ijms-logo

Journal Browser

Journal Browser

New Molecular Aspects of Colorectal Cancer

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Oncology".

Deadline for manuscript submissions: 20 August 2025 | Viewed by 4082

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
Interests: colorectal cancer; leukemia; tumor biomarkers; anticancer drugs; apoptosis; BCL2 family; alternative splicing; kallikrein-related peptidases (KLKs); nanopore sequencing; next-generation sequencing (NGS)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Colorectal cancer (CRC) is considered to be one of the most fatal types of cancer worldwide, in both men and women. In recent decades, great progress has been achieved towards the elucidation of the molecular background of CRC and, therefore, a new era in diagnosis, prognosis, and therapeutic approaches has emerged. Moreover, new molecular biomarkers including microRNAs, RNA-derived fragments (e.g., tRNA-derived RNA fragments; tRFs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) have attracted researchers’ interest. In this perspective, newly characterized biomolecules as well as components of classical signaling pathways, such as the EGFR/KRAS/MAPK and the PI3K/AKT1/mTOR pathways, have been assessed for their potential value as molecular CRC biomarkers and/or therapeutic targets.

This Special Issue focuses on informing the readers regarding novel molecular aspects of CRC and general approaches, which will contribute to further elucidation of the underlying molecular mechanisms. The authors are encouraged to submit their research studies concerning this topic. All studies will be taken into consideration. The Guest Editor is also willing to evaluate manuscripts describing other aspects of CRC pathobiology, as proposed by the authors. I hope that this Special Issue on novel molecular aspects of colorectal cancer will ignite readers’ interest in the this journal.

Dr. Christos K. Kontos
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • colorectal adenocarcinoma
  • cancer pathobiology
  • molecular biomarkers
  • diagnosis and prognosis
  • prediction of therapy selection
  • therapeutic targets
  • RNA molecules
  • microRNA
  • long non-coding RNA
  • circular RNA

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 4897 KiB  
Article
Photodynamic Therapy against Colorectal Cancer Using Porphin-Loaded Arene Ruthenium Cages
by Suzan Ghaddar, Aline Pinon, Manuel Gallardo-Villagran, Jacquie Massoud, Catherine Ouk, Claire Carrion, Mona Diab-Assaf, Bruno Therrien and Bertrand Liagre
Int. J. Mol. Sci. 2024, 25(19), 10847; https://doi.org/10.3390/ijms251910847 - 9 Oct 2024
Viewed by 1257
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world, with an ongoing rising incidence. Despite secure advancements in CRC treatments, challenges such as side effects and therapy resistance remain to be addressed. Photodynamic therapy (PDT) emerges as a promising modality, [...] Read more.
Colorectal cancer (CRC) is the third most common cancer in the world, with an ongoing rising incidence. Despite secure advancements in CRC treatments, challenges such as side effects and therapy resistance remain to be addressed. Photodynamic therapy (PDT) emerges as a promising modality, clinically used in treating different diseases, including cancer. Among the main challenges with current photosensitizers (PS), hydrophobicity and low selective uptake by the tumor remain prominent. Thus, developing an optimal design for PS to improve their solubility and enhance their selective accumulation in cancer cells is crucial for enhancing the efficacy of PDT. Targeted photoactivation triggers the production of reactive oxygen species (ROS), which promote oxidative stress within cancer cells and ultimately lead to their death. Ruthenium (Ru)-based compounds, known for their selective toxicity towards cancer cells, hold potential as anticancer agents. In this study, we investigated the effect of two distinct arene-Ru assemblies, which lodge porphin PS in their inner cavity, and tested them as PDT agents on the HCT116 and HT-29 human CRC cell lines. The cellular internalization of the porphin-loaded assemblies was confirmed by fluorescence microscopy. Additionally, significant photocytotoxicity was observed in both cell lines after photoactivation of the porphin in the cage systems, inducing apoptosis through caspase activation and cell cycle progression disruptions. These findings suggest that arene-Ru assemblies lodging porphin PS are potent candidates for PDT of CRC. Full article
(This article belongs to the Special Issue New Molecular Aspects of Colorectal Cancer)
Show Figures

Figure 1

24 pages, 8655 KiB  
Article
Transcriptome Profiling Associated with CARD11 Overexpression in Colorectal Cancer Implicates a Potential Role for Tumor Immune Microenvironment and Cancer Pathways Modulation via NF-κB
by Faisal Alhosani, Burcu Yener Ilce, Reem Sami Alhamidi, Poorna Manasa Bhamidimarri, Alaa Mohamed Hamad, Noura Alkhayyal, Axel Künstner, Cyrus Khandanpour, Hauke Busch, Basel Al-Ramadi, Kadria Sayed, Ali AlFazari, Riyad Bendardaf and Rifat Hamoudi
Int. J. Mol. Sci. 2024, 25(19), 10367; https://doi.org/10.3390/ijms251910367 - 26 Sep 2024
Viewed by 2483
Abstract
The immune system plays a critical role in inflammation by initiating responses to infections or tissue damage. The nuclear factor-κB (NF-κB) pathway plays a key role in inflammation and innate immunity, as well as other cellular activities. Dysregulation of this well-choreographed pathway has [...] Read more.
The immune system plays a critical role in inflammation by initiating responses to infections or tissue damage. The nuclear factor-κB (NF-κB) pathway plays a key role in inflammation and innate immunity, as well as other cellular activities. Dysregulation of this well-choreographed pathway has been implicated in various diseases, including cancer. CARD11 is a key molecule in the BCL10-MALT1 complex, which is involved in transducing the signal downstream of the NF-κB pathway. This study aims to elucidate how CARD11 overexpression exacerbates the prognosis of colorectal cancer (CRC). To identify the cellular pathways influenced by CARD11, transcriptomic analysis in both CRC cell lines and patients was carried out on CARD11– overexpressed HCT-116 and HT-29 CRC cell lines alongside empty vector-transfected cell lines. Furthermore, a comparison of transcriptomic data from adenoma and carcinoma CRC patients with low- (CARD11–) and high-(CARD11+) CARD11 expression was carried out. Whole transcriptomics and bioinformatics analysis results indicate that CARD11 appears to play a key role in CRC progression. Absolute GSEA (absGSEA) on HCT-116 transcriptomics data revealed that CARD11 overexpression promotes cell growth and tissue remodeling and enhances immune response. Key genes co-expressed with CARD11, such as EP300, KDM5A, HIF1A, NFKBIZ, and DUSP1, were identified as mediators of these processes. In the HT-29 cell line, CARD11 overexpression activated pathways involved in chemotaxis and extracellular matrix (ECM) organization, marked by IL1RN, MDK, SPP1, and chemokines like CXCL1, CXCL3, and CCL22, which were shown to contribute to the more invasive stage of CRC. In patient samples, adenoma patients exhibited increased expression of genes associated with the tumor immune microenvironment, such as IL6ST, collagen family members, and CRC transition markers, such as GLI3 and PIEZO2, in CARD11+ adenoma patients. Carcinoma patients showed a dramatic increase in the expression of MAPK8IP2 in CARD11+ carcinoma patients alongside other cancer-related genes, including EMB, EPHB6, and CPEB4. Full article
(This article belongs to the Special Issue New Molecular Aspects of Colorectal Cancer)
Show Figures

Figure 1

Back to TopTop