Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,605)

Search Parameters:
Keywords = variable accumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5085 KB  
Article
Design Method of Variable Cross-Section Winding for Coating-Cooled Tapered Permanent Magnet Linear Synchronous Motors
by Qiang Tan, Junhao Pian, Jing Li and Wuji Wei
Electronics 2026, 15(2), 439; https://doi.org/10.3390/electronics15020439 - 19 Jan 2026
Abstract
To solve slot temperature accumulation in high thrust density permanent magnet linear synchronous motors (PMLSMs), this paper proposes an additive manufacturing (AM)-based variable cross-section winding design for coating-cooled tapered PMLSMs. Integrating the magnetic circuit features of tapered PMLSMs and AM windings’ technical merits, [...] Read more.
To solve slot temperature accumulation in high thrust density permanent magnet linear synchronous motors (PMLSMs), this paper proposes an additive manufacturing (AM)-based variable cross-section winding design for coating-cooled tapered PMLSMs. Integrating the magnetic circuit features of tapered PMLSMs and AM windings’ technical merits, the motor’s operating mechanism and electromagnetic distribution are analyzed. With the coating cooling structure as the thermal management foundation, simulation reveals the motor’s temperature distribution under water cooling, defining core slot thermal management requirements. A novel cross-section winding design is then presented: first, a lumped-parameter thermal network model quantifies the coupling between the winding cross-sectional area and slot heat source distribution; second, a greedy algorithm optimizes the winding cross-section globally to reduce the slot hot-spot temperature and suppress temperature rise. Validated by a fabricated tapered PMLSM stator prototype and static temperature-rise experiments, the results confirm that winding cross-section reconstruction optimizes heat distribution effectively, offering a new approach for temperature rise suppression in high thrust density PMLSMs. Full article
Show Figures

Figure 1

19 pages, 2687 KB  
Article
Flowering Phenograms and Genetic Sterilities of Ten Olive Cultivars Grown in a Super-High-Density Orchard
by Francesco Maldera, Francesco Nicolì, Simone Pietro Garofalo, Francesco Laterza, Gaetano Alessandro Vivaldi and Salvatore Camposeo
Horticulturae 2026, 12(1), 110; https://doi.org/10.3390/horticulturae12010110 - 19 Jan 2026
Abstract
The introduction of Super-High-Density (SHD) olive orchards represents a crucial innovation in modern olive growing, enhancing sustainability. However, the long-term success of these planting systems depends strongly on cultivar selection, combining suitable vegetative and reproductive traits. This three-year field study investigated key floral [...] Read more.
The introduction of Super-High-Density (SHD) olive orchards represents a crucial innovation in modern olive growing, enhancing sustainability. However, the long-term success of these planting systems depends strongly on cultivar selection, combining suitable vegetative and reproductive traits. This three-year field study investigated key floral biology parameters—flowering phenograms, gynosterility, and self-compatibility—of ten olive cultivars grown under irrigated conditions in southern Italy: ‘Arbequina’, ‘Arbosana’, ‘Cima di Bitonto’, ‘Coratina’, ‘Don Carlo’, ‘Frantoio’, ‘Favolosa’ (=‘Fs-17’), ‘I-77’, ‘Koroneiki’, and ‘Urano’ (=‘Tosca’). Flowering phenograms varied significantly across years and cultivars, showing temporal shifts related to chilling accumulation and yield of the previous year. Early blooming cultivars (‘Arbequina’, ‘Arbosana’, and ‘Coratina’) exhibited partial flowering overlap with mid-season ones, enhancing cross-pollination opportunities. Quantitative analysis of flowering overlap revealed that most cultivar combinations exceeded the 70% threshold required for effective pollination, although specific genotypes (‘Coratina’, ‘Fs-17’, and especially ‘I-77’) showed critical mismatches, while ‘Frantoio’ and ‘Arbequina’ emerged as the most reliable pollinizers. Gynosterility exhibited statistical differences among cultivars and canopy positions: ‘I-77’ showed the highest values (71.4%), while ‘Coratina’ and ‘Cima di Bitonto’ showed the lowest ones (7.3 and 8.4%, respectively). The median portions of the canopies generally displayed a greater number of sterile flowers (29.4%), reflecting the combined effect of genetic and environmental factors such as light exposure. In the inflorescence, the majority of gynosterile flowers were concentrated in the lower part, for all canopy portions (modal value). Self-compatibility tests were performed considering a fruit set of 1% as a threshold to discriminate. For open pollination, the fruit set was highly variable among cultivars, ranging from 0.5% in ‘I-77’ to 4.7% in ‘Arbosana’. Apart from ‘I77’, all varieties achieved a fruit set greater than 1%. Instead, for the self-pollination, only ‘Arbequina’, ‘Koroneiki’, ‘Frantoio’, and ‘Cima di Bitonto’ could be identified as pseudo-self-compatible, whereas ‘Coratina’, ‘Fs-17’, and the others were clearly self-incompatible and therefore unsuitable for monovarietal orchards in areas with limited availability of pollen. By integrating self-compatibility and gynosterility data, the cultivars were ranked according to reproductive aptitude, identifying ‘Cima di Bitonto’ and ‘Frantoio’ as the most fertile genotypes, whereas ‘Don Carlo’ and particularly ‘I-77’ showed severe genetic sterility constraints. The findings underline the critical role of floral biology in defining reproductive efficiency and varietal adaptability in SHD systems. This research provides valuable insights for optimizing cultivar selection, orchard design, and management practices, contributing to the development of sustainable, climate-resilient olive production models for Mediterranean environments. Full article
(This article belongs to the Special Issue Fruit Tree Physiology, Sustainability and Management)
Show Figures

Graphical abstract

17 pages, 2161 KB  
Article
Do You Train Like You Compete? A Comparison of Training Tasks and Competition in Elite Basketball Based on Biomechanical and External Physiological Load
by Carlos Sosa Marín, Enrique Alonso-Pérez-Chao, Xavier Schelling and Alberto Lorenzo
Appl. Sci. 2026, 16(2), 997; https://doi.org/10.3390/app16020997 (registering DOI) - 19 Jan 2026
Abstract
Basketball is an intermittent sport with high neuromuscular and metabolic demands. To optimize specificity, training tasks should replicate competitive loads, but little is known about how drills compare to official matches. This study compared the physiological and biomechanical load of training tasks with [...] Read more.
Basketball is an intermittent sport with high neuromuscular and metabolic demands. To optimize specificity, training tasks should replicate competitive loads, but little is known about how drills compare to official matches. This study compared the physiological and biomechanical load of training tasks with official competition in elite U18 basketball players. Twelve male players (16.9 ± 0.8 years) were monitored across two seasons (179 training sessions, 21 matches). A total of 3136 individual records were collected using Catapult Vector S7 LPS units. Training drills were classified by specificity (0–5). Physiological (distance and intensity zones) and biomechanical variables (accelerations, decelerations, jumps, explosive efforts, PlayerLoad™) were analyzed using cluster analysis and linear mixed models. Competition imposed the highest physiological and biomechanical loads. Non-opposition drills (1v0–5v0) showed limited transfer, though 1v0–2v0 accumulated higher jump density. Among opposition formats, 3v3 full-court was the best at replicating match demands. Continuous opposition tasks (3v3v3, 4v4v4, 5v5v5) elicited lower physiological but comparable biomechanical load. Small-sided formats, particularly 3v3 and 4v4, are the most effective training tools for reproducing competition demands, while non-opposition drills are better suited for technical or rehabilitation purposes. Full article
(This article belongs to the Special Issue Advances in Sports Science and Biomechanics)
Show Figures

Figure 1

27 pages, 6130 KB  
Article
Poisson’s Ratio as the Master Variable: A Single-Parameter Energy-Conscious Model (PNE-BI) for Diagnosing Brittle–Ductile Transition in Deep Shales
by Bo Gao, Jiping Wang, Binhui Li, Junhui Li, Jun Feng, Hongmei Shao, Lu Liu, Xi Cao, Tangyu Wang and Junli Zhao
Sustainability 2026, 18(2), 985; https://doi.org/10.3390/su18020985 (registering DOI) - 18 Jan 2026
Abstract
As shale gas development extends into deeper formations, the unclear brittle-ductile transition (BDT) mechanism and low fracturing efficiency have emerged as critical bottlenecks, posing challenges to the sustainable and economical utilization of this clean energy resource. This study, focusing on the Liangshang Formation [...] Read more.
As shale gas development extends into deeper formations, the unclear brittle-ductile transition (BDT) mechanism and low fracturing efficiency have emerged as critical bottlenecks, posing challenges to the sustainable and economical utilization of this clean energy resource. This study, focusing on the Liangshang Formation shale of Sichuan Basin’s Pingye-1 Well, pioneers a paradigm shift by identifying Poisson’s ratio (ν) as the master variable governing this transition. Triaxial tests reveal that ν systematically increases with depth, directly regulating the failure mode shift from brittle fracture to ductile flow. Building on this, we innovatively propose the Poisson’s Ratio-regulated Energy-based Brittleness Index (PNE-BI) model. This model achieves a decoupled diagnosis of BDT by quantifying how ν intrinsically orchestrates the energy redistribution between elastic storage and plastic dissipation, utilizing ν as the sole governing variable to regulate energy weighting for rapid and accurate distinction between brittle, transitional, and ductile states. Experiments confirm the ν-dominated energy evolution: Low ν rocks favor elastic energy accumulation, while high ν rocks (>0.22) exhibit a dramatic 1520% surge in plastic dissipation, dominating energy consumption (35.9%) and confirming that ν enhances ductility by reducing intergranular sliding barriers. Compared to traditional multi-variable models, the PNE-BI model utilizes ν values readily obtained from conventional well logs, providing a transformative field-ready tool that significantly reduces the experimental footprint and promotes resource efficiency. It guides toughened fracturing fluid design in ductile zones to suppress premature closure and optimizes injection rates in brittle zones to prevent fracture runaway, thereby enhancing operational longevity and minimizing environmental impact. This work offers a groundbreaking and sustainable solution for boosting the efficiency of mid-deep shale gas development, contributing directly to more responsible and cleaner energy extraction. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

15 pages, 1752 KB  
Review
Advances in Colorectal Cancer Cell Biology and Clonal Evolution
by Sopozme Toghey, Elizabeth J. Harvey-Jones, Jonathan D. Towler, Charlotte J. H. Hafkamp and Irene Y. Chong
Int. J. Mol. Sci. 2026, 27(2), 953; https://doi.org/10.3390/ijms27020953 (registering DOI) - 18 Jan 2026
Abstract
Colorectal cancer (CRC) develops through evolutionary processes involving genomic alterations, epigenetic regulation, and microenvironmental interactions. While traditionally explained by the stepwise accumulation of driver mutations, contemporary evidence supports a ‘Big Bang’ model in which many early-arising clones expand simultaneously to establish extensive heterogeneity. [...] Read more.
Colorectal cancer (CRC) develops through evolutionary processes involving genomic alterations, epigenetic regulation, and microenvironmental interactions. While traditionally explained by the stepwise accumulation of driver mutations, contemporary evidence supports a ‘Big Bang’ model in which many early-arising clones expand simultaneously to establish extensive heterogeneity. We reviewed recent studies employing spatially resolved multi-omic sequencing of tumour glands combined with computational modelling. These approaches enable high-resolution reconstruction of clonal architecture, transcriptional states, and chromatin accessibility. Findings show that although early clonal mutations shape tumour expansion, gene expression variability can be independent of genetic ancestry and instead reflects phenotypic plasticity driven by microenvironmental cues. Epigenomic analyses identified recurrent somatic chromatin accessibility alterations in promotors and enhancers of oncogenic pathways, frequently in the absence of DNA mutations, suggesting alternative mechanisms of gene regulation. Immune-focused studies demonstrated that early silencing of antigen-presenting genes and loss of neoantigens facilitate immune escape despite active surveillance. CRC is shaped by an interplay of genome, epigenome, and immune evolution, with non-genetic mechanisms and tumour plasticity emerging as important drivers of progression and therapeutic resistance. Full article
(This article belongs to the Special Issue New Molecular Aspects of Colorectal Cancer)
Show Figures

Figure 1

21 pages, 5218 KB  
Article
Groundwater Pollution Transport in Plain-Type Landfills: Numerical Simulation of Coupled Impacts of Precipitation and Pumping
by Tengchao Li, Shengyan Zhang, Xiaoming Mao, Yuqin He, Ninghao Wang, Daoyuan Zheng, Henghua Gong and Tianye Wang
Hydrology 2026, 13(1), 36; https://doi.org/10.3390/hydrology13010036 - 17 Jan 2026
Viewed by 35
Abstract
Landfills serve as a primary disposal method for municipal solid waste in China, with over 20,000 operational sites nationwide; however, long-term operations risk leachate leakage and groundwater contamination. Amid intensifying climate change and human activities, understanding contaminant evolution mechanisms in landfills has become [...] Read more.
Landfills serve as a primary disposal method for municipal solid waste in China, with over 20,000 operational sites nationwide; however, long-term operations risk leachate leakage and groundwater contamination. Amid intensifying climate change and human activities, understanding contaminant evolution mechanisms in landfills has become critically urgent. Focusing on a representative plain-based landfill in North China, this study integrated field investigations and groundwater monitoring to establish a monthly coupled groundwater flow–solute transport model (using MODFLOW and MT3DMS codes) based on site-specific hydrogeological boundaries and multi-year monitoring data, analyzing spatiotemporal plume evolution under the coupled impacts of precipitation variability (climate change) and intensive groundwater extraction (human activities), spanning the historical period (2021–2024) and future projections (2025–2040). Historical simulations demonstrated robust model performance with satisfactory calibration against observed water levels and chloride concentrations, revealing that the current contamination plume exhibits a distinct distribution beneath the site. Future projections indicate nonlinear concentration increases: in the plume core zone, concentrations rise with precipitation, whereas at the advancing front, concentrations escalate with extraction intensity. Spatially, high-risk zones (>200 mg/L) emerge earlier under wetter conditions—under the baseline scenario (S0), such zones form by 2033 and exceed site boundaries by 2037. Plume expansion scales positively with extraction intensity, reaching its maximum advancement and coverage under the high-extraction scenario. These findings demonstrate dual drivers—precipitation accelerates contaminant accumulation through enhanced leaching, while groundwater extraction promotes plume expansion via heightened hydraulic gradients. This work elucidates coupled climate–human activity impacts on landfill contamination mechanisms, proposing a transferable numerical modeling framework that provides a quantitative scientific basis for post-closure supervision, risk assessment, and regional groundwater protection strategies, thereby aligning with China’s Standard for Pollution Control on the Landfill Site of Municipal Solid Waste and the Zero-Waste City initiative. Full article
18 pages, 1191 KB  
Article
Diabetic Kidney Disease Associated with Chronic Exposure to Low Doses of Environmental Cadmium
by Soisungwan Satarug, Tanaporn Khamphaya, Donrawee Waeyeng, David A. Vesey and Supabhorn Yimthiang
Stresses 2026, 6(1), 4; https://doi.org/10.3390/stresses6010004 - 16 Jan 2026
Viewed by 63
Abstract
Accumulating evidence suggests that exposure to pollution from environmental cadmium (Cd) contributes to diabetic kidney disease as indicated by albuminuria and a progressive decrease in the estimated glomerular filtration rate (eGFR). This study examined the effects of Cd exposure on eGFR and the [...] Read more.
Accumulating evidence suggests that exposure to pollution from environmental cadmium (Cd) contributes to diabetic kidney disease as indicated by albuminuria and a progressive decrease in the estimated glomerular filtration rate (eGFR). This study examined the effects of Cd exposure on eGFR and the excretion rates of albumin (Ealb) and β2-microglobulin (Eβ2M) in 65 diabetics and 72 controls. Excretion of Cd (ECd) was a measure of exposure, while excretion of N-acetylglucosaminidase (ENAG) reflected the extent of kidney tubular cell injury. In participants with an elevated excretion of Eβ2M, the prevalence odds ratios (POR) for a reduced eGFR rose 6.4-fold, whereas the POR for albuminuria rose 4.3-fold, 4.1-fold, and 2.8-fold in those with a reduced eGFR, diabetes, and hypertension, respectively. Using covariance analysis, which adjusted for the interactions, 43% of the variation in Ealb among diabetics could be explained by female gender (η2 = 0.176), ENAG2 = 0.162), hypertension (η2 = 0.146), smoking (η2 = 0.107), and body mass index (η2 = 0.097), while the direct contribution of ECd to Ealb variability was minimal (η2 = 0.005). Results from a mediating-effect analysis imply that Cd could contribute to albuminuria and a falling eGFR through inducing tubular cell injury, leading to reduced reabsorption of albumin and β2M. Full article
(This article belongs to the Section Animal and Human Stresses)
Show Figures

Graphical abstract

30 pages, 3022 KB  
Article
Machine Learning Analysis of Weather-Yield Relationships in Hainan Island’s Litchi
by Linyi Feng, Chenxiao Shi, Zhiyu Lin, Ruijuan Li, Jiaquan Ning, Ming Shang, Jingying Xu and Lei Bai
Agriculture 2026, 16(2), 237; https://doi.org/10.3390/agriculture16020237 - 16 Jan 2026
Viewed by 86
Abstract
Litchi (Litchi chinensis Sonn.) is a pillar of the tropical agricultural economy in southern China, yet its production faces increasing instability due to climate change. Traditional agronomic models often fail to capture the complex, non-linear interactions between meteorological drivers and yield formation [...] Read more.
Litchi (Litchi chinensis Sonn.) is a pillar of the tropical agricultural economy in southern China, yet its production faces increasing instability due to climate change. Traditional agronomic models often fail to capture the complex, non-linear interactions between meteorological drivers and yield formation in perennial fruit trees. To address this challenge, the study constructed a yield prediction framework using an optimized Random Forest (RF) model integrated with interpretable machine learning (SHAP), based on a comprehensive dataset from 17 major production regions in Hainan Province (2000–2022). The model demonstrated robust predictive capability at the provincial scale (R2 = 0.564, RMSE = 2.1 t/ha) and high consistency across regions (R2 ranging from 0.51 to 0.94). Feature importance analysis revealed that heat accumulation (specifically growing degree days above 20 °C) is the dominant driver, explaining over 85% of yield variability. Crucially, scenario simulations uncovered asymmetric climate risks across phenological stages: while moderate warming generally enhances yield by promoting vegetative growth and ripening, it acts as a stressor during the Fruit Development stage, where temperatures exceeding 26 °C trigger yield decline. Furthermore, the yield penalty for drought during Flowering (−8.09%) far outweighed the marginal benefits of surplus rainfall, identifying this window as critically sensitive to water deficits. These findings underscore the necessity of phenology-aligned adaptation strategies—specifically, securing irrigation during flowering and deploying cooling interventions during fruit development—providing a data-driven basis for climate-smart management in tropical agriculture. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
42 pages, 1425 KB  
Article
Thermodynamics of Governance: Exergy Efficiency, Political Entropy, and Systemic Sustainability in Policy System
by Nurdan Güven and Zafer Utlu
Sustainability 2026, 18(2), 937; https://doi.org/10.3390/su18020937 - 16 Jan 2026
Viewed by 88
Abstract
This study investigates the sustainability, resilience, and institutional performance of urban governance systems by operationalizing key thermodynamic principles energy, exergy, entropy, equilibrium, open systems, and irreversibility within a political and behavioral systems framework. Urban political systems are conceptualized as open, non-equilibrium systems, characterized [...] Read more.
This study investigates the sustainability, resilience, and institutional performance of urban governance systems by operationalizing key thermodynamic principles energy, exergy, entropy, equilibrium, open systems, and irreversibility within a political and behavioral systems framework. Urban political systems are conceptualized as open, non-equilibrium systems, characterized by continuous flows of resources, information, and institutional feedback across metropolitan governance structures. Within this model, energy represents systemic inputs to urban governance, exergy denotes usable governing capacity at the city and metropolitan scale, and entropy reflects levels of institutional disorder, inefficiency, and systemic degradation affecting urban sustainability. The study first formulates a conceptual analytical model defining urban political entropy and systemic exergy as measurable variables associated with institutional stability, crisis-management capability, adaptability, and reform potential in urban and metropolitan governance. It then conducts a comparative empirical analysis of Germany, Türkiye, China, and South Africa using normalized indicators derived from international datasets for 2023, with particular attention to their implications for urban governance capacity and city-level institutional performance. These indicators are employed to construct proxy measures for the Exergy Efficiency Ratio, Societal and Institutional Entropy, and overall urban governance capacity. The comparative results reveal that open and decentralized governance systems tend to maintain higher exergy efficiency and lower entropy levels at the urban scale, whereas highly centralized systems, although effective in resource mobilization, tend to accumulate greater systemic entropy over time. Transitional governance systems exhibit hybrid and fluctuating thermodynamic characteristics in their urban institutional structures. The findings empirically support the Thermodynamic Model of Political Systems and demonstrate its utility as a predictive and diagnostic framework for evaluating urban institutional efficiency, resilience, and sustainability. By quantifying political energy flows and entropy dynamics within urban governance systems, this study contributes to the development of integrated systems thermodynamics of cities and provides a robust analytical foundation for sustainable urban governance, institutional reform, and long-term strategic policy design Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

24 pages, 43005 KB  
Article
Accurate Estimation of Spring Maize Aboveground Biomass in Arid Regions Based on Integrated UAV Remote Sensing Feature Selection
by Fengxiu Li, Yanzhao Guo, Yingjie Ma, Ning Lv, Zhijian Gao, Guodong Wang, Zhitao Zhang, Lei Shi and Chongqi Zhao
Agronomy 2026, 16(2), 219; https://doi.org/10.3390/agronomy16020219 - 16 Jan 2026
Viewed by 103
Abstract
Maize is one of the top three crops globally, ranking only behind rice and wheat, making it an important crop of interest. Aboveground biomass is a key indicator for assessing maize growth and its yield potential. This study developed an efficient and stable [...] Read more.
Maize is one of the top three crops globally, ranking only behind rice and wheat, making it an important crop of interest. Aboveground biomass is a key indicator for assessing maize growth and its yield potential. This study developed an efficient and stable biomass prediction model to estimate the aboveground biomass (AGB) of spring maize (Zea mays L.) under subsurface drip irrigation in arid regions, based on UAV multispectral remote sensing and machine learning techniques. Focusing on typical subsurface drip-irrigated spring maize in arid Xinjiang, multispectral images and field-measured AGB data were collected from 96 sample points (selected via stratified random sampling across 24 plots) over four key phenological stages in 2024 and 2025. Sixteen vegetation indices were calculated and 40 texture features were extracted using the gray-level co-occurrence matrix method, while an integrated feature-selection strategy combining Elastic Net and Random Forest was employed to effectively screen key predictor variables. Based on the selected features, six machine learning models were constructed, including Elastic Net Regression (ENR), Gradient Boosting Decision Trees (GBDT), Gaussian Process Regression (GPR), Partial Least Squares Regression (PLSR), Random Forest (RF), and Extreme Gradient Boosting (XGB). Results showed that the fused feature set comprised four vegetation indices (GRDVI, RERVI, GRVI, NDVI) and five texture features (R_Corr, NIR_Mean, NIR_Vari, B_Mean, B_Corr), thereby retaining red-edge and visible-light texture information highly sensitive to AGB. The GPR model based on the fused features exhibited the best performance (test set R2 = 0.852, RMSE = 2890.74 kg ha−1, MAE = 1676.70 kg ha−1), demonstrating high fitting accuracy and stable predictive ability across both the training and test sets. Spatial inversions over the two growing seasons of 2024 and 2025, derived from the fused-feature GPR optimal model at four key phenological stages, revealed pronounced spatiotemporal heterogeneity and stage-dependent dynamics of spring maize AGB: the biomass accumulates rapidly from jointing to grain filling, slows thereafter, and peaks at maturity. At a constant planting density, AGB increased markedly with nitrogen inputs from N0 to N3 (420 kg N ha−1), with the high-nitrogen N3 treatment producing the greatest biomass; this successfully captured the regulatory effect of the nitrogen gradient on maize growth, provided reliable data for variable-rate fertilization, and is highly relevant for optimizing water–fertilizer coordination in subsurface drip irrigation systems. Future research may extend this integrated feature selection and modeling framework to monitor the growth and estimate the yield of other crops, such as rice and cotton, thereby validating its generalizability and robustness in diverse agricultural scenarios. Full article
Show Figures

Figure 1

21 pages, 1329 KB  
Review
Valorization of Chestnut By-Products: Extraction, Bioactivity, and Applications of Shells, Spiny Burs, and Leaves
by Stefania Lamponi, Roberta Barletta and Annalisa Santucci
Life 2026, 16(1), 140; https://doi.org/10.3390/life16010140 - 15 Jan 2026
Viewed by 150
Abstract
The European chestnut (Castanea sativa Mill.) industry generates substantial amounts of underutilized biomass, including shells, leaves, and spiny burs. Distinguishing itself from existing literature, this review presents a novel, integrated life-science analysis that redefines these by-products as a complementary ‘bioactive triad’, ranging [...] Read more.
The European chestnut (Castanea sativa Mill.) industry generates substantial amounts of underutilized biomass, including shells, leaves, and spiny burs. Distinguishing itself from existing literature, this review presents a novel, integrated life-science analysis that redefines these by-products as a complementary ‘bioactive triad’, ranging from metabolic regulators to anti-virulence agents, rather than interchangeable sources of polyphenols. Although traditionally discarded, these by-products are rich sources of polyphenols, ellagitannins, and flavonoids, with promising potential for nutraceutical, cosmetic, and pharmaceutical applications. This review examines recent advances in the valorization of chestnut by-products, focusing on extraction strategies, chemical profiles, and biological activities. Shell valorization has increasingly shifted toward green extraction technologies, such as subcritical water extraction and deep eutectic solvents, which strongly influence bioactive recovery and composition. Chestnut leaves emerge as a sustainable resource enriched in hydrolysable tannins with anti-inflammatory and quorum sensing-inhibitory properties, particularly relevant for dermatological applications. Spiny burs, often the most phenolic-rich fraction, display marked antioxidant activity and the ability to potentiate conventional antibiotics against pathogens such as Helicobacter pylori. Despite these promising features, major challenges remain, including cultivar-dependent chemical variability, the predominance of in vitro evidence, and safety concerns related to the accumulation of potentially toxic elements. Overall, while chestnut by-products represent valuable resources within circular bioeconomy frameworks, their successful industrial and practical translation will require standardized extraction protocols, robust bioavailability assessments, and well-designed in vivo and clinical studies to ensure safety and efficacy. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

25 pages, 1841 KB  
Review
Degradation and Decomposition of Holopelagic Sargassum: A Review on Process Dynamics
by Román Manuel Vásquez-Elizondo, Adrian Fagundo-Mollineda, Shrinivas Nandi and Daniel Robledo
Coasts 2026, 6(1), 3; https://doi.org/10.3390/coasts6010003 - 14 Jan 2026
Viewed by 178
Abstract
This review synthesizes the literature on the degradation and decomposition of holopelagic Sargassum, with a focus on process dynamics, including microbial contribution, process descriptions, and ecological impacts. Our objective is to consolidate a robust knowledge framework to inform and optimize management strategies [...] Read more.
This review synthesizes the literature on the degradation and decomposition of holopelagic Sargassum, with a focus on process dynamics, including microbial contribution, process descriptions, and ecological impacts. Our objective is to consolidate a robust knowledge framework to inform and optimize management strategies in affected areas. Overall, we observed that the current literature relies primarily on isolated field ecological descriptions rather than a coherent, unified research line; mechanistic studies, including bacterial pathways and factors controlling degradation, remain scarce. At the fine scale, microbial community shifts during decomposition are strongly linked to the sequential utilization of distinct organic substrates, thereby favoring the proliferation of microorganisms capable of degrading complex organic molecules and of bacterial groups involved in sulfur respiration, methanogenesis, and nutrient recycling. In the case of sulfur respiration, groups such as Desulfobacterales and Desulfovibrionales may be responsible for the reported H2S emissions, which pose significant public health concerns. At a broad scale, degradation occurs both on beaches during emersion and in the water column during immersion, particularly during massive accumulations. The initial stages are characterized by the release of organic exudates and leachates. Experimental and observational studies confirm a strong early-stage release of H2S until the substrate is largely depleted. Depending on environmental conditions, a significant amount of biomass can be lost; however, this loss is highly variable, with notable consequences for contamination studies. Leachates may also contain low but ecologically significant amounts of arsenic, posing a potential contamination risk. Decomposition contributes to water-quality deterioration and oxygen depletion, with impacts at the individual, population, and ecosystem levels, yet many remain imprecisely attributed. Although evidence of nutrient enrichment in the water column is limited, studies indicate biological nutrient uptake. Achieving a comprehensive understanding of degradation and decomposition, including temporal and spatial dynamics, microbiome interactions, by means of directed research, is critical for effective coastal management, improved mitigation strategies, industrial valorization, and accurate modeling of biogeochemical cycles. Full article
Show Figures

Graphical abstract

27 pages, 2953 KB  
Review
Barriers for Fish Guidance: A Systematic Review of Non-Physical and Physical Approaches
by Nicoleta-Oana Nicula and Eduard-Marius Lungulescu
Water 2026, 18(2), 225; https://doi.org/10.3390/w18020225 - 14 Jan 2026
Viewed by 146
Abstract
Protecting aquatic biodiversity while ensuring reliable hydropower production and water supply remains a core challenge for both water security and biosecurity. In this PRISMA-based systematic review, we synthesize evidence from 96 studies on fish guidance and deterrence at hazardous water intakes. We examine [...] Read more.
Protecting aquatic biodiversity while ensuring reliable hydropower production and water supply remains a core challenge for both water security and biosecurity. In this PRISMA-based systematic review, we synthesize evidence from 96 studies on fish guidance and deterrence at hazardous water intakes. We examine non-physical barriers, including acoustic and light cues, electric fields, bubble curtains, and chemical stimuli, as well as physical barriers such as racks, guidance structures, and nets or screens that aim to divert fish away from intakes and toward selective passage routes. Overall, guidance and deterrence performance is strongly species- and site-specific. Multimodal systems that combine multiple cues show the highest mean guidance efficiency (~80%), followed by light-based deterrents (~77%). Acoustic, electric, and bubble barriers generally achieve intermediate efficiencies (~55–58%), whereas structural devices alone exhibit lower mean performance (~46%), with substantial variability among sites and designs. Physical screens remain effective for larger size classes but can increase head loss and debris accumulation. By contrast, non-physical systems offer more flexible, low-footprint options whose success depends critically on local hydraulics, the sensory ecology of target species, and ambient environmental conditions. We identify major knowledge gaps relating to underlying sensory and behavioral mechanisms, hydraulics-based design rules, and standardized performance metrics. We also highlight opportunities to integrate advanced monitoring and AI-based analytics into adaptive, site-specific guidance systems. Taken together, our findings show that carefully selected and tuned barrier technologies can provide practical pathways to enhance water security and biosecurity, while supporting sustainable fish passage, improving invasive-species control, and reducing ecological impacts at water infrastructure. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

16 pages, 7117 KB  
Article
Morphological Description and Physiological Changes in the Hindgut of Female Asiophrida xanthospilota (Chrysomelidae, Coleoptera) Across Reproductive Stages
by Jacob M. Muinde, Ze-Qun Dong, Caren A. Ochieng, Wei Wang, Esther N. Kioko, Le Zong, Wen-Jie Li, Cong-Qiao Li, Si-Pei Liu, Zheng-Zhong Huang and Si-Qin Ge
Insects 2026, 17(1), 97; https://doi.org/10.3390/insects17010097 - 14 Jan 2026
Viewed by 247
Abstract
Fecal retention is a distinctive reproductive strategy in certain leaf beetles, which enables females to use accumulated fecal material to protect their eggs and enhance offspring survival. The adult flea beetle Asiophrida xanthospilota (Baly, 1881) is a specialist herbivore that feeds on the [...] Read more.
Fecal retention is a distinctive reproductive strategy in certain leaf beetles, which enables females to use accumulated fecal material to protect their eggs and enhance offspring survival. The adult flea beetle Asiophrida xanthospilota (Baly, 1881) is a specialist herbivore that feeds on the leaves of Cotinus coggygria Scop. (Anacardiaceae). Using light microscopy, scanning electron microscopy, and micro-computed tomography, we described and illustrated the hindgut anatomy of adult female A. xanthospilota during the pre-mated and post-mated reproductive phases. We further examined the physiological changes in the hindgut associated with fecal retention, and assessed hindgut muscle activity across these two reproductive stages. The hindgut of adult A. xanthospilota consists of three regions: ileum, colon, and rectum. The ileum is a thin, straight or coiled, tube enclosed by malpighian tubules and supported by circular and longitudinal muscles. The colon lies between the ileum and rectum, possesses a chitinized cuticle, and is externally covered with tracheae and tracheoles. A rectal valve separates the colon from the rectum, which forms the posterior end of the alimentary canal and is characterized by intimal spines and robust circular muscles. During the post-mated phase, fecal retention causes pronounced dilation of the hindgut, substantially increasing the volume occupied by food remnants. Electromyographic recordings revealed high hindgut muscle activity in pre-mated females, characterized by short and variable bursts, whereas post-mated females exhibited reduced activity with longer and more sustained bursts. The functional implications of these specialized structural features are discussed. Overall, these morphological and physiological adaptations enhance the fecal retention strategy by increasing fecal capacity, regulating hindgut motility, and enabling the formation of a protective fecal case around the egg mass. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

17 pages, 1325 KB  
Article
Shifts in Composition, Origin, and Distribution of Invasive Alien Plants in Guangxi, China, over 50 Years
by Jia Kong, Cong Hu, Yadong Qie, Chaohao Xu, Aihua Wang, Zhonghua Zhang and Gang Hu
Diversity 2026, 18(1), 44; https://doi.org/10.3390/d18010044 - 14 Jan 2026
Viewed by 182
Abstract
Invasions by alien plants are major global drivers of ecosystem changes and loss of biodiversity. Guangxi is an ecological barrier in southern China that is increasingly being affected by invasive alien plant species. We comprehensively reviewed the literature, compiling and analyzing the long-term [...] Read more.
Invasions by alien plants are major global drivers of ecosystem changes and loss of biodiversity. Guangxi is an ecological barrier in southern China that is increasingly being affected by invasive alien plant species. We comprehensively reviewed the literature, compiling and analyzing the long-term changes in species composition, native range, life forms, municipal-scale patterns, and correlates of invasive alien plant richness in Guangxi at three time points (1973, 2010, and 2023). Over the 50-year period, the number of invasive alien plant species markedly increased from 31 species in 1973 to 84 in 2010 and 158 in 2023; the number of families, genera, and species increased 2.05-, 3.75-, and 5.10-fold, respectively. Species native to North America consistently dominated the invasive flora, followed by those native to Africa. The number of species native to South America and Asia increased in the records from 2010 to 2023. Annual herbaceous plants accounted for the largest proportion of invasive species throughout the study period and showed the largest absolute increase in species number. However, no substantial temporal shifts in the overall life-form composition were detected. At the municipal scale, the invasive alien plant richness exhibited pronounced spatial heterogeneity. The invasive alien plant richness was highest in Guilin and Baise in 1973, in Guilin in 2023, followed by Nanning and Baise. Correlation analyses based on 2023 data revealed a significant positive association between invasive alien plant richness and tourism intensity, whereas relationships between population size, gross domestic product, and climatic variables were weak or nonsignificant. Overall, our results document the continued expansion and the spatial differentiation of invasive alien plants in Guangxi over the 50-year period of 1973–2023. These patterns primarily reflect the accumulation in the number of recorded invasive species under a consistent classification framework and should be interpreted with caution given the potential variation in survey effort among periods and cities. The results provide a descriptive baseline for the provincial-scale monitoring, risk assessment, and management of invasive alien plants. Full article
(This article belongs to the Special Issue Ecology, Distribution, Impacts, and Management of Invasive Plants)
Show Figures

Figure 1

Back to TopTop