Diabetic Kidney Disease Associated with Chronic Exposure to Low Doses of Environmental Cadmium
Abstract
1. Introduction
2. Results
2.1. Descriptive Data on the Controls and Diabetics
2.2. Comparing Cd Exposure and Other Measured Variables in Three Study Groups
2.3. Logistic Regression Modeling of Albuminuria and a Reduced eGFR
2.4. Bivariate Analysis of Ealb
2.5. The Mediating Effects of Cd on Ealb and eGFR
3. Discussion
3.1. Urinary Cd, FPG, and Albuminuria in CTRL and DM
3.2. Albuminuria and Reduced eGFR: The Tubular Rule
3.3. Different Responses in Men and Women
3.4. Mediation Analysis for the Indirect Effects of Cd
3.5. Strengths, Limitations, and Future Investigations
4. Materials and Methods
4.1. Participants
4.2. Collection, Storage, and Compositional Analysis of Blood and Urine Samples
4.3. Correction for Differences in Urine Dilution
4.4. Computation for eGFR and Fractional Tubular Degradation of β2M
4.5. Analysis for the Indirect Effects of Cd
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GFR | glomerular filtration rate |
| eGFR | estimated GFR |
| Cd | cadmium |
| ECd | urinary excretion rate of Cd |
| alb | albumin |
| Ealb | urinary excretion rate of alb |
| NAG | N-acetylglucosaminidase |
| ENAG | urinary excretion rate of NAG |
| cr | creatinine |
| Ccr | creatinine clearance |
| β2M | β2-microglobulin |
| Fβ2M | rate of glomerular filtration of β2M |
| Eβ2M | urinary excretion rate of β2M |
| TDβ2M | rate of tubular degradation of β2M |
| FrTDβ2M | fractional tubular degradation of filtered β2M |
References
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef]
- Hung, P.-H.; Hsu, Y.-C.; Chen, T.-H.; Lin, C.-L. Recent Advances in Diabetic Kidney Diseases: From Kidney Injury to Kidney Fibrosis. Int. J. Mol. Sci. 2021, 22, 11857. [Google Scholar] [CrossRef]
- Zac-Varghese, S. Consultant in diabetes, diabetes and the kidney. Clin. Med. 2025, 26, 100512. [Google Scholar] [CrossRef]
- Fernández Fernández, B.; Elewa, U.; Sánchez-Niño, M.D.; Rojas-Rivera, J.E.; Martin-Cleary, C.; Egido, J.; Ortiz, A. 2012 update on diabetic kidney disease: The expanding spectrum, novel pathogenic insights and recent clinical trials. Minerva Med. 2012, 103, 219–234. [Google Scholar]
- Li, J.; Guo, K.; Qiu, J.; Xue, S.; Pi, L.; Li, X.; Huang, G.; Xie, Z.; Zhou, Z. Epidemiological status, development trends, and risk factors of disability-adjusted life years due to diabetic kidney disease: A systematic analysis of Global Burden of Disease Study 2021. Chin. Med. J. 2025, 138, 568–578. [Google Scholar] [CrossRef]
- Ma, X.; Liu, R.; Xi, X.; Zhuo, H.; Gu, Y. Global burden of chronic kidney disease due to diabetes mellitus, 1990–2021, and projections to 2050. Front. Endocrinol. 2025, 16, 1513008. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S. Is Environmental Cadmium Exposure Causally Related to Diabetes and Obesity? Cells 2024, 13, 83. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Vesey, D.A.; Gobe, G.C.; Phelps, K.R. Estimation of health risks associated with dietary cadmium exposure. Arch. Toxicol. 2023, 97, 329–358. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Vesey, D.A.; Ruangyuttikarn, W.; Nishijo, M.; Gobe, G.C.; Phelps, K.R. The Source and Pathophysiologic Significance of Excreted Cadmium. Toxics 2019, 7, 55. [Google Scholar] [CrossRef]
- Xie, S.; Perrais, M.; Golshayan, D.; Wuerzner, G.; Vaucher, J.; Thomas, A.; Marques-Vidal, P. Association between urinary heavy metal/trace element concentrations and kidney function: A prospective study. Clin. Kidney J. 2024, 18, sfae378. [Google Scholar] [CrossRef]
- Son, H.S.; Kim, S.G.; Suh, B.S.; Park, D.U.; Kim, D.S.; Yu, S.D.; Hong, Y.S.; Park, J.D.; Lee, B.K.; Moon, J.D.; et al. Association of cadmium with diabetes in middle-aged residents of abandoned metal mines: The first health effect surveillance for residents in abandoned metal mines. Ann. Occup. Environ. Med. 2015, 27, 20. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Il’yasova, D.; Ivanova, A. Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. Diabetes Care 2003, 26, 468–470. [Google Scholar] [CrossRef]
- Wallia, A.; Allen, N.B.; Badon, S.; El Muayed, M. Association between urinary cadmium levels and prediabetes in the NHANES 2005–2010 population. Int. J. Hyg. Environ. Health 2014, 217, 854–860. [Google Scholar] [CrossRef]
- Grau-Perez, M.; Pichler, G.; Galan-Chilet, I.; Briongos-Figuero, L.S.; Rentero-Garrido, P.; Lopez-Izquierdo, R.; Navas-Acien, A.; Weaver, V.; García-Barrera, T.; Gomez-Ariza, J.L.; et al. Urine cadmium levels and albuminuria in a general population from Spain: A gene-environment interaction analysis. Environ. Int. 2017, 106, 27–36. [Google Scholar] [CrossRef]
- Feng, X.; Zhou, R.; Jiang, Q.; Wang, Y.; Chen, C. Analysis of cadmium accumulation in community adults and its correlation with low-grade albuminuria. Sci. Total Environ. 2022, 834, 155210. [Google Scholar] [CrossRef]
- Thomas, D.K.; Hodgson, S.; Nieuwenhuijsen, M.; Jarup, L. Early kidney damage in a population exposed to cadmium and other heavy metals. Environ. Health Perspect. 2009, 117, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.-F.; Hsu, P.-C.; Lee, C.-T.; Kung, C.-T.; Chang, Y.-C.; Fu, L.-M.; Ou, Y.-C.; Lan, K.-C.; Yen, T.-H.; Lee, W.-C. Association between Enzyme-Linked Immunosorbent Assay-Measured Kidney Injury Markers and Urinary Cadmium Levels in Chronic Kidney Disease. J. Clin. Med. 2022, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.D.; Yim, D.H.; Eom, S.Y.; Moon, S.I.; Park, C.H.; Kim, G.B.; Yu, S.D.; Choi, B.S.; Park, J.D.; Kim, H. Temporal changes in urinary levels of cadmium, N-acetyl-β-d-glucosaminidase and β2-microglobulin in individuals in a cadmium-contaminated area. Environ. Toxicol. Pharmacol. 2015, 39, 35–41. [Google Scholar] [CrossRef]
- Triplitt, C.L. Examining the mechanisms of glucose regulation. Am. J. Manag. Care 2012, 18, S4–S10. [Google Scholar]
- Wilding, J.P. The role of the kidneys in glucose homeostasis in type 2 diabetes: Clinical implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. Metabolism 2014, 63, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Alsahli, M.; Gerich, J.E. Renal glucose metabolism in normal physiological conditions and in diabetes. Diabetes Res. Clin. Pract. 2017, 133, 1–9. [Google Scholar] [CrossRef]
- Dalga, D.; Verissimo, T.; de Seigneux, S. Gluconeogenesis in the kidney: In health and in chronic kidney disease. Clin. Kidney J. 2023, 16, 1249–1257. [Google Scholar] [CrossRef]
- Duo, Y.; Gao, J.; Yuan, T.; Zhao, W. Effect of sodium-glucose cotransporter 2 inhibitors on the rate of decline in kidney function: A systematic review and meta-analysis. J. Diabetes 2023, 15, 58–70. [Google Scholar] [CrossRef]
- Nauta, F.L.; Boertien, W.E.; Bakker, S.J.; van Goor, H.; van Oeveren, W.; de Jong, P.E.; Bilo, H.; Gansevoort, R.T. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care 2011, 34, 975–981. [Google Scholar] [CrossRef]
- Ouchi, M.; Suzuki, T.; Hashimoto, M.; Motoyama, M.; Ohara, M.; Suzuki, K.; Igari, Y.; Watanabe, K.; Nakano, H.; Oba, K. Urinary N-acetyl-β-D-glucosaminidase levels are positively correlated with 2-hr plasma glucose levels during oral glucose tolerance testing in prediabetes. J. Clin. Lab. Anal. 2012, 26, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.R.; Lee, Y.H.; Lee, S.G.; Kang, E.S.; Cha, B.S.; Kim, J.H.; Lee, B.W. Urinary N-acetyl-beta-D-glucosaminidase, an early marker of diabetic kidney disease, might reflect glucose excursion in patients with type 2 diabetes. Medicine 2016, 95, e4114. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.H.; Dai, S.F.; Zhao, J.N.; Jiang, Y. Application of urinary N-acetyl-β-D-glucosaminidase combined with serum retinol-binding protein in early detection of diabetic nephropathy. World J. Diabetes 2023, 14, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Fei, X.; Zhan, H.; Gong, J.; Zhou, J.; Zhang, Y.; Ye, X.; Song, Y.; Ma, J.; Wu, X. Urinary N-acetyl-beta-d-glucosaminidase-creatinine ratio is a valuable predictor for advanced diabetic kidney disease. J. Clin. Lab. Anal. 2023, 37, e24769. [Google Scholar] [CrossRef]
- Takagi, A.; Kusunoki, Y.; Ohigashi, M.; Osugi, K.; Inoue, C.; Inoue, M.; Tsunoda, T.; Kadoya, M.; Konishi, K.; Katsuno, T.; et al. Association between continuous glucose monitoring-derived glycemic control indices and urinary biomarkers of diabetic kidney disease: Hyogo Diabetes Hypoglycemia Cognition Complications study. Acta Diabetol. 2024, 61, 413–423. [Google Scholar] [CrossRef]
- Orlowski, C.; Piotrowski, J.K.; Subdys, J.K.; Gross, A. Urinary cadmium as indicator of renal cadmium in humans: An autopsy study. Hum. Exp. Toxicol. 1998, 17, 302–306. [Google Scholar] [CrossRef]
- Satarug, S.; Baker, J.R.; Reilly, P.E.; Moore, M.R.; Williams, D.J. Cadmium levels in the lung, liver, kidney cortex, and urine samples from Australians without occupational exposure to metals. Arch. Environ. Health 2002, 57, 69–77. [Google Scholar] [CrossRef]
- Akerstrom, M.; Barregard, L.; Lundh, T.; Sallsten, G. The relationship between cadmium in kidney and cadmium in urine and blood in an environmentally exposed population. Toxicol. Appl. Pharmacol. 2013, 268, 286–293. [Google Scholar] [CrossRef]
- Wallin, M.; Sallsten, G.; Lundh, T.; Barregard, L. Low-level cadmium exposure and effects on kidney function. Occup. Environ. Med. 2014, 71, 848–854, Correction in Occup. Environ. Med. 2015, 72, 898.. [Google Scholar] [CrossRef]
- Lin, Y.J.; Chang, J.W.; Ponnusamy, V.K.; Huang, H.B.; Chen, H.C.; Huang, P.C. Urinary bisphenol A and its substitutes exposure increased the risk of renal tubular injury (N-acetyl-β-d-glucosaminidase) in the general Taiwanese population. Front. Public Health 2025, 13, 1505578. [Google Scholar] [CrossRef]
- Ikeme, J.C.; Katz, R.; Muiru, A.N.; Estrella, M.M.; Scherzer, R.; Garimella, P.S.; Hallan, S.I.; Peralta, C.A.; Ix, J.H.; Shlipak, M.G. Clinical Risk Factors For Kidney Tubule Biomarker Abnormalities Among Hypertensive Adults With Reduced eGFR in the SPRINT Trial. Am. J. Hypertens. 2022, 35, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.W.; Chien, L.C.; Chen, Y.C.; Kao, H.C. Sex-specific differences in early renal impairment associated with arsenic, lead, and cadmium exposure among young adults in Taiwan. Environ. Sci. Pollut. Res. Int. 2022, 29, 52655–52664. [Google Scholar] [CrossRef]
- Jacquet, A.; Arnaud, J.; Hininger-Favier, I.; Hazane-Puch, F.; Couturier, K.; Lénon, M.; Lamarche, F.; Ounnas, F.; Fontaine, E.; Moulis, J.M.; et al. Impact of chronic and low cadmium exposure of rats: Sex specific disruption of glucose metabolism. Chemosphere 2018, 207, 764–773. [Google Scholar] [CrossRef]
- Satarug, S.; Gobe, G.C.; Ujjin, P.; Vesey, D.A. Gender Differences in Zinc and Copper Excretion in Response to Co-Exposure to Low Environmental Concentrations of Cadmium and Lead. Stresses 2021, 1, 3–15. [Google Scholar] [CrossRef]
- Xie, L.; Shao, X.; Yu, Y.; Gong, W.; Sun, F.; Wang, M.; Yang, Y.; Liu, W.; Huang, X.; Wu, X.; et al. Anemia is a risk factor for rapid eGFR decline in type 2 diabetes. Front. Endocrinol. 2023, 14, 1052227. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Romero, M.; Lima, E.R.; Barbier, O.C.; Aztatzi-Aguilar, O.G.; Rubio-Gutiérrez, J.C.; Morales, J.N.; García, M.E.; Barrera-Hernández, Á.; Jiménez-Córdova, M.I.; Del Razo, L.M.; et al. Relationship Between Urinary Copper, Zinc, and Cadmium and Kidney Damage Biomarkers in Young People. Int. J. Mol. Sci. 2025, 26, 7980. [Google Scholar] [CrossRef]
- Zhang, K.; Long, M.; Dong, W.; Li, J.; Wang, X.; Liu, W.; Huang, Q.; Ping, Y.; Zou, H.; Song, R.; et al. Cadmium Induces Kidney Iron Deficiency and Chronic Kidney Injury by Interfering with the Iron Metabolism in Rats. Int. J. Mol. Sci. 2024, 25, 763. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, N.; Barter, R.A.; Uno, H.; Waalkes, M.P. Effect of progesterone pretreatment on cadmium toxicity in the male Fischer (F344/NCr) rat. Toxicol. Appl. Pharmacol. 1993, 118, 113–118. [Google Scholar] [CrossRef]
- Shimada, H.; Hochadel, J.F.; Waalkes, M.P. Progesterone pretreatment enhances cellular sensitivity to cadmium despite a marked activation of the metallothionein gene. Toxicol. Appl. Pharmacol. 1997, 142, 178–185. [Google Scholar] [CrossRef]
- Shimada, H.; Hashiguchi, T.; Yasutake, A.; Waalkes, M.P.; Imamura, Y. Sexual dimorphism of cadmium-induced toxicity in rats: Involvement of sex hormones. Arch. Toxicol. 2012, 86, 1475–1480. [Google Scholar] [CrossRef]
- Takiguchi, M.; Cherrington, N.J.; Hartley, D.P.; Klaassen, C.D.; Waalkes, M.P. Cyproterone acetate induces a cellular tolerance to cadmium in rat liver epithelial cells involving reduced cadmium accumulation. Toxicology 2001, 165, 13–25. [Google Scholar] [CrossRef]
- Ohana, E.; Sekler, I.; Kaisman, T.; Kahn, N.; Cove, J.; Silverman, W.F.; Amsterdam, A.; Hershfinkel, M. Silencing of ZnT-1 expression enhances heavy metal influx and toxicity. J. Mol. Med. 2006, 84, 753–763. [Google Scholar] [CrossRef]
- Satarug, S. Antioxidative Function of Zinc and Its Protection Against the Onset and Progression of Kidney Disease Due to Cadmium. Biomolecules 2025, 15, 183. [Google Scholar] [CrossRef]
- Yimthiang, S.; Pouyfung, P.; Khamphaya, T.; Kuraeiad, S.; Wongrith, P.; Vesey, D.A.; Gobe, G.C.; Satarug, S. Effects of Environmental Exposure to Cadmium and Lead on the Risks of Diabetes and Kidney Dysfunction. Int. J. Environ. Res. Public Health 2022, 19, 2259. [Google Scholar] [CrossRef] [PubMed]
- Adokwe, J.B.; Waeyeng, D.; Suwan, K.; Camsanit, K.; Kaiduong, C.; Nuanrat, P.; Pouyfung, P.; Yimthiang, S.; Petchoo, J.; Satarug, S.; et al. Plant-Based Diet and Glycemic Control in Type 2 Diabetes: Evidence from a Thai Health-Promoting Hospital. Nutrients 2024, 16, 619. [Google Scholar] [CrossRef] [PubMed]
- Trzcinka-Ochocka, M.; Brodzka, R.; Janasik, B. Useful and Fast Method for Blood Lead and Cadmium Determination Using ICP-MS and GF-AAS; Validation Parameters. J. Clin. Lab. Anal. 2016, 30, 130–139. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Xu, R.; Tan, X.; Li, T.; Liu, S.; Li, Y.; Li, H. Norepinephrine-induced AuPd aerogels with peroxidase- and glucose oxidase-like activity for colorimetric determination of glucose. Mikrochim. Acta 2021, 188, 362. [Google Scholar] [CrossRef]
- Apple, F.; Bandt, C.; Prosch, A.; Erlandson, G.; Holmstrom, V.; Scholen, J.; Googins, M. Creatinine clearance: Enzymatic vs Jaffé determinations of creatinine in plasma and urine. Clin. Chem. 1986, 32, 388–390. [Google Scholar] [CrossRef]
- Phelps, K.R.; Gosmanova, E.O. A generic method for analysis of plasma concentrations. Clin. Nephrol. 2020, 94, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Budtz-Jørgensen, E. Total imprecision of exposure biomarkers: Implications for calculating exposure limits. Am. J. Ind. Med. 2007, 50, 712–719, Erratum in Am. J. Ind. Med. 2008, 51, 229.. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Vesey, D.A.; Buha Đorđević, A. Use of Urinary β2-Microglobulin in the Assessment of the Health Risk from Environmental Cadmium Exposure. Appl. Sci. 2025, 15, 11757. [Google Scholar] [CrossRef]
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: A systematic review. JAMA 2015, 313, 837–846. [Google Scholar] [CrossRef]
- Phelps, K.R.; Yimthiang, S.; Pouyfung, P.; Khamphaya, T.; Vesey, D.A.; Satarug, S. Homeostasis of β2-microglobulin in diabetics and non-diabetics with modest cadmium intoxication. J. Environ. Expo. Assess. 2025, 4, 23. [Google Scholar] [CrossRef]
- Preacher, K.J. Advances in mediation analysis: A survey and synthesis of new developments. Annu. Rev. Psychol. 2015, 66, 825–852. [Google Scholar] [CrossRef]
- MacKinnon, D.P.; Warsi, G.; Dwyer, J.H. A simulation study of mediated effect measures. Multivar. Behav. Res. 1995, 30, 41–62. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Meth. Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef] [PubMed]






| Variables | All Subjects n = 137 | CTRL n = 72 | Diagnosed DM | p | |
|---|---|---|---|---|---|
| <10 yrs, n = 37 | ≥10 yrs, n = 25 | ||||
| Women, % | 78.4 | 79.2 | 75.7 | 80.0 | 0.894 |
| Smoking, % | 10.4 | 11.1 | 10.8 | 8.0 | 0.905 |
| Mean age (range), years | 59.5 (41–80) | 61.2 (43–80) | 58.3 (42–75) | 56.6 (41–78) | 0.073 |
| Mean BMI (range), kg/m2 | 25.6 (15–48) | 24.6 (15–48) | 26.7 (15–36) | 26.6 (20–35) | 0.016 |
| FPG, mg/dL | 130 (61) | 94 (11) | 172 (76) | 170 (58) | <0.001 |
| FPG ≥ 110 mg/dL, % | 49.3 | 11.1 | 91.9 | 96.0 | <0.001 |
| FPG ≥ 126 mg/dL, % | 39.6 | 1.4 | 81.1 | 88.0 | <0.001 |
| Reduced eGFR a, % | 11.9 | 9.7 | 8.1 | 24.0 | 0.116 |
| Mean SBP (range) | 138 (103–187) | 134 (107–173) | 140 (106–184) | 144 (103–176) | 0.030 |
| Mean DBP (range) | 84 (61–106) | 84 (62–103) | 85 (65–106) | 86 (61–101) | 0.399 |
| Hypertension, % | 54.2 | 44.9 | 54.1 | 80.0 | 0.011 |
| [β2M]u, µg/L | 67 (58) | 42 (37) | 84 (58) | 114 (73) | <0.001 |
| ECd/Ecr, µg/g cr | 1.00 (1.87) | 0.99 (1.94) | 0.72 (1.54) | 1.41 (2.11) | 0.267 |
| Ealb/Ecr (ACR), mg/g cr | 39.8 (103) | 12.4 (26.1) | 59.8 (115) | 89.2 (177) | 0.002 |
| Microalbuminuria b, % | 22.4 | 8.3 | 35.1 | 44.0 | <0.001 |
| Macroalbuminuria, % | 3.7 | 0 | 8.1 | 8.0 | 0.046 |
| (Ealb/Ccr) × 100, mg/L filtrate | 37.2 (107) | 9.76 (19.2) | 51.4 (96.8) | 95.2 (205) | 0.003 |
| Microalbuminuria c, % | 26 | 12.9 | 33.3 | 52.0 | <0.001 |
| Macroalbuminuria, % | 4.5 | 0 | 10.8 | 8 | 0.023 |
| Independent Variables | Albuminuria a | Reduced eGFR b | ||
|---|---|---|---|---|
| POR (95% CI) | p | POR (95% CI) | p | |
| Age, years | 0.988 (0.936, 1.043) | 0.667 | 1.153 (1.055, 1.260) | 0.002 |
| BMI | 0.988 (0.899, 1.086) | 0.799 | 1.049 (0.920, 1.197) | 0.473 |
| Log[(ECd/Ccr)], µg/L filtrate | 0.870 (0.471, 1.608) | 0.658 | 1.542 (0.679, 3.502) | 0.301 |
| Smoking | 0.384 (0.062, 2.384) | 0.304 | 1.866 (0.119, 29.24) | 0.657 |
| Gender | 2.749 (0.769, 9.831) | 0.120 | 3.195 (0.218, 46.85) | 0.397 |
| Reduced eGFR | 4.294 (1.185, 15.56) | 0.027 | – | – |
| Diabetes | 4.081 (1.601, 10.40) | 0.003 | 1.883 (0.509, 6.969) | 0.343 |
| Hypertension | 2.786 (1.091, 7.114) | 0.032 | – | – |
| Eβ2M/Ccr ≥ 3 µg/L filtrate | – | – | 6.372 (1.137, 35.71) | 0.035 |
| Independent Variables | Log10 [(Ealb/Ccr)], µg/L Filtrate | |||||||
|---|---|---|---|---|---|---|---|---|
| CTRL, n = 44 | DM, n = 56 | Women, n = 77 | Men, n = 23 | |||||
| η2 | p | η2 | p | η2 | p | η2 | p | |
| Age | 0.073 | 0.117 | 0.016 | 0.395 | 0.007 | 0.493 | 0.010 | 0.709 |
| BMI | 0.050 | 0.196 | 0.097 | 0.033 | 0.002 | 0.724 | 0.011 | 0.699 |
| ECd/Ccr | 0.076 | 0.110 | 0.005 | 0.652 | 0.000028 | 0.965 | 0.038 | 0.470 |
| FrTDβ2M | 0.228 | 0.004 | 0.018 | 0.365 | 0.008 | 0.466 | 0.050 | 0.405 |
| Log10[(ENAG/Ccr)] | 0.061 | 0.153 | 0.162 | 0.005 | 0.054 | 0.050 | 0.268 | 0.040 |
| Gender | 0.115 | 0.046 | 0.176 | 0.003 | – | – | – | – |
| Smoking | 0.194 | 0.008 | 0.107 | 0.025 | – | – | 0.000044 | 0.981 |
| HTN | 0.210 | 0.006 | 0.146 | 0.008 | 0.121 | 0.003 | 0.109 | 0.212 |
| Gender × HTN | 0.044 | 0.226 | 0.122 | 0.016 | – | – | ||
| Smoking × HTN | 0.021 | 0.408 | 0.178 | 0.003 | – | – | 0.035 | 0.489 |
| Unadjusted (Adjusted) R2 | 0.422 (0.246) | 0.028 | 0.535 (0.431) | <0.001 | 0.237 (0.172) | 0.003 | 0.434 (0.111) | 0.301 |
| Independent Variables | Log10 [(Ealb/Ccr)], µg/L Filtrate | |||||||
|---|---|---|---|---|---|---|---|---|
| <10 yr DM, n = 34 | ≥10 yr DM, n = 20 | Normal eGFR, n = 88 | Reduced eGFR, n =12 | |||||
| η2 | p | η2 | p | η2 | p | η2 | p | |
| Age | 0.116 | 0.096 | 0.127 | 0.232 | 0.021 | 0.198 | 0.060 | 0.640 |
| BMI | 0.033 | 0.383 | 0.427 | 0.015 | 0.002 | 0.699 | 0.009 | 0.861 |
| ECd/Ccr | 0.003 | 0.788 | 0.004 | 0.832 | 0.021 | 0.198 | 0.092 | 0.558 |
| FrTDβ2M | 0.034 | 0.379 | 0.001 | 0.937 | 0.029 | 0.134 | 0.003 | 0.919 |
| Log10[(ENAG/Ccr)] | 0.158 | 0.049 | 0.198 | 0.127 | 0.082 | 0.010 | 0.115 | 0.510 |
| Gender | 0.370 | 0.001 | 0.306 | 0.050 | 0.001 | 0.783 | – | – |
| Smoking | 0.254 | 0.010 | 0.482 | 0.009 | 0.001 | 0.839 | – | – |
| HTN | 0.117 | 0.094 | 0.576 | 0.003 | 0.079 | 0.012 | 0.178 | 0.404 |
| Gender × HTN | 0.021 | 0.493 | – | – | 0.001 | 0.822 | – | – |
| Smoking × HTN | 0.076 | 0.182 | – | – | 0.014 | 0.298 | – | – |
| Unadjusted (Adjusted) R2 | 0.585 (0.495) | 0.009 | 0.810 (0.671) | 0.004 | 0.247 (0.149) | 0.011 | 0.668 (0.088) | 0.473 |
| Independent Variables | eGFR, mL/min/1.73 m2 | |||||||
|---|---|---|---|---|---|---|---|---|
| CTRL, n = 44 | DM, n = 56 | Women, n = 77 | Men, n = 23 | |||||
| η2 | p | η2 | p | η2 | p | η2 | p | |
| Age | 0.026 | 0.364 | 0.183 | 0.003 | 0.099 | 0.008 | 0.019 | 0.626 |
| BMI | 0.005 | 0.694 | 0.005 | 0.653 | 0.018 | 0.265 | 0.047 | 0.439 |
| ECd/Ccr | 0.063 | 0.151 | 0.009 | 0.520 | 0.008 | 0.445 | 0.066 | 0.357 |
| Log10[(ENAG/Ccr)] | 0.301 | 0.001 | 0.199 | 0.002 | 0.222 | <0.001 | 0.307 | 0.032 |
| Log10[(Eβ2M/Ccr)] | 0.018 | 0.454 | 0.140 | 0.010 | 0.072 | 0.023 | 0.031 | 0.532 |
| FPG | 0.013 | 0.526 | 0.054 | 0.119 | 0.109 | 0.005 | 0.147 | 0.158 |
| Gender | 0.053 | 0.192 | 0.009 | 0.520 | – | – | – | – |
| Smoking | 0.058 | 0.169 | 0.019 | 0.366 | – | – | 0.032 | 0.527 |
| HTN | 0.005 | 0.680 | 0.020 | 0.348 | 0.014 | 0.324 | 0.004 | 0.829 |
| Gender × HTN | 0.005 | 0.698 | 0.003 | 0.741 | – | – | – | – |
| Smoking × HTN | 0.016 | 0.476 | 0.049 | 0.140 | – | – | 0.110 | 0.227 |
| Unadjusted (adjusted) R2 | 0.510 (0.341) | 0.007 | 0.683 (0.603) | <0.001 | 0.564 (0.520) | <0.001 | 0.562 (0.258) | 0.151 |
| Independent Variables | eGFR, mL/min/1.73 m2 | |||||||
|---|---|---|---|---|---|---|---|---|
| <10 yr DM, n = 34 | ≥10 yr DM, n = 20 | Normal eGFR, n = 88 | Reduced eGFR, n =12 | |||||
| η2 | p | η2 | p | η2 | p | η2 | p | |
| Age | 0.134 | 0.079 | 0.126 | 0.257 | 0.022 | 0.198 | 0.305 | 0.335 |
| BMI | 0.004 | 0.756 | 0.040 | 0.533 | 0.021 | 0.202 | 0.399 | 0.253 |
| ECd/Ccr | 0.024 | 0.472 | 0.189 | 0.157 | 0.003 | 0.611 | 0.244 | 0.398 |
| Log10[(ENAG/Ccr)] | 0.057 | 0.262 | 0.543 | 0.006 | 0.128 | 0.001 | 0.116 | 0.574 |
| Log10[(Eβ2M/Ccr)] | 0.156 | 0.057 | 0.254 | 0.095 | 0.065 | 0.025 | 0.071 | 0.664 |
| FPG | 0.053 | 0.279 | 0.096 | 0.327 | 0.151 | <0.001 | 0.356 | 0.288 |
| Gender | 0.022 | 0.490 | 0.047 | 0.497 | 0.002 | 0.686 | – | – |
| Smoking | 0.004 | 0.762 | 0.023 | 0.637 | 0.008 | 0.433 | – | – |
| HTN | 0.002 | 0.824 | 0.016 | 0.699 | 0.009 | 0.416 | 0.428 | 0.231 |
| Gender × HTN | 0.005 | 0.753 | – | – | 0.030 | 0.129 | – | – |
| Smoking × HTN | 0.025 | 0.460 | – | – | 0.015 | 0.284 | – | – |
| Unadjusted (adjusted) R2 | 0.585 (0.377) | 0.019 | 0.874 (0.761) | 0.002 | 0.417 (0.332) | <0.001 | 0.749 (0.080) | 0.515 |
| Variables | Spearman’s Rank Correlation Coefficient | |||||||
|---|---|---|---|---|---|---|---|---|
| EAlb/Ccr | Age | BMI | eGFR | FPG | ECd/Ccr | ENAG/Ccr | Eβ2M/Ccr | |
| Age | 0.085 | |||||||
| BMI | 0.076 | −0.262 ** | ||||||
| eGFR | −0.136 | −0.356 ** | 0.161 | |||||
| FPG | 0.273 ** | −0.222 ** | 0.184 * | 0.089 | ||||
| ECd/Ccr | 0.106 | 0.078 | −0.083 | −0.227 ** | 0.166 | |||
| ENAG/Ccr | 0.327 ** | −0.115 | 0.002 | −0.467 ** | 0.278 ** | 0.328 ** | ||
| Eβ2M/Ccr | 0.265 ** | 0.170 * | −0.066 | −0.515 ** | 0.306 ** | 0.496 ** | 0.534 ** | |
| FrTDβ2M | −0.237 ** | −0.096 | 0.048 | 0.434 ** | −0.215 * | −0.527 ** | −0.536 ** | −0.891 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Satarug, S.; Khamphaya, T.; Waeyeng, D.; Vesey, D.A.; Yimthiang, S. Diabetic Kidney Disease Associated with Chronic Exposure to Low Doses of Environmental Cadmium. Stresses 2026, 6, 4. https://doi.org/10.3390/stresses6010004
Satarug S, Khamphaya T, Waeyeng D, Vesey DA, Yimthiang S. Diabetic Kidney Disease Associated with Chronic Exposure to Low Doses of Environmental Cadmium. Stresses. 2026; 6(1):4. https://doi.org/10.3390/stresses6010004
Chicago/Turabian StyleSatarug, Soisungwan, Tanaporn Khamphaya, Donrawee Waeyeng, David A. Vesey, and Supabhorn Yimthiang. 2026. "Diabetic Kidney Disease Associated with Chronic Exposure to Low Doses of Environmental Cadmium" Stresses 6, no. 1: 4. https://doi.org/10.3390/stresses6010004
APA StyleSatarug, S., Khamphaya, T., Waeyeng, D., Vesey, D. A., & Yimthiang, S. (2026). Diabetic Kidney Disease Associated with Chronic Exposure to Low Doses of Environmental Cadmium. Stresses, 6(1), 4. https://doi.org/10.3390/stresses6010004

