Valorization of Chestnut By-Products: Extraction, Bioactivity, and Applications of Shells, Spiny Burs, and Leaves
Abstract
1. Introduction
2. Chestnut Shells

2.1. Extraction Methods
2.2. Chemical Composition of Chestnut Shell Extracts
2.3. Biological Activity
2.4. Digestion, Bioaccessibility, and Safety
2.5. Potential Biotechnological Applications of Chestnut Shells
3. Chestnut Spiny Burs
3.1. Sampling and Extraction Methodologies
3.2. Chemical Composition of Spiny Bur Extracts
3.3. Biological Activity
3.4. Potential Biotechnological Applications
3.5. Limitations
4. Chestnut Leaves
4.1. Sampling and Extraction Methodologies
4.2. Chemical Composition and Variability
4.3. Bioactivity
4.4. Potential Biotechnological Applications
4.5. Limitations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beccaro, G.; Alma, A.; Bounous, G.; Gomes-Laranjo, J. The Chestnut Handbook: Crop & Forest Management; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations. Statistical Database. Available online: www.fao.org/statistics/en (accessed on 1 January 2020).
- Rodrigues, D.B.; Veríssimo, L.; Finimundy, T.; Rodrigues, J.; Oliveira, I.; Gonçalves, J.; Fernandes, I.P.; Barros, L.; Heleno, S.A.; Calhelha, R.C. Chemical and Bioactive Screening of Green Polyphenol-Rich Extracts from Chestnut By-Products: An Approach to Guide the Sustainable Production of High-Added Value Ingredients. Foods 2023, 12, 2596. [Google Scholar] [CrossRef]
- De Vasconcelos, M.C.; Bennett, R.N.; Rosa, E.A.; Ferreira-Cardoso, J.V. Composition of European chestnut (C. sativa Mill.) and association with health effects: Fresh and processed products. J. Sci. Food Agric. 2010, 90, 1578–1589. [Google Scholar] [CrossRef]
- Braga, N.; Rodrigues, F.; Oliveira, M.B.P.P. C. sativa by-products: A review on added value and sustainable application. Nat. Prod. Res. 2015, 29, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Squillaci, G.; Apone, F.; Sena, L.M.; Carola, A.; Tito, A.; Bimonte, M.; De Lucia, A.; Colucci, G.; La Cara, F.; Morana, A. Chestnut (C. sativa Mill.) industrial wastes as a valued bioresource for the production of active ingredients. Process Biochem. 2018, 64, 228–236. [Google Scholar] [CrossRef]
- Donno, D.; Turrini, F.; Boggia, R.; Beccaro, G.L.; Zunin, P.; Leardi, R.; Pittaluga, A.M. An innovative green extraction and re-use strategy to valorize food supplement by-products: C. sativa bud preparations as case study. Food Res. Int. 2019, 115, 276–282. [Google Scholar]
- Pinto, D.; Braga, N.; Rodrigues, F.; Oliveira, M.B.P.P. C. sativa Spiny bur: An Undervalued By-Product but a Promising Cosmetic Ingredient. Cosmetics 2017, 4, 50. [Google Scholar] [CrossRef]
- Pinto, D.; Cádiz-Gurrea, M.L.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F.C. sativa shells: A review on phytochemical composition, bioactivity and waste management approaches for industrial valorization. Food Res. Int. 2021, 144, 110364. [Google Scholar] [CrossRef]
- Cerulli, A.; Napolitano, A.; Hošek, J.; Masullo, M.; Pizza, C.; Piacente, S. Antioxidant and In Vitro Preliminary Anti-Inflammatory Activity of C. sativa (Italian Cultivar “Marrone di Roccadaspide” PGI) Spiny burs, Leaves, and Chestnuts Extracts and Their Metabolite Profiles by LC-ESI/LTQOrbitrap/MS/MS. Antioxidants 2021, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Esposito, T.; Celano, R.; Pane, C.; Piccinelli, A.L.; Sansone, F.; Picerno, P.; Zaccardelli, M.; Aquino, R.P.; Mencherini, T. Chestnut (C. sativa Miller.) spiny burs extracts and functional compounds: UHPLC-UV-HRMS profiling, antioxidant activity, and inhibitory effects on phytopathogenic fungi. Molecules 2019, 24, 302. [Google Scholar] [CrossRef] [PubMed]
- Formato, M.; Vastolo, A.; Piccolella, S.; Calabrò, S.; Cutrignelli, M.I.; Zidorn, C.; Pacifico, S.C. sativa Mill. Leaf: UHPLC-HR MS/MS Analysis and Effects on In Vitro Rumen Fermentation and Methanogenesis. Molecules 2022, 27, 8662. [Google Scholar] [CrossRef]
- Esposito, T.; Silva, N.H.C.S.; Almeida, A.; Silvestre, A.J.D.; Piccinelli, A.; Aquino, R.P.; Sansone, F.; Mencherini, T.; Vilela, C.; Freire, C.S.R. Valorisation of chestnut spiny burs and roasted hazelnut skins extracts as bioactive additives for packaging films. Ind. Crops Prod. 2020, 151, 112491. [Google Scholar] [CrossRef]
- Vella, F.M.; Laratta, B.; La Cara, F.; Morana, A. Recovery of bioactive molecules from Chestnut (C. sativa Mill.) by-products through extraction by different solvents. Nat. Prod. Res. 2018, 32, 1022–1032. [Google Scholar] [CrossRef]
- Sorice, A.; Siano, F.; Capone, F.; Guerriero, E.; Picariello, G.; Budillon, A.; Ciliberto, G.; Paolucci, M.; Costantini, S.; Volpe, M.G. Potential anticancer effects of polyphenols from chestnut shell extracts: Modulation of cell growth, and cytokinomic and metabolomic profiles. Molecules 2016, 21, 1411. [Google Scholar] [CrossRef]
- Ferrara, E.; Pecoraro, M.T.; Cice, D.; Piccolella, S.; Formato, M.; Esposito, A.; Petriccione, M.; Pacifico, S. A Joint Approach of Morphological and UHPLC-HRMS Analyses to Throw Light on the Autochthonous ‘Verdole’ Chestnut for Nutraceutical Innovation of Its Waste. Molecules 2022, 27, 8924. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.S.; Silva, A.M.; Pinto, D.; Moreira, M.M.; Ferraz, R.; Švarc-Gajić, J.; Costa, P.C.; Delerue-Matos, C.; Rodrigues, F. New Perspectives on the Sustainable Employment of Chestnut Shells as Active Ingredient against Oral Mucositis: A First Screening. Int. J. Mol. Sci. 2022, 23, 14956. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 2021, 334, 127521. [Google Scholar] [CrossRef]
- Pinto, D.; Moreira, M.M.; Vieira, E.F.; Švarc-Gajić, J.; Vallverdú-Queralt, A.; Brezo-Borjan, T.; Delerue-Matos, C.; Rodrigues, F. Development and Characterization of Functional Cookies Enriched with Chestnut Shells Extract as Source of Bioactive Phenolic Compounds. Foods 2023, 12, 640. [Google Scholar] [CrossRef]
- Pinto, D.; López-Yerena, A.; Lamuela-Raventós, R.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Predicting the effects of in-vitro digestion in the bioactivity and bioaccessibility of antioxidant compounds extracted from chestnut shells by supercritical fluid extraction—A metabolomic approach. Food Chem. 2024, 435, 137581. [Google Scholar] [CrossRef]
- Pinto, D.; Lozano-Castellón, J.; Silva, A.M.; Cádiz-Gurrea, M.L.; Segura-Carretero, A.; Lamuela-Raventós, R.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Novel Insights into Enzymes Inhibitory Responses and Metabolomic Profile of Supercritical Fluid Extract from Chestnut Shells upon Intestinal Permeability. Food Res. Int. 2024, 175, 113807. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, C.; Zhang, L.; Xue, J.; Sun, Q.; Wang, H.; Cui, R.; Liu, R.; Song, L. Extraction of Pigments from Chestnut (C. mollissima) Shells Using Green Deep Eutectic Solvents: Optimization, HPLC-MS Identification, Stability, and Antioxidant Activities. Food Chem. 2025, 488, 144916. [Google Scholar] [CrossRef]
- Nam, M.; Yu, J.M.; Park, Y.R.; Kim, Y.-S.; Kim, J.-H.; Kim, M.-S. Metabolic Profiling of Chestnut Shell (C. crenata) Cultivars Using UPLC-QTOF-MS and Their Antioxidant Capacity. Biomolecules 2022, 12, 1797. [Google Scholar] [CrossRef]
- Pozzoli, C.; Martinelli, G.; Fumagalli, M.; Di Lorenzo, C.; Maranta, N.; Colombo, L.; Piazza, S.; Dell’Agli, M.; Sangiovanni, E. C. sativa Mill. By-Products: Investigation of Potential Anti-Inflammatory Effects in Human Intestinal Epithelial Cells. Molecules 2024, 29, 3951. [Google Scholar] [CrossRef]
- Pinto, D.; Almeida, A.; López-Yerena, A.; Pinto, S.; Sarmento, B.; Lamuela-Raventós, R.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Appraisal of a New Potential Antioxidants-Rich Nutraceutical Ingredient from Chestnut Shells through In-Vivo Assays—A Targeted Metabolomic Approach in Phenolic Compounds. Food Chem. 2023, 404, 134546. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-Y.; Kim, J.-W.; Kim, J.-H.; Jeong, J.-S.; Lim, J.-O.; Ko, J.-W.; Kim, T.-W. Inner Shell of the Chestnut (C. crenata) Suppresses Inflammatory Responses in Ovalbumin-Induced Allergic Asthma Mouse Model. Nutrients 2022, 14, 2067. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-S.; Kim, J.-W.; Kim, J.-H.; Kim, C.-Y.; Ko, J.-W.; Kim, T.-W. Protective Effects of Chestnut (C. crenata) Inner Shell Extract in Macrophage-Driven Emphysematous Lesion Induced by Cigarette Smoke Condensate. Nutrients 2023, 15, 253. [Google Scholar] [CrossRef]
- Pinto, D.; Silva, A.M.; Dall’Acqua, S.; Sut, S.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Simulated Gastrointestinal Digestion of Chestnut (C. sativa Mill.) Shell Extract Prepared by Subcritical Water Extraction: Bioaccessibility, Bioactivity, and Intestinal Permeability by In Vitro Assays. Antioxidants 2023, 12, 1414. [Google Scholar] [CrossRef]
- Traversari, S.; Cocozza, C.; Vannucchi, F.; Rosellini, I.; Scatena, M.; Bretzel, F.; Tassi, E.; Scartazza, A.; Vezzoni, S. Potential of C. sativa for Biomonitoring As, Hg, Pb, and Tl: A Focus on Their Distribution in Plant Tissues from a Former Mining District. Sci. Total Environ. 2024, 947, 174446. [Google Scholar] [CrossRef]
- Pinto, D.; López-Yerena, A.; Almeida, A.; Sarmento, B.; Lamuela-Raventós, R.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Metabolomic Insights into Phenolics-Rich Chestnut Shells Extract as a Nutraceutical Ingredient—A Comprehensive Evaluation of Its Impacts on Oxidative Stress Biomarkers by an In-Vivo Study. Food Res. Int. 2023, 170, 112963. [Google Scholar] [CrossRef] [PubMed]
- Marrazzo, P.; Mandrone, M.; Chiocchio, I.; Zambonin, L.; Barbalace, M.C.; Zalambani, C.; Angeloni, C.; Malaguti, M.; Prata, C.; Poli, F.; et al. By-Product Extracts from C. sativa Counteract Hallmarks of Neuroinflammation in a Microglial Model. Antioxidants 2023, 12, 808. [Google Scholar] [CrossRef]
- Frusciante, L.; Geminiani, M.; Olmastroni, T.; Mastroeni, P.; Trezza, A.; Salvini, L.; Lamponi, S.; Spiga, O.; Santucci, A. Repurposing C. sativa Spiny burr By-Products Extract as a Potentially Effective Anti-Inflammatory Agent for Novel Future Biotechnological Applications. Life 2024, 14, 763. [Google Scholar] [CrossRef]
- Trezza, A.; Barletta, R.; Geminiani, M.; Frusciante, L.; Olmastroni, T.; Sannio, F.; Docquier, J.-D.; Santucci, A. Chestnut Spiny burrs as Natural Source of Antimicrobial Bioactive Compounds: A Valorization of Agri-Food Waste. Appl. Sci. 2024, 14, 6552. [Google Scholar] [CrossRef]
- Schiavone, M.L.; Barletta, R.; Trezza, A.; Geminiani, M.; Millucci, L.; Figura, N.; Santucci, A. Green Chemistry Within the Circular Bioeconomy to Harness Chestnut Spiny burr Extract’s Synergistic Antimicrobial Activity Against Helicobacter pylori. Molecules 2025, 30, 324. [Google Scholar] [CrossRef]
- Esposito, T.; Mencherini, T.; Sansone, F.; Auriemma, G.; Gazzerro, P.; Puca, R.V.; Iandoli, R.; Aquino, R.P. Development, Characterization, and Clinical Investigation of a New Topical Emulsion System Containing a C. sativa Spiny burs Active Extract. Pharmaceutics 2021, 13, 1634. [Google Scholar] [CrossRef]
- ISO 17516:2014; Cosmetics—Microbiology—Microbiological Limits. International Organization for Standardization: Geneva, Switzerland, 2014.
- Vázquez, G.; Fernández-Agulló, A.; Gómez-Castro, C.; Freire, M.S.; Antorrena, G.; González-Álvarez, J. Response surface optimization of antioxidants extraction from chestnut (C. sativa) Spiny bur. Ind. Crops Prod. 2012, 35, 126–134. [Google Scholar] [CrossRef]
- Guaratini, T.; Gianeti, M.D.; Campos, P.M. Stability of cosmetic formulations containing esters of vitamins E and A: Chemical and physical aspects. Int. J. Pharm. 2006, 327, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Piazza, S.; Martinelli, G.; Maranta, N.; Pozzoli, C.; Fumagalli, M.; Nicolaci, V.; Sonzogni, E.; Colombo, L.; Sangiovanni, E.; Dell’Agli, M. Investigation into the Anti-Acne Effects of C. sativa Mill Leaf and Its Pure Ellagitannin Castalagin in HaCaT Cells Infected with Cutibacterium acnes. Int. J. Mol. Sci. 2024, 25, 4764. [Google Scholar] [CrossRef]
- Piazza, S.; Martinelli, G.; Fumagalli, M.; Pozzoli, C.; Maranta, N.; Giavarini, F.; Colombo, L.; Nicotra, G.; Vicentini, S.F.; Genova, F.; et al. Ellagitannins from C. sativa Mill. Leaf Extracts Impair H. pylori Viability and Infection-Induced Inflammation in Human Gastric Epithelial Cells. Nutrients 2023, 15, 1504. [Google Scholar] [CrossRef] [PubMed]
- Cerulli, A.; Masullo, M.; Mari, A.; Balato, A.; Filosa, R.; Lembo, S.; Napolitano, A.; Piacente, S. Phenolics from C. sativa leaves and their effects on UVB-induced damage. Nat. Prod. Res. 2018, 32, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Chiarini, A.; Micucci, M.; Malaguti, M.; Budriesi, R.; Ioan, P.; Lenzi, M.; Fimognari, C.; Gallina Toschi, T.; Comandini, P.; Hrelia, S. Sweet chestnut (C. sativa Mill.) bark extract: Cardiovascular activity and myocyte protection against oxidative damage. Oxid. Med. Cell. Longev. 2013, 2013, 471790. [Google Scholar] [CrossRef]
- Silva, V.; Falco, V.; Dias, M.I.; Barros, L.; Silva, A.; Capita, R.; Alonso-Calleja, C.; Amaral, J.S.; Igrejas, G.; Ferreira, I.C.F.R.; et al. Evaluation of the Phenolic Profile of C. sativa Mill. By-Products and Their Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Antioxidants 2020, 9, 87. [Google Scholar] [CrossRef]
- Bowers, J.J.; Gunawardena, H.P.; Cornu, A.; Narvekar, A.S.; Richieu, A.; Deffieux, D.; Quideau, S.; Tharayil, N. Rapid screening of ellagitannins in natural sources via Targeted Reporter Ion Triggered Tandem Mass Spectrometry. Sci. Rep. 2018, 8, 10399. [Google Scholar] [CrossRef]
- Romani, A.; Campo, M.; Pinelli, P. HPLC/DAD/ESI-MS analyses and anti-radical activity of hydrolysable tannins from different vegetal species. Food Chem. 2012, 130, 214–221. [Google Scholar] [CrossRef]
- Singh, A.; Bajpai, V.; Kumar, S.; Sharma, K.R.; Kumar, B. Profiling of gallic and ellagic acid derivatives in different plant parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Commun. 2016, 11, 239–244. [Google Scholar] [CrossRef]
- Almeida, I.F.; Fernandes, E.; Lima, J.L.F.C.; Costa, P.C.; Bahia, M.F. Protective effect of C. sativa and Quercus rospiny bur leaf extracts against oxygen and nitrogen reactive species. J. Photochem. Photobiol. B 2008, 91, 87–95. [Google Scholar] [CrossRef]
- Basile, A.; Sorbo, S.; Giordano, S.; Ricciardi, L.; Ferrara, S.; Montesano, D.; Castaldo, R.C.; Vuotto, M.L.; Ferrara, L. Antibacterial and allelopathic activity of extract from C. sativa leaves. Fitoterapia 2000, 71, S110–S116. [Google Scholar] [CrossRef] [PubMed]
- Piazza, S.; Fumagalli, M.; Martinelli, G.; Pozzoli, C.; Maranta, N.; Angarano, M.; Sangiovanni, E.; Dell’Agli, M. Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules 2022, 27, 7593. [Google Scholar] [CrossRef]
- Salam, A.M.; Porras, G.; Cho, Y.-S.K.; Brown, M.M.; Risener, C.J.; Marquez, L.; Lyles, J.T.; Bacsa, J.; Horswill, A.R.; Quave, C.L. Castaneroxy A From the Leaves of C. sativa Inhibits Virulence in Staphylococcus aureus. Front. Pharmacol. 2021, 12, 640179. [Google Scholar] [CrossRef]
- Funatogawa, K.; Hayashi, S.; Shimomura, H.; Yoshida, T.; Hatano, T.; Ito, H.; Hirai, Y. Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Microbiol. Immunol. 2004, 48, 251–261. [Google Scholar] [CrossRef]
- Martinelli, G.; Fumagalli, M.; Pozzoli, C.; Nicotra, G.; Vicentini, S.F.; Maranta, N.; Sangiovanni, E.; Dell’Agli, M.; Piazza, S. Exploring In Vitro the Combination of Cistus × incanus L. and C. sativa Mill. Extracts as Food Supplement Ingredients against H. pylori Infection. Foods 2023, 13, 40. [Google Scholar] [CrossRef]
- Sangiovanni, E.; Piazza, S.; Vrhovsek, U.; Fumagalli, M.; Khalilpour, S.; Masuero, D.; Di Lorenzo, C.; Colombo, L.; Mattivi, F.; De Fabiani, E.; et al. A bio-guided approach for the development of a chestnut-based proanthocyanidin-enriched nutraceutical with potential anti-gastritis properties. Pharmacol. Res. 2018, 134, 145–155. [Google Scholar] [CrossRef]
- Martins, V.B.; Bordim, J.; Bom, G.A.P.; Carvalho, J.G.D.S.; Parabocz, C.R.B.; Mitterer Daltoé, M.L. Consumer profiling techniques for cosmetic formulation definition. J. Sens. Stud. 2020, 35, e12557. [Google Scholar] [CrossRef]
- Srivastava, S.; Pandey, V.K.; Dar, A.H.; Shams, R.; Dash, K.K.; Rafiq, S.M.; Zahoor, D.; Kumar, S. Effect of microencapsulation techniques on the different properties of bioactives, vitamins and minerals. Food Sci. Biotechnol. 2024, 33, 3181–3198. [Google Scholar]
- Kolodziej, H.; Kayser, O.; Latté, K.P.; Ferreira, D. Evaluation of the antimicrobial potency of tannins and related compounds using the microdilution broth method. Z. Naturforsch. C 1999, 54, 425–430. [Google Scholar] [CrossRef]
- Comandini, P.; Lerma-García, M.J.; Simó-Alfonso, E.F.; Toschi, T.G. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS. Food Chem. 2014, 157, 290–295. [Google Scholar] [CrossRef] [PubMed]


| Extraction Technologies | Chemical Composition | Bioactivity | References |
|---|---|---|---|
| Conventional Extraction (Ethanol/Hydroethanol) | Phenolic Acids: Gallic acid, Ellagic acid | Antioxidant: High reducing power and radical scavenging | [16] |
| SWE (Subcritical Water Extraction) | Flavonoids: Catechin, Epicatechin, Rutin | Anti-inflammatory: Inhibits NF-κB and cytokines (IL-8, MCP-1) | [17,24] |
| SFE (Supercritical Fluid Extraction) | Tannins: Condensed tannins and Ellagitannins | Metabolic: Hypoglycemic (α-amylase inhibition) and Hypolipidemic | [20,21] |
| DES (Deep Eutectic Solvents) | Pigments: Stable natural colorants | Neuroprotective: Acetylcholinesterase inhibition | [22] |
| UAE/MAE(Ultrasound/Microwave) | Phenolics: High total phenolic content | Antimicrobial: Moderate activity against S. aureus, E. coli | [3,17] |
| Extraction Technology | Chemical Composition Recovered | Associated Bioactivity | References |
|---|---|---|---|
| Conventional Maceration (Methanol or Ethanol/Water) | Hydrolysable tannins (castalagin, vescalagin); Phenolic acids | Antioxidant: Superior efficacy (highest TPC) | [10,11] |
| UAE (Ultrasound-Assisted Extraction) | Ellagic acid, Brevifolin carboxylic acid | Antimicrobial: Effective against Gram-positive strains; Anti-inflammatory | [3,32] |
| MAE (Microwave-Assisted Extraction) | Tannins and Flavonoids | Antioxidant: High reducing capacity | [3] |
| Cryogenic Grinding | Intact Polyphenols | Cytoprotective: Indirect enhancement of bioactivity | [24] |
| Lipophilic Extractions | Polar lipids: Phospholipids, Glycolipids | Anti-inflammatory: Synergistic suppression of TLR4 signaling | [11,31] |
| Extraction Technology | Chemical Composition | Bioactivity | References |
|---|---|---|---|
| Conventional Maceration (Methanol/Hydroethanol) | Flavonoids: Quercetin, Isorhamnetin glycosides; Tannins | Antioxidant: Strong radical scavenging; Neuroprotective | [11,31] |
| UAE (Ultrasound-Assisted Extraction) | Polyphenols: High recovery of bioactive fractions | Antimicrobial: Bacteriostatic activity | [3] |
| MAE (Microwave-Assisted Extraction) | Phenolics: Comparable yield to conventional methods | Antioxidant: Significant intracellular ROS reduction | [3] |
| Fractionation (Enriched Fractions) | Triterpenoids: Castaneroxy A; Ellagitannins: Castalagin | Anti-virulence: Quorum sensing inhibition (MRSA); Anti-Acne | [39,50] |
| Aqueous Extraction | Ellagitannins | Gastroprotective: Inhibition of H. pylori adhesion | [40,52] |
| Sample Matrix | Total Phenolic Content (mg GAE/g) | Total Flavonoid Content | Main Chemical Classes | Other Reported Constituents | Ref. |
|---|---|---|---|---|---|
| Shells | 315–497 mg GAE/g (SWE) | 330–503 mg CE/g | Phenolic acids (Gallic, Ellagic), Condensed tannins | Sugars: ~36%; Lignin, Vitamin E, Amino acids | [10,18,22] |
| Spiny Burs | ~580.44 mg GAE/g (Methanolic) 243.98 mg GAE/g (Aqueous UAE) | 87.19 mg rutin/g (Methanolic) 27.54 mg QE/g (Aqueous) | Hydrolysable tannins (Castalagin, Vescalagin) | Polar lipids: Phospholipids, Glycolipids, Sphingolipids | [11,24,32] |
| Leaves | 298.96 mg GAE/g (Methanolic) | 45.54 mg rutin/g | Hydrolysable tannins, Glycosylated flavonoids | Triterpenoids: Castaneroxy A; Polar lipids | [11,31,42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lamponi, S.; Barletta, R.; Santucci, A. Valorization of Chestnut By-Products: Extraction, Bioactivity, and Applications of Shells, Spiny Burs, and Leaves. Life 2026, 16, 140. https://doi.org/10.3390/life16010140
Lamponi S, Barletta R, Santucci A. Valorization of Chestnut By-Products: Extraction, Bioactivity, and Applications of Shells, Spiny Burs, and Leaves. Life. 2026; 16(1):140. https://doi.org/10.3390/life16010140
Chicago/Turabian StyleLamponi, Stefania, Roberta Barletta, and Annalisa Santucci. 2026. "Valorization of Chestnut By-Products: Extraction, Bioactivity, and Applications of Shells, Spiny Burs, and Leaves" Life 16, no. 1: 140. https://doi.org/10.3390/life16010140
APA StyleLamponi, S., Barletta, R., & Santucci, A. (2026). Valorization of Chestnut By-Products: Extraction, Bioactivity, and Applications of Shells, Spiny Burs, and Leaves. Life, 16(1), 140. https://doi.org/10.3390/life16010140

