Enhancement of Stability Towards Aging and Soil Degradation Rate of Plasticized Poly(lactic Acid) Composites Containing Ball-Milled Cellulose
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mechanochemical Treatments
- (a)
- Dry BM Treatment: Neat cellulose was processed in a planetary ball mill (Retsch PM 100, Retsch GmbH, Haan, Germany) using a 125 mL stainless steel jar and 25 steel spheres (10 mm in diameter). A total of 10 g of cellulose was milled at 600 rpm for 1 h. The resulting material was labeled BMCEL.
- (b)
- Short Homogenization with OLA: The BMCEL material was further homogenized with the OLA plasticizer in the ball mill for 30 min. The process used the same 125 mL steel jar and 25 steel spheres, but at a reduced speed of 400 rpm. The resulting product was coded as OLA/BMCEL BM30′.
- (c)
- Wet BM Treatment: Neat cellulose was milled in the presence of OLA for 2 h or 4 h, under the same conditions as above. This approach mimics a “wet” BM treatment, as OLA acts as a liquid phase. The resulting materials were labeled OLA/BWW40 BM2h and OLA/BWW40 BM4h, respectively.
2.3. Preparation of PLA-Based Composites
2.4. Aging
2.5. Techniques
3. Results and Discussion
3.1. Morphology of Cellulose After Mechanochemical Treatments
3.2. Unaged PLA-Based Composites
3.3. Aging and Stability of Properties
3.4. Soil Burial Degradation Test
- −
- Cellulose accelerates PLA degradation: The presence of cellulose increases the degradation rate of PLA, at least under the conditions used in this study, by promoting water uptake. This is consistent with the observed increase in hydrophilicity and water vapor transmission rate (WVTR) in cellulose-containing composites.
- −
- Plasticizer significantly enhances degradation: The inclusion of a low molecular weight plasticizer (OLA) has a pronounced effect on the degradation rate of PLA, leading to a substantial reduction in both number-average (Mn) and weight-average (Mw) molecular weights. This is attributed to the plasticizer’s ability to increase water absorption and facilitate hydrolysis.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- RameshKumar, S.; Shaiju, P.; O’Connor, K.E.; Ramesh Babu, P. Bio-based and biodegradable polymers-State-of-the-art, challenges and emerging trends. Curr. Opin. Green Sustain. Chem. 2020, 21, 75–81. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Jayarathna, S.; Andersson, M.; Andersson, R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers 2022, 14, 4557. [Google Scholar] [CrossRef]
- Raj, A.; Samuel, C.; Malladi, N.; Prashantha, K. Enhanced (thermo)mechanical properties in biobased poly(l-lactide)/poly(amide-12) blends using high shear extrusion processing without compatibilizers. Polym. Eng. Sci. 2020, 60, 1902–1916. [Google Scholar] [CrossRef]
- Tripathi, N.; Misra, M.; Mohanty, A.K. Durable Polylactic Acid (PLA)-Based Sustainable Engineered Blends and Biocomposites: Recent Developments, Challenges, and Opportunities. ACS Eng. Au 2021, 1, 7–38. [Google Scholar] [CrossRef]
- Mohan, S.; Panneerselvam, K. A short review on mechanical and barrier properties of polylactic acid-based films. Mater. Today Proc. 2022, 56, 3241–3246. [Google Scholar] [CrossRef]
- Nagarajan, V.; Mohanty, A.K.; Misra, M. Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustain. Chem. Eng. 2016, 4, 2899–2916. [Google Scholar] [CrossRef]
- Zengwen, C.; Pan, H.; Chen, Y.; Bian, J.; Han, L.; Zhang, H.; Dong, L.; Yang, Y. Transform poly (lactic acid) packaging film from brittleness to toughness using traditional industrial equipments. Polymer 2019, 180, 121728. [Google Scholar] [CrossRef]
- Kralin, A.; Kamjaikittikul, A.; Lertvilai, P.; Sirisaksoontorn, W.; Jamnongkan, T. Homogeneous biopolymer films based on polybutylene adipate terephthalate for packaging applications. J. Mater. Sci. 2025, 60, 7410–7427. [Google Scholar] [CrossRef]
- Halloran, M.W.; Danielczak, L.; Nicell, J.A.; Leask, R.L.; Marić, M. Highly Flexible Polylactide Food Packaging Plasticized with Nontoxic, Biosourced Glycerol Plasticizers. ACS Appl. Polym. Mater. 2022, 4, 3608–3617. [Google Scholar] [CrossRef]
- Avolio, R.; Castaldo, R.; Gentile, G.; Ambrogi, V.; Fiori, S.; Avella, M.; Cocca, M.; Errico, M.E. Plasticization of poly(lactic acid) through blending with oligomers of lactic acid: Effect of the physical aging on properties. Eur. Polym. J. 2015, 66, 533–542. [Google Scholar] [CrossRef]
- Murariu, M.; Paint, Y.; Murariu, O.; Laoutid, F.; Dubois, P. Tailoring and Long-Term Preservation of the Properties of PLA Composites with “Green” Plasticizers. Polymers 2022, 14, 4836. [Google Scholar] [CrossRef] [PubMed]
- Aliotta, L.; Vannozzi, A.; Panariello, L.; Gigante, V.; Coltelli, M.-B.; Lazzeri, A. Sustainable Micro and Nano Additives for Controlling the Migration of a Biobased Plasticizer from PLA-Based Flexible Films. Polymers 2020, 12, 1366. [Google Scholar] [CrossRef] [PubMed]
- Avolio, R.; Castaldo, R.; Avella, M.; Cocca, M.; Gentile, G.; Fiori, S.; Errico, M.E. PLA-based plasticized nanocomposites: Effect of polymer/plasticizer/filler interactions on the time evolution of properties. Compos. Part B Eng. 2018, 152, 267–274. [Google Scholar] [CrossRef]
- Zaferani, S.H. Introduction of polymer-based nanocomposites. In Polymer-Based Nanocomposites for Energy and Environmental Ap-plications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–25. [Google Scholar] [CrossRef]
- Miao, C.; Hamad, W.Y. Cellulose reinforced polymer composites and nanocomposites: A critical review. Cellulose 2013, 20, 2221–2262. [Google Scholar] [CrossRef]
- Singh, A.A.; Genovese, M.E.; Mancini, G.; Marini, L.; Athanassiou, A. Green Processing Route for Polylactic Acid–Cellulose Fiber Biocomposites. ACS Sustain. Chem. Eng. 2020, 8, 4128–4136. [Google Scholar] [CrossRef]
- Paul, U.C.; Fragouli, D.; Bayer, I.S.; Zych, A.; Athanassiou, A. Effect of Green Plasticizer on the Performance of Microcrystalline Cellulose/Polylactic Acid Biocomposites. ACS Appl. Polym. Mater. 2021, 3, 3071–3081. [Google Scholar] [CrossRef]
- Avolio, R.; Graziano, V.; Pereira, Y.; Cocca, M.; Gentile, G.; Errico, M.; Ambrogi, V.; Avella, M. Effect of cellulose structure and morphology on the properties of poly(butylene succinate-co-butylene adipate) biocomposites. Carbohydr. Polym. 2015, 133, 408–420. [Google Scholar] [CrossRef]
- Yetiş, F.; Liu, X.; Sampson, W.W.; Gong, R.H. Biodegradation of Composites of Polylactic Acid and Microfibrillated Lignocellulose. J. Polym. Environ. 2023, 31, 698–708. [Google Scholar] [CrossRef]
- Gorrasi, G.; Pantani, R. Hydrolysis and Biodegradation of Poly(lactic acid). In Synthesis, Structure and Properties of Poly(lactic acid); Di Lorenzo, M.L., Androsch, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 119–151. [Google Scholar] [CrossRef]
- De Falco, F.; Avolio, R.; Errico, M.E.; Di Pace, E.; Avella, M.; Cocca, M.; Gentile, G. Comparison of biodegradable polyesters degradation behavior in sand. J. Hazard. Mater. 2021, 416, 126231. [Google Scholar] [CrossRef]
- Ishak, W.H.W.; Rosli, N.A.; Ahmad, I. Influence of amorphous cellulose on mechanical, thermal, and hydrolytic degradation of poly(lactic acid) biocomposites. Sci. Rep. 2020, 10, 11342. [Google Scholar] [CrossRef] [PubMed]
- Momeni, S.; Craplewe, K.; Safder, M.; Luz, S.; Sauvageau, D.; Elias, A. Accelerating the Biodegradation of Poly(lactic acid) through the Inclusion of Plant Fibers: A Review of Recent Advances. ACS Sustain. Chem. Eng. 2023, 11, 15146–15170. [Google Scholar] [CrossRef]
- Delogu, F.; Gorrasi, G.; Sorrentino, A. Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives. Prog. Mater. Sci. 2017, 86, 75–126. [Google Scholar] [CrossRef]
- Avolio, R.; Bonadies, I.; Capitani, D.; Errico, M.; Gentile, G.; Avella, M. A multitechnique approach to assess the effect of ball milling on cellulose. Carbohydr. Polym. 2012, 87, 265–273. [Google Scholar] [CrossRef]
- Zhang, L.; Tsuzuki, T.; Wang, X. Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 2015, 22, 1729–1741. [Google Scholar] [CrossRef]
- Piras, C.C.; Fernández-Prieto, S.; De Borggraeve, W.M. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv. 2019, 1, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.W.; Sterzel, H.J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Z. Z. Polym. 1973, 251, 980–990. [Google Scholar] [CrossRef]
- ASTM E96; Test Methods for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 2000. [CrossRef]
- De Nicola, A.; Avolio, R.; Della Monica, F.; Gentile, G.; Cocca, M.; Capacchione, C.; Errico, M.E.; Milano, G. Rational design of nanoparticle/monomer interfaces: A combined computational and experimental study of in situ polymerization of silica based nanocomposites. RSC Adv. 2015, 5, 71336–71340. [Google Scholar] [CrossRef]
- Frone, A.N.; Berlioz, S.; Chailan, J.-F.; Panaitescu, D.M. Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr. Polym. 2013, 91, 377–384. [Google Scholar] [CrossRef]
- Shazleen, S.S.; Yasim-Anuar, T.A.T.; Ibrahim, N.A.; Hassan, M.A.; Ariffin, H. Functionality of Cellulose Nanofiber as Bio-Based Nucleating Agent and Nano-Reinforcement Material to Enhance Crystallization and Mechanical Properties of Polylactic Acid Nanocomposite. Polymers 2021, 13, 389. [Google Scholar] [CrossRef] [PubMed]
- Martin, O.; Avérous, L. Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer 2001, 42, 6209–6219. [Google Scholar] [CrossRef]
- Gracia-Fernández, C.A.; Gómez-Barreiro, S.; López-Beceiro, J.; Naya, S.; Artiaga, R. New approach to the double melting peak of poly(l-lactic acid) observed by DSC. J. Mater. Res. 2012, 27, 1379–1382. [Google Scholar] [CrossRef]
- Capuano, R.; Avolio, R.; Castaldo, R.; Cocca, M.; Poggetto, G.D.; Gentile, G.; Errico, M.E. Poly(lactic acid)/Plasticizer/Nano-Silica Ternary Systems: Properties Evolution and Effects on Degradation Rate. Nanomaterials 2023, 13, 1284. [Google Scholar] [CrossRef]
- Kulinski, Z.; Piorkowska, E. Crystallization, structure and properties of plasticized poly(l-lactide). Polymer 2005, 46, 10290–10300. [Google Scholar] [CrossRef]
- Uetsuji, Y.; Hamamoto, R.; Luo, C.; Tsuyuki, Y.; Tsuchiya, K.; Ikura, R.; Takashima, Y. Fiber morphology design of cellulose composites through multiscale simulation. Int. J. Mech. Sci. 2023, 258, 108581. [Google Scholar] [CrossRef]
- Chaos, A.; Sangroniz, A.; Fernández, J.; del Río, J.; Iriarte, M.; Sarasua, J.R.; Etxeberria, A. Plasticization of poly(lactide) with poly(ethylene glycol): Low weight plasticizer vs triblock copolymers. Effect on free volume and barrier properties. J. Appl. Polym. Sci. 2020, 137, 48868. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Robson, G.D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 2013, 98, 2063–2071. [Google Scholar] [CrossRef]
- Vasile, C.; Pamfil, D.; Râpă, M.; Darie-Niţă, R.N.; Mitelut, A.C.; Popa, E.E.; Popescu, P.A.; Draghici, M.C.; Popa, M.E. Study of the soil burial degradation of some PLA/CS biocomposites. Compos. Part B Eng. 2018, 142, 251–262. [Google Scholar] [CrossRef]
- Erdal, N.B.; Hakkarainen, M. Degradation of Cellulose Derivatives in Laboratory, Man-Made, and Natural Environments. Biomacromolecules 2022, 23, 2713–2729. [Google Scholar] [CrossRef] [PubMed]
- Slezak, R.; Krzystek, L.; Puchalski, M.; Krucińska, I.; Sitarski, A. Degradation of bio-based film plastics in soil under natural conditions. Sci. Total. Environ. 2023, 866, 161401. [Google Scholar] [CrossRef]
Sample | PLA/OLA Ratio | Cellulose (wt%) |
---|---|---|
PLA | 100/0 | 0 |
PLA + 10BMCEL | 100/0 | 10 |
PLA + 20BMCEL | 100/0 | 20 |
PLA + 30BMCEL | 100/0 | 30 |
PLA + 20BWW40 | 100/0 | 20 |
PLA + (OLA/BMCEL) BM30′ | 80/20 | 20 |
PLA + (OLA/BWW40) BM2h | 80/20 | 20 |
PLA + (OLA/BWW40) BM4h | 80/20 | 20 |
Sample | Tg (°C) | Tcc (°C) | Tm (°C) | Xc (%) |
---|---|---|---|---|
PLA | 55 | 106 | 167 | 5 |
PLA + 10BMCEL | 55 | 106 | 168 | 7 |
PLA + 20BMCEL | 53 | 107 | 168 | 10 |
PLA + 30BMCEL | 55 | 104 | 169 | 8 |
PLA + 20BWW40 | 55 | 108 | 169 | 5 |
PLA + (OLA/BMCEL) BM30′ | 31 | 80 | 159 | 17 |
PLA + (OLA/BWW40) BM2h | 31 | 79 | 160 | 18 |
PLA + (OLA/BWW40) BM4h | 31 | 79 | 160 | 17 |
Sample | T1% (°C) | Tmax (°C) |
---|---|---|
PLA | 271 | 344 |
PLA + 10BMCEL | 297 | 355 |
PLA + 20BMCEL | 288 | 349 |
PLA + 30BMCEL | 287 | 356 |
PLA + 20BWW40 | 302 | 367 |
PLA + (OLA/BMCEL) BM30′ | 171 | 315 |
PLA + (OLA/BWW40) BM2h | 178 | 359 |
PLA + (OLA/BWW40) BM4h | 172 | 360 |
Sample | E (MPa) | εb (%) | σb (%) |
---|---|---|---|
PLA | 2750 ± 90 | 4.0 ± 0.1 | 56 ± 1 |
PLA + 10BMCEL | 3000 ± 100 | 2.1 ± 0.3 | 48 ± 4 |
PLA + 20BMCEL | 3100 ± 100 | 1.5 ± 0.3 | 39 ± 4 |
PLA + 30BMCEL | 3100 ± 100 | 1.2 ± 0.1 | 28 ± 5 |
PLA + 20BWW40 | 3200 ± 70 | 1.2 ± 0.3 | 38 ± 5 |
PLA + (OLA/BMCEL) BM30′ | 1900 ± 200 | 110 ± 30 | 13 ± 1 |
PLA + (OLA/BWW40) BM2h | 1800 ± 200 | 60 ± 10 | 12 ± 1 |
PLA + (OLA/BWW40) BM4h | 2200 ± 200 | 70 ± 20 | 12 ± 1 |
Sample | WVTR (g mm/(24 h m2)) |
---|---|
PLA | 2.7 |
PLA + 10BMCEL | 3.9 |
PLA + 20BMCEL | 4.8 |
PLA + 30BMCEL | 7.4 |
PLA + 20BWW40 | 4.7 |
PLA + (OLA/BMCEL) BM30′ | 5.6 |
PLA + (OLA/BWW40) BM2h | 7.0 |
PLA + (OLA/BWW40) BM4h | 7.4 |
Sample | t0 | t56 | t102 | |||
---|---|---|---|---|---|---|
Mn | Mw | Mn | Mw | Mn | Mw | |
PLA | 28,576 (100) | 81,841 (100) | 29,723 (104.0) | 81,568 (99.7) | 31,635 (110.7) | 75,130 (91.8) |
PLA + 20BMCEL | 21,139 (100) | 47,109 (100) | 17,986 (85.1) | 44,715 (94.9) | 17,825 (84.3) | 42,153 (89.5) |
PLA + 20BWW40 | 20,570 (100) | 45,594 (100) | 20,013 (97.3) | 45,665 (100.2) | 16,545 (80.4) | 41,141 (90.2) |
PLA + (OLA/BMCEL) BM30′ | 18,038 (100) | 36,297 (100) | 17,647 (97.8) | 33,559 (92.5) | 14,281 (79.2) | 27,097 (74.7) |
PLA + (OLA/BWW40) BM2h | 24,065 (100) | 61,426 (100) | 20,445 (85.0) | 43,660 (71.1) | 19,937 (82.8) | 38,646 (62.9) |
PLA + (OLA/BWW40) BM2h | 25,123 (100) | 51,799 (100) | 24,252 (96.5) | 45,626 (88.1) | 18,315 (72.9) | 37,932 (73.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capuano, R.; Avolio, R.; Castaldo, R.; Cocca, M.; Olivieri, F.; Gentile, G.; Errico, M.E. Enhancement of Stability Towards Aging and Soil Degradation Rate of Plasticized Poly(lactic Acid) Composites Containing Ball-Milled Cellulose. Polymers 2025, 17, 2127. https://doi.org/10.3390/polym17152127
Capuano R, Avolio R, Castaldo R, Cocca M, Olivieri F, Gentile G, Errico ME. Enhancement of Stability Towards Aging and Soil Degradation Rate of Plasticized Poly(lactic Acid) Composites Containing Ball-Milled Cellulose. Polymers. 2025; 17(15):2127. https://doi.org/10.3390/polym17152127
Chicago/Turabian StyleCapuano, Roberta, Roberto Avolio, Rachele Castaldo, Mariacristina Cocca, Federico Olivieri, Gennaro Gentile, and Maria Emanuela Errico. 2025. "Enhancement of Stability Towards Aging and Soil Degradation Rate of Plasticized Poly(lactic Acid) Composites Containing Ball-Milled Cellulose" Polymers 17, no. 15: 2127. https://doi.org/10.3390/polym17152127
APA StyleCapuano, R., Avolio, R., Castaldo, R., Cocca, M., Olivieri, F., Gentile, G., & Errico, M. E. (2025). Enhancement of Stability Towards Aging and Soil Degradation Rate of Plasticized Poly(lactic Acid) Composites Containing Ball-Milled Cellulose. Polymers, 17(15), 2127. https://doi.org/10.3390/polym17152127