NCB) therapy and coronary artery calcium (CAC) progression, as well as the incidence of cardiovascular disease (CVD) and coronary heart disease (CHD) events. Methods: From 6814 participants in MESA Exam 1, we excluded males (insufficient male NCB users in the MESA cohort), pre-menopausal women, baseline NCB users, and users of hormone replacement therapy, raloxifene, or calcitonin. Among 166 NCB initiators and 1571 non-users with available CAC measurements, propensity score matching was performed using the available components of FRAX, namely age, race, BMI, LDL cholesterol, alcohol, smoking, and steroid use, and baseline CAC yielded 165 NCB initiators matched to 473 non-users (1:3 ratio). Linear mixed-effects models evaluated CAC progression, and Cox models analyzed incident CVD and CHD events. Results: In the overall cohort, NCB use was not significantly associated with CAC progression (annual change: −0.01 log Agatston units; 95% CI: −0.05 to 0.01). However, among participants with a baseline estimated glomerular filtration rate (eGFR) < 65 mL/min/1.73 m2, NCB use was associated with attenuated CAC progression compared with non-users (−0.06 log Agatston units/year; 95% CI: −0.12 to −0.007). No significant association was observed between NCB use and incident CVD events in the overall cohort (HR: 0.90; 95% CI: 0.60−1.36) or within kidney function subgroups. Conclusions: Incident NCB use among postmenopausal women with mild or no CAC at baseline was associated with reduced CAC progression only in women with impaired kidney function. However, this association did not correspond to a decreased risk of subsequent cardiovascular events, suggesting that the observed imaging benefit may not translate into meaningful clinical association. Full article
(This article belongs to the Special Issue Diagnosis and Management of Cardiovascular Diseases)
Show Figures

Figure 1

17 pages, 1134 KiB  
Review
The Perivascular Fat Attenuation Index: Bridging Inflammation and Cardiovascular Disease Risk
by Eliška Němečková, Kryštof Krása and Martin Malý
J. Clin. Med. 2025, 14(13), 4753; https://doi.org/10.3390/jcm14134753 - 4 Jul 2025
Viewed by 614
Abstract
Cardiovascular disease remains the leading global cause of mortality, with inflammation now recognized as a central driver of atherosclerosis and other cardiometabolic conditions. Recent advances have repositioned perivascular adipose tissue from a passive structural element to an active endocrine and immunomodulatory organ, now [...] Read more.
Cardiovascular disease remains the leading global cause of mortality, with inflammation now recognized as a central driver of atherosclerosis and other cardiometabolic conditions. Recent advances have repositioned perivascular adipose tissue from a passive structural element to an active endocrine and immunomodulatory organ, now a key focus in cardiovascular and metabolic research. Among the most promising tools for assessing perivascular adipose tissue inflammation is the fat attenuation index, a non-invasive imaging biomarker derived from coronary computed tomography angiography. This review explores the translational potential of the fat attenuation index for cardiovascular risk stratification and treatment monitoring in both coronary artery disease and systemic inflammatory or metabolic conditions (psoriasis, systemic lupus erythematosus, inflammatory bowel disease, obesity, type 2 diabetes, and non-obstructive coronary syndromes). We summarize evidence linking perivascular adipose tissue dysfunction to vascular inflammation and adverse cardiovascular outcomes. Clinical studies reviewing the fat attenuation index highlight its ability to detect subclinical inflammation and monitor treatment response. As research advances, standardization of measurement protocols and imaging thresholds will be essential for routine clinical implementation. Full article
(This article belongs to the Special Issue Heart Disease and Chronic Inflammatory Conditions: New Insights)
Show Figures

Graphical abstract

16 pages, 321 KiB  
Article
The Association Between Vibrotactile and Thermotactile Perception Thresholds and Personal Risk Factors in Workers Exposed to Hand-Transmitted Vibration
by Fabiano Barbiero, Andrea Miani, Marcella Mauro, Flavia Marrone, Enrico Marchetti, Francesca Rui, Angelo Tirabasso, Carlotta Massotti, Marco Tarabini, Francesca Larese Filon and Federico Ronchese
Vibration 2025, 8(3), 36; https://doi.org/10.3390/vibration8030036 - 4 Jul 2025
Viewed by 308
Abstract
Background: Hand–arm vibration syndrome (HAVS) is a well-recognized occupational condition resulting from prolonged exposure to hand-transmitted vibration (HTV), characterized by vascular, neurological, and musculoskeletal impairments. While vibration exposure is a known risk factor for HAVS, less is understood about the role of personal [...] Read more.
Background: Hand–arm vibration syndrome (HAVS) is a well-recognized occupational condition resulting from prolonged exposure to hand-transmitted vibration (HTV), characterized by vascular, neurological, and musculoskeletal impairments. While vibration exposure is a known risk factor for HAVS, less is understood about the role of personal risk factors and, particularly regarding neurosensory dysfunction. This study aimed to examine the association between vibrotactile (VPT) and thermotactile perception thresholds (TPT) and individual risk factors and comorbidities in HTV-exposed workers. Methods: A total of 235 male HTV workers were evaluated between 1995 and 2005 at the University of Trieste’s Occupational Medicine Unit. Personal, occupational, and health-related data were collected, and sensory function was assessed in both hands. VPTs at 31.5 and 125 Hz and TPTs (for warm and cold) were measured on fingers innervated by the median and ulnar nerves. Results: Multivariable regression analysis revealed that impaired VPTs were significantly associated with age, higher daily vibration exposure (expressed as 8 h energy-equivalent A(8) values), BMI ≥ 25, smoking, vascular/metabolic disorders, and neurosensory symptoms. In contrast, TPTs showed weaker and less consistent associations, with some links to smoking and alcohol use. Conclusions: These findings suggest that, in addition to vibration exposure, individual factors such as aging, overweight, smoking, and underlying health conditions significantly contribute to neurosensory impairment and may exacerbate neurosensory dysfunction in a context of HAVS. The results underscore the importance of including personal health risk factors in both clinical assessment and preventive strategies for HAVS and may inform future research on its pathogenesis. Full article
Back to TopTop