Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (493)

Search Parameters:
Keywords = vapor loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1591 KiB  
Communication
Adsorptive Separation of Chlorobenzene and Chlorocyclohexane by Nonporous Adaptive Crystals of Perethylated Pillar[6]arene
by Sha Wu, Yuyue Chi, Qian Dong and Jiong Zhou
Molecules 2025, 30(15), 3312; https://doi.org/10.3390/molecules30153312 (registering DOI) - 7 Aug 2025
Abstract
The separation of chlorobenzene (CB) and chlorocyclohexane (CCH) using traditional industrial separation technologies (distillation, fractionation, and rectification) is a great challenge due to their close boiling points. Here, we report an innovative method for the separation of the mixture [...] Read more.
The separation of chlorobenzene (CB) and chlorocyclohexane (CCH) using traditional industrial separation technologies (distillation, fractionation, and rectification) is a great challenge due to their close boiling points. Here, we report an innovative method for the separation of the mixture of CB and CCH by nonporous adaptive crystals (NACs) of perethylated pillar[6]arene (EtP6). NACs of EtP6 (EtP6α) can selectively adsorb CCH vapor from the vapor mixture of CB and CCH (v:v = 1:1) with a purity of 99.5%. Furthermore, EtP6α can be recycled for five times without a significant loss of performance. Full article
(This article belongs to the Special Issue Recent Advances in Supramolecular Chemistry)
Show Figures

Graphical abstract

19 pages, 14381 KiB  
Article
Temperature and Humidity Anomalies During the Summer Drought of 2022 over the Yangtze River Basin
by Dengao Li, Er Lu, Dian Yuan and Ruisi Liu
Atmosphere 2025, 16(8), 942; https://doi.org/10.3390/atmos16080942 - 6 Aug 2025
Abstract
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, [...] Read more.
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, this study examines the circulation anomalies associated with the drought. Employing a diagnostic method focused on temperature and moisture anomalies, this study introduces a novel approach to quantify and compare the relative significance of moisture transport and warm air dynamics in contributing to the drought. This study examines the atmospheric circulation anomalies linked to the drought event and compares the relative contributions of water vapor transport and warm air activity in causing the drought, using two parameters defined in the paper. The results show the following: (1) The West Pacific Subtropical High (WPSH) was more intense than usual and extended westward, consistently controlling the Yangtze River Basin. Simultaneously, the polar vortex area was smaller and weaker, the South Asian High area was larger and stronger, and it shifted eastward. These factors collectively led to weakened water vapor transport conditions and prevailing subsiding air motions in the Yangtze River Basin, causing frequent high temperatures. (2) By defining Iq and It to represent the contributions of moisture and temperature to precipitation, we found that the drought event in the Yangtze River Basin was driven by both reduced moisture supplies in the lower troposphere and higher-than-normal temperatures, with temperature playing a dominant role. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 2036 KiB  
Article
Scalable Chemical Vapor Deposition of Silicon Carbide Thin Films for Photonic Integrated Circuit Applications
by Souryaya Dutta, Alex Kaloyeros, Animesh Nanaware and Spyros Gallis
Appl. Sci. 2025, 15(15), 8603; https://doi.org/10.3390/app15158603 - 2 Aug 2025
Viewed by 286
Abstract
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in [...] Read more.
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in nanofabrication technology, the development of SiC on an insulator (SiCOI)-based photonics faces challenges due to fabrication-induced material optical losses and complex processing steps. An alternative approach to mitigate these fabrication challenges is the direct deposition of amorphous SiC on an insulator (a-SiCOI). However, there is a lack of systematic studies aimed at producing high optical quality a-SiC thin films, and correspondingly, on evaluating and determining their optical properties in the telecom range. To this end, we have studied a single-source precursor, 1,3,5-trisilacyclohexane (TSCH, C3H12Si3), and chemical vapor deposition (CVD) processes for the deposition of SiC thin films in a low-temperature range (650–800 °C) on a multitude of different substrates. We have successfully demonstrated the fabrication of smooth, uniform, and stoichiometric a-SiCOI thin films of 20 nm to 600 nm with a highly controlled growth rate of ~0.5 Å/s and minimal surface roughness of ~5 Å. Spectroscopic ellipsometry and resonant micro-photoluminescence excitation spectroscopy and mapping reveal a high index of refraction (~2.7) and a minimal absorption coefficient (<200 cm−1) in the telecom C-band, demonstrating the high optical quality of the films. These findings establish a strong foundation for scalable production of high-quality a-SiCOI thin films, enabling their application in advanced chip-scale telecom PIC technologies. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

17 pages, 3116 KiB  
Article
Enhancement of Stability Towards Aging and Soil Degradation Rate of Plasticized Poly(lactic Acid) Composites Containing Ball-Milled Cellulose
by Roberta Capuano, Roberto Avolio, Rachele Castaldo, Mariacristina Cocca, Federico Olivieri, Gennaro Gentile and Maria Emanuela Errico
Polymers 2025, 17(15), 2127; https://doi.org/10.3390/polym17152127 - 1 Aug 2025
Viewed by 287
Abstract
In this study, multicomponent PLA-based biocomposites were developed. In particular, both native fibrous cellulose and cellulose with modified morphology obtained through ball milling treatments were incorporated into the polyester matrix in combination with an oligomeric plasticizer, specifically a lactic acid oligomer (OLA). The [...] Read more.
In this study, multicomponent PLA-based biocomposites were developed. In particular, both native fibrous cellulose and cellulose with modified morphology obtained through ball milling treatments were incorporated into the polyester matrix in combination with an oligomeric plasticizer, specifically a lactic acid oligomer (OLA). The resulting materials were analyzed in terms of their morphology, thermal and mechanical properties over time, water vapor permeability, and degradation under soil burial conditions in comparison to neat PLA and unplasticized PLA/cellulose composites. The cellulose phase significantly affected the mechanical properties and enhanced their long-term stability, addressing a common limitation of PLA/plasticizer blends. Additionally, water vapor permeability increased in all composites. Finally, the ternary systems exhibited a significantly higher degradation rate in soil burial conditions compared to PLA, evidenced by larger weight loss and reduction in the molecular weight of the PLA phase. The degradation rate was notably influenced by the morphology of the cellulose phase. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Graphical abstract

20 pages, 16348 KiB  
Article
The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques
by Pedro Vicente Vaca-Cárdenas, Eduardo Antonio Muñoz-Jácome, Maritza Lucia Vaca-Cárdenas, Diego Francisco Cushquicullma-Colcha and José Guerrero-Casado
Earth 2025, 6(3), 86; https://doi.org/10.3390/earth6030086 - 1 Aug 2025
Viewed by 465
Abstract
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in [...] Read more.
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in January 2024, its thickness (from 2.5 m to 0.71 m), and its volume (from 2638.85 m3 to 457.18 m3), before its complete deglaciation in February 2024; this rapid melting and its small size classify it as a glacierette. Multivariate analyses (PCA and biclustering) were performed to correlate climatic variables (temperature, solar radiation, precipitation, relative humidity, vapor pressure, and wind) with glacier surface and thickness. The PCA explained 70.26% of the total variance, with Axis 1 (28.01%) associated with extreme thermal conditions (temperatures up to 8.18 °C and radiation up to 16.14 kJ m−2 day−1), which probably drove its disappearance. Likewise, Axis 2 (21.56%) was related to favorable hydric conditions (precipitation between 39 and 94 mm) during the initial phase of glacier monitoring. Biclustering identified three groups of variables: Group 1 (temperature, solar radiation, and vapor pressure) contributed most to deglaciation; Group 2 (precipitation, humidity) apparently benefited initial stability; and Group 3 (wind) played a secondary role. These results, validated through in situ measurements, provide scientific evidence of the disappearance of the Carihuairazo volcano glacier by February 2024. They also corroborate earlier projections that anticipated its extinction by the middle of this decade. The early disappearance of this glacier highlights the vulnerability of small tropical Andean glaciers and underscores the urgent need for water security strategies focused on management, adaptation, and resilience. Full article
Show Figures

Figure 1

21 pages, 3327 KiB  
Article
Numerical Analysis of Heat Transfer and Flow Characteristics in Porous Media During Phase-Change Process of Transpiration Cooling for Aerospace Thermal Management
by Junhyeon Bae, Jukyoung Shin and Tae Young Kim
Energies 2025, 18(15), 4070; https://doi.org/10.3390/en18154070 - 31 Jul 2025
Viewed by 230
Abstract
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature [...] Read more.
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature inversion, which critically influence system reliability. This study conducts numerical analyses of coupled processes of heat transfer, flow, and phase change in transpiration cooling using a Two-Phase Mixture Model. The simulation incorporates a Local Thermal Non-Equilibrium approach to capture the distinct temperature fields of the solid and fluid phases, enabling accurate prediction of the thermal response within two-phase and single-phase regions. The results reveal that under low heat flux, dominant capillary action suppresses dry-out and expands the two-phase region. Conversely, high heat flux causes vaporization to overwhelm the capillary supply, forming a superheated vapor layer and constricting the two-phase zone. The analysis also explains a paradoxical pressure drop, where an initial increase in flow rate reduces pressure loss by suppressing the high-viscosity vapor phase. Furthermore, a local temperature inversion, where the fluid becomes hotter than the solid matrix, is identified and attributed to vapor counterflow and its subsequent condensation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

13 pages, 2826 KiB  
Article
Design and Application of p-AlGaN Short Period Superlattice
by Yang Liu, Changhao Chen, Xiaowei Zhou, Peixian Li, Bo Yang, Yongfeng Zhang and Junchun Bai
Micromachines 2025, 16(8), 877; https://doi.org/10.3390/mi16080877 - 29 Jul 2025
Viewed by 262
Abstract
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using [...] Read more.
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using the device simulation software Silvaco. The results demonstrate that thin barrier structures lead to reduced acceptor incorporation, thereby decreasing the number of ionized acceptors, while facilitating vertical hole transport. Superlattice samples with varying periodic thicknesses were grown via metal-organic chemical vapor deposition, and their crystalline quality and electrical properties were characterized. The findings reveal that although gradient-thickness barriers contribute to enhancing hole concentration, the presence of thick barrier layers restricts hole tunneling and induces stronger scattering, ultimately increasing resistivity. In addition, we simulated the structure of the enhancement-mode HEMT with p-AlGaN as the under-gate material. Analysis of its energy band structure and channel carrier concentration indicates that adopting p-AlGaN superlattices as the under-gate material facilitates achieving a higher threshold voltage in enhancement-mode HEMT devices, which is crucial for improving device reliability and reducing power loss in practical applications such as electric vehicles. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices, 2nd Edition)
Show Figures

Figure 1

20 pages, 3007 KiB  
Article
Hydrophobic Collagen/Polyvinyl Alcohol/V2CTx Composite Aerogel for Efficient Oil Adsorption
by Erhui Ren, Jiatong Yan, Fan Yang, Hongyan Xiao, Biyu Peng, Ronghui Guo and Mi Zhou
Polymers 2025, 17(14), 1949; https://doi.org/10.3390/polym17141949 - 16 Jul 2025
Viewed by 352
Abstract
The development of effective oil adsorbents has attracted a great deal of attention due to the increasingly serious problem of oil pollution. A light and porous collagen (COL)/polyvinyl alcohol (PVA)/vanadium carbide (V2CTx) composite aerogel was synthesized using a simple [...] Read more.
The development of effective oil adsorbents has attracted a great deal of attention due to the increasingly serious problem of oil pollution. A light and porous collagen (COL)/polyvinyl alcohol (PVA)/vanadium carbide (V2CTx) composite aerogel was synthesized using a simple method of blending, directional freezing, and drying. After modification with methyltriethoxysilane (MTMS) via chemical vapor deposition, the aerogel possessed an excellent hydrophobicity and its water contact angle reached 135°. The hydrophobic COL/PVA/V2CTx composite aerogel exhibits a porous structure with a specific surface area of 49 m2/g. It also possesses prominent mechanical properties with an 80.5 kPa compressive stress at 70% strain, a low density (about 28 mg/cm3), and outstanding thermal stability, demonstrating a 61.02% weight loss from 208 °C to 550 °C. Importantly, the hydrophobic COL/PVA/V2CTx aerogel exhibits a higher oil absorption capacity and stability, as well as a faster absorption rate, than the COL/PVA aerogel when tested with various oils. The hydrophobic COL/PVA/V2CTx aerogel has the capacity to adsorb 80 times its own weight of methylene chloride, with help from hydrophobic interactions, Van der Waals forces, intermolecular interactions, and capillary action. Compared with the pseudo first-order model, the pseudo second-order model is more suitable for oil adsorption kinetics. Therefore, the hydrophobic COL/PVA/V2CTx aerogel can be used as an environmentally friendly and efficient oil adsorbent. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

15 pages, 1871 KiB  
Article
A Gelatin-Based Film with Acerola Pulp: Production, Characterization, and Application in the Stability of Meat Products
by Vitor Augusto dos Santos Garcia, Giovana de Menezes Rodrigues, Victória Munhoz Monteiro, Rosemary Aparecida de Carvalho, Camila da Silva, Cristiana Maria Pedroso Yoshida, Silvia Maria Martelli, José Ignacio Velasco and Farayde Matta Fakhouri
Polymers 2025, 17(13), 1882; https://doi.org/10.3390/polym17131882 - 6 Jul 2025
Viewed by 483
Abstract
The objective of this work was to produce and characterize active gelatin–acerola packaging films based on gelatin incorporated with different concentrations of acerola pulp and applied to evaluate the stability of meat products in packaging. The active films were produced by casting using [...] Read more.
The objective of this work was to produce and characterize active gelatin–acerola packaging films based on gelatin incorporated with different concentrations of acerola pulp and applied to evaluate the stability of meat products in packaging. The active films were produced by casting using gelatin (5%), sorbitol (0,1%), and acerola pulp (60, 70, 80, and 90%). The characterization of the acerola pulp was carried out. Visual aspects, thickness, pH, water vapor permeability, and total phenolic compounds were characterized in the films. The commercial acerola pulp presented the characteristics within the identity and quality standards. A good film formation capacity was obtained in all formulations, presenting the color parameters tending to red coloration, characteristic of the acerola pulp. The total phenolic compounds content ranged from 2.88 ± 70.24 to 3.94 ± 96.05 mg GAE/100 g, with 90 g of acerola pulp per 100 g of filmogenic solution. This film formulation was selected to apply in a vacuum pack of beef and chicken samples, analyzing the weight loss, color parameters, pH, water holding capacity, shear strength after 9 days of refrigeration storage, and soil biodegradability. Additionally, beef and chicken (in nature) were stored under the same conditions without using the wrapping film. The beef and chicken samples showed greater water retention capacity and color maintenance over the storage period compared to the control (without film addition). This way, active gelatin–acerola films can be considered a sustainable packaging alternative to preserve meat products. Full article
Show Figures

Figure 1

21 pages, 3955 KiB  
Article
Mechanical Characteristics of Tara Gum/Orange Peel Films Influenced by the Synergistic Effect on the Rheological Properties of the Film-Forming Solutions
by Nedelka Juana Ortiz Cabrera, Luis Felipe Miranda Zanardi and Martin Alberto Massuelli
Polymers 2025, 17(13), 1767; https://doi.org/10.3390/polym17131767 - 26 Jun 2025
Viewed by 444
Abstract
Film-forming solutions were prepared using Tara gum (TG), with glycerol (GL) as a plasticizer and orange peel powder (OP) as a filler. A TG stock solution (10 g/L) was initially prepared to facilitate homogenization, from which appropriate dilutions were made to obtain final [...] Read more.
Film-forming solutions were prepared using Tara gum (TG), with glycerol (GL) as a plasticizer and orange peel powder (OP) as a filler. A TG stock solution (10 g/L) was initially prepared to facilitate homogenization, from which appropriate dilutions were made to obtain final concentrations of 0.6%, 0.8%, and 1.0% (w/v). GL (30% and 50%) and OP (0%, 20%, and 50%) were incorporated based on the dry weight of TG, meaning their amounts were calculated relative to TG content to ensure consistent formulation ratios. Rheological parameters, including the flow behavior index, consistency coefficient, storage modulus (G′), and loss modulus (G″), were characterized via steady shear and oscillatory rheometry. Mechanical properties, such as the Young’s modulus, tensile strength, and elongation at break, were also evaluated. A strong positive correlation (R2 = 0.840) was observed between G′ and the Young’s modulus, indicating that solutions with higher internal network strength yield films with greater stiffness. The synergistic interaction between TG and OP was critical: TG primarily enhanced stiffness and mechanical reinforcement, whereas OP improved structural cohesion and stability. GL functioned as a plasticizer, increasing film flexibility while reducing stiffness. These interactions led to a reduction in film solubility by up to 62.43%, particularly in formulations without orange peel powder. In contrast, mechanical strength increased by up to 50.21% in films containing orange peel powder, as those without it exhibited significantly lower tensile strength. Flexibility, expressed as elongation at break, was enhanced by up to 78.86% in formulations with higher glycerol content. Barrier properties were also improved, demonstrated by decreased water vapor permeability and increased hydrophobicity, attributed to the TG–OP synergy. A regression model (R2 = 0.928) substantiated the contributions of TG to stiffness, OP to matrix reinforcement, and GL to flexibility modulation. This study underscores the pivotal role of rheological behavior in defining film performance and presents a novel analytical framework applicable to the design of sustainable, high-performance biopolymeric materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

15 pages, 1297 KiB  
Article
Thermal and Emission Performance Evaluation of Hydrogen-Enriched Natural Gas-Fired Domestic Condensing Boilers
by Radosław Jankowski, Rafał Ślefarski, Ireneusz Bauma and Giennadii Varlamov
Energies 2025, 18(13), 3240; https://doi.org/10.3390/en18133240 - 20 Jun 2025
Viewed by 355
Abstract
The combustion of gaseous fuels in condensing boilers contributes to the greenhouse gas and toxic compound emissions in exhaust gases. Hydrogen, as a clean energy carrier, could play a key role in decarbonizing the residential heating sector. However, its significantly different combustion behavior [...] Read more.
The combustion of gaseous fuels in condensing boilers contributes to the greenhouse gas and toxic compound emissions in exhaust gases. Hydrogen, as a clean energy carrier, could play a key role in decarbonizing the residential heating sector. However, its significantly different combustion behavior compared to hydrocarbon fuels requires thorough investigation prior to implementation in heating systems. This study presents experimental and theoretical analyses of the co-combustion of natural gas with hydrogen in low-power-output condensing boilers (second and third generation), with hydrogen content of up to 50% by volume. The results show that mixtures of hydrogen and natural gas contribute to increasing heat transfer in boilers through convection and flue gas radiation. They also highlight the benefits of using the heat from the condensation of vapors in the flue gases. Other studies have observed an increase in efficiency of up to 1.6 percentage points compared to natural gas at 50% hydrogen content. Up to a 6% increase in the amount of energy recovered by water vapor condensation was also recorded, while exhaust gas losses did not change significantly. Notably, the addition of hydrogen resulted in a substantial decrease in the emission of nitrogen oxides (NOx) and carbon monoxide (CO). At 50% hydrogen content, NOx emissions decreased several-fold to 2.7 mg/m3, while CO emissions were reduced by a factor of six, reaching 9.9 mg/m3. All measured NOx values remained well below the current regulatory limit for condensing gas boilers, which is 33.5 mg/m3. These results highlight the potential of hydrogen blending as a transitional solution on the path toward cleaner residential heating systems. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

20 pages, 2930 KiB  
Article
Droplet Vaporization/Combustion Stability-Based Design of Pre-Combustion Chambers for Hybrid Propellant Rocket Motors
by Maurício Sá Gontijo, Olexiy Shynkarenko and Artur E. M. Bertoldi
Energies 2025, 18(12), 3123; https://doi.org/10.3390/en18123123 - 13 Jun 2025
Viewed by 377
Abstract
Hybrid Propellant Rocket Motors (HPRMs) have been advancing rapidly in recent years. These improvements are finally increasing their competitiveness in the global launch-vehicle market. However, some topics, such as the pre-combustion chamber design, still require more in-depth studies. Few studies have examined this [...] Read more.
Hybrid Propellant Rocket Motors (HPRMs) have been advancing rapidly in recent years. These improvements are finally increasing their competitiveness in the global launch-vehicle market. However, some topics, such as the pre-combustion chamber design, still require more in-depth studies. Few studies have examined this subject. This work proposes a low-computational-cost algorithm that calculates the minimum pre-combustion chamber length, with a vaporization and feed-system coupled instability model. This type of analysis is a key tool for minimizing a vehicle’s size, weight, losses, and costs. Additionally, coupling with internal ballistics codes can be implemented. Furthermore, the results were compared with real HPRMs to verify the algorithm’s reliability. The shortened pre-chamber architecture trimmed the inert mass and reduced the feed-system pressure requirement, boosting overall propulsive energy efficiency by 8% relative to conventional L*-based designs. These gains can lower stored-gas enthalpy and reduce life-cycle CO and CO2-equivalent emissions, strengthening the case for lighter and more sustainable access-to-space technologies. Full article
Show Figures

Figure 1

15 pages, 801 KiB  
Technical Note
Accurate Rainfall Prediction Using GNSS PWV Based on Pre-Trained Transformer Model
by Wenjie Yin, Chen Zhou, Yuan Tian, Hui Qiu, Wei Zhang, Hua Chen, Pan Liu, Qile Zhao, Jian Kong and Yibin Yao
Remote Sens. 2025, 17(12), 2023; https://doi.org/10.3390/rs17122023 - 12 Jun 2025
Viewed by 1056
Abstract
With an increase in the intensity and frequency of extreme rainfall events, there is a pressing need for accurate rainfall nowcasting applications. In recent years, precipitable water vapor (PWV) data obtained from GNSS observations have been widely used in rainfall prediction. Unlike previous [...] Read more.
With an increase in the intensity and frequency of extreme rainfall events, there is a pressing need for accurate rainfall nowcasting applications. In recent years, precipitable water vapor (PWV) data obtained from GNSS observations have been widely used in rainfall prediction. Unlike previous studies mainly focusing on rainfall occurrences, this study proposes a transformer-based model for hourly rainfall prediction, integrating the GNSS PWV and ERA5 meteorological data. The proposed model employs the ProbSparse self-attention to efficiently capture long-range dependencies in time series data, crucial for correlating historical PWV variations with rainfall events. Additionally, the adoption of the DILATE loss function better captures the structural and timing aspects of rainfall prediction. Furthermore, traditional rainfall prediction models are typically trained on datasets specific to one region, which limits their generalization ability due to regional meteorological differences and the scarcity of data in certain areas. Therefore, we adopt a pre-training and fine-tuning strategy using global datasets to mitigate data scarcity in newly deployed GNSS stations, enhancing model adaptability to local conditions. The evaluation results demonstrate satisfactory performance over other methods, with the fine-tuned model achieving an MSE = 3.954, DTW = 0.232, and TDI = 0.101. This approach shows great potential for real-time rainfall nowcasting in a local area, especially with limited data. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

27 pages, 7238 KiB  
Article
Estimating Grapevine Transpirational Losses Using Models Under Different Conditions of Soil Moisture
by Efthymios Kokkotos, Anastasios Zotos, Dimitrios E. Tsesmelis, Eleftherios A. Petrakis and Angelos Patakas
Horticulturae 2025, 11(6), 665; https://doi.org/10.3390/horticulturae11060665 - 11 Jun 2025
Viewed by 421
Abstract
Irrigation management in areas affected by climate change requires an accurate determination of transpiration losses in crops, such as grapevines. The existing literature has primarily focused on estimating transpiration losses based on two critical microclimate factors: vapor pressure deficit (VPD) and solar radiation [...] Read more.
Irrigation management in areas affected by climate change requires an accurate determination of transpiration losses in crops, such as grapevines. The existing literature has primarily focused on estimating transpiration losses based on two critical microclimate factors: vapor pressure deficit (VPD) and solar radiation intensity (Rs). However, most studies have been conducted under abundant soil water availability conditions, whereas research under limited water availability remains scarce. Thus, this study aims to develop models capable of accurately determining transpiration losses of grapevines under both full irrigation and limited soil water conditions. Sap flow sensors using the heat ratio method were employed to measure transpirational losses. These measurements were compared with the results from the models afterward. The results suggest that VPD was the dominant factor affecting canopy conductance, which decreased exponentially as VPD increased. Furthermore, a piecewise linear regression analysis revealed a threshold value for Rs during both study years. This finding suggests that Rs impacts transpiration losses in two distinct ways, highlighting the necessity to develop two separate models for determining transpiration losses each study year. The estimation capability of the models was verified using the k-fold cross-validation method, suggesting that reliable predictions can be made under both well-watered and rainfed conditions. Full article
(This article belongs to the Special Issue Irrigation and Water Management Strategies for Horticultural Systems)
Show Figures

Graphical abstract

15 pages, 3692 KiB  
Article
Empirical Comparison of Flow Field Designs for Direct Ethanol-Based, High-Temperature PEM Fuel Cells
by Prantik Roy Chowdhury and Adam C. Gladen
Fuels 2025, 6(2), 46; https://doi.org/10.3390/fuels6020046 - 5 Jun 2025
Cited by 1 | Viewed by 530
Abstract
This study experimentally investigates various flow field designs for a direct ethanol-based proton exchange membrane (PEM) fuel cell operated at a temperature above the vaporization temperature of water. It expands the designs of flow fields investigated for high-temperature (HT) direct ethanol fuel cells [...] Read more.
This study experimentally investigates various flow field designs for a direct ethanol-based proton exchange membrane (PEM) fuel cell operated at a temperature above the vaporization temperature of water. It expands the designs of flow fields investigated for high-temperature (HT) direct ethanol fuel cells by comparing four designs. It investigates the performance of these designs at various ethanol concentrations and flow rates. A series of polarization, constant current, and impedance spectroscopy experiments were carried out at different combinations of operating conditions. The result shows that all flow fields provide poorer performance at a high ethanol concentration (6 M), regardless of ethanol inlet flow rates. At a low concentration (3 M), the 2-channel spiral flow field exhibits higher cell power output (12–18% higher) with less mass transport loss and charge transfer resistance compared to other flow fields, although it has some voltage instability. As such, it is identified as a promising design, particularly for higher-power applications. The 4-channel serpentine, dual-triangle sandwich, and hybrid flow fields offer similar cell power output (max power: ~23 mW/cm2) and cell potentials. However, the cell potential instability and mass transport losses are higher in the hybrid flow field compared to the other two designs. Thus, it is not as promising a design for ethanol-based HT-PEM fuel cells. Since the dual-triangle has similar performance to the 4-channel serpentine, it could be an alternative to the serpentine for ethanol-based HT-PEM fuel cells. Full article
Show Figures

Figure 1

Back to TopTop