Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = value-added fertilizers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1022 KB  
Article
Machine Learning-Based Prediction of IVF Outcomes: The Central Role of Female Preprocedural Factors
by Kristóf Bereczki, Mátyás Bukva, Viktor Vedelek, Bernadett Nádasdi, Zoltán Kozinszky, Rita Sinka, Csaba Bereczki, Anna Vágvölgyi and János Zádori
Biomedicines 2025, 13(11), 2768; https://doi.org/10.3390/biomedicines13112768 - 12 Nov 2025
Viewed by 161
Abstract
Objectives: We aimed to develop and validate a per-cycle prediction model for in vitro fertilization (IVF) success using only preprocedural clinical variables available at the first consultation. Methods: We retrospectively analysed 1243 IVF/ICSI cycles (University of Szeged, 21 January 2022–12 December 2023). An [...] Read more.
Objectives: We aimed to develop and validate a per-cycle prediction model for in vitro fertilization (IVF) success using only preprocedural clinical variables available at the first consultation. Methods: We retrospectively analysed 1243 IVF/ICSI cycles (University of Szeged, 21 January 2022–12 December 2023). An Extreme Gradient Boosting (XGBoost version 1.7.7.1) classifier was trained on 14 baseline predictors (e.g., female age, AMH, BMI, FSH, LH, sperm concentration/motility, and infertility duration). A parsimonious 9-variable model was derived by feature importance. Model performance was assessed on the untouched test set and, as a final step, on an independent same-centre external validation cohort (n = 92) without re-fitting or recalibration. Results: The 9-variable model achieved an AUC of 0.876 on the internal test set, with an accuracy of 81.70% (95% CI 76.30–86.30%), sensitivity of 75.60%, specificity of 84.40%, PPV of 68.60%, and NPV of 88.50%. In external validation, the model maintained strong performance with an accuracy of 78.30%, confirming consistent discrimination on an independent same-centre cohort. Female age was the dominant high-impact feature, while AMH and BMI acted as “workhorse” predictors, and male factors added incremental value. Conclusions: IVF outcome can be predicted at the first visit using routinely collected preprocedural data. The model showed consistent discrimination internally and in external validation, supporting its potential utility for early, individualized counselling and treatment planning. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

23 pages, 2829 KB  
Article
Purification of Lepidilines A, B, C, and D from Lepidium meyenii Walpers by Centrifugal Partition Chromatography Followed by Semi-Preparative HPLC and Preliminary Evaluation of Anticancer Activity Against Neuroblastoma Cell Lines
by Dominik Tarabasz, Estera Okoń, Anna Wawruszak, Stavros Beteinakis, Apostolis Angelis, Henry O. Meissner, Leandros A. Skaltsounis and Wirginia Kukula-Koch
Molecules 2025, 30(22), 4360; https://doi.org/10.3390/molecules30224360 - 11 Nov 2025
Viewed by 200
Abstract
Lepidium meyenii Walpers (syn. Lepidium peruvianum Chacon) has been cultivated for centuries in the Peruvian Andes as both a vegetable and a traditional medicine resource. Maca is classified as a superfood and is widely used as a dietary supplement, particularly noted for its [...] Read more.
Lepidium meyenii Walpers (syn. Lepidium peruvianum Chacon) has been cultivated for centuries in the Peruvian Andes as both a vegetable and a traditional medicine resource. Maca is classified as a superfood and is widely used as a dietary supplement, particularly noted for its potential to enhance endurance, fertility, and endocrine balance. In recent years, there has been a growing interest in the cytotoxic effects of lepidilines and their derivatives; however, these compounds have been less extensively studied due to challenges associated with their isolation. This study aims to establish optimal extraction conditions to enrich lepidiline content in the extracts and to propose an efficient isolation method for four lepidilines using a green purification technique known as Centrifugal Partition Chromatography (CPC). The isolated compounds will be evaluated for their anticancer potential utilizing the MTT assay on SK-N-SH (ATCC® HTB-11™) and SK-N-AS (ATCC® CRL-2137™) neuroblastoma cell lines. The findings indicate that Soxhlet extraction with dichloromethane resulted in the highest recovery of lepidilines, with a content of 10.24% expressed as lepidiline A. The optimal biphasic solvent mixture suitable for CPC chromatographic applications was identified as a combination of chloroform, methanol, and water (4:3:2 v/v/v) containing 60 mM HCl. When utilized in conjunction with semi-preparative high-performance liquid chromatography (HPLC), this method successfully isolated lepidilines A–D, achieving a purity exceeding 95%. Notably, lepidiline B exhibited the highest cytotoxic potential, with an IC50 value of 14.85 µg/mL in SK-N-AS cells. Full article
Show Figures

Figure 1

20 pages, 5430 KB  
Article
Characterization of Biochar Produced from Greenhouse Vegetable Waste and Its Application in Agricultural Soil Amendment
by Sergio Medina, Ullrich Stahl, Washington Ruiz, Angela N. García and Antonio Marcilla
AgriEngineering 2025, 7(10), 348; https://doi.org/10.3390/agriengineering7100348 - 13 Oct 2025
Viewed by 527
Abstract
The main objective of the current work is to evaluate the effect of adding biochar obtained by pyrolysis of a mixture of greenhouse waste to agricultural soil, measuring its effectiveness as an amendment. A mixture of broccoli, zucchini, and tomato plant residues was [...] Read more.
The main objective of the current work is to evaluate the effect of adding biochar obtained by pyrolysis of a mixture of greenhouse waste to agricultural soil, measuring its effectiveness as an amendment. A mixture of broccoli, zucchini, and tomato plant residues was pyrolyzed in a lab-scale reactor at 450 °C, obtaining a biochar yield of 35.6%. No carrier gas was used in the process. A thorough characterization of the biochar obtained was performed, including elemental and proximal analysis, density, pH, electrical conductivity, cation exchange capacity, surface area, and metal content. Since the raw material had a high percentage of ash (approximately 20%), the resulting biochar contained around 50% inorganic matter, with potassium and calcium being the major metals detected (10–11%). This biochar had a 29% fixed carbon content, a high heating value of 11.5 MJ kg−1, a cation exchange capacity of 477 mmol kg−1, and an electrical conductivity of 16 mS cm−1.The biochar was mixed with greenhouse soil and fertilizer to form a substrate to grow bean seeds, the crop selected for the study. Different experiments were carried out, varying the biochar, fertilizer, and soil percentages. By adding 0.5% biochar to a substrate containing 1% fertilizer, the bean production was increased by 24.5%. It is worth noting that by adding only 0.5% biochar to soil, the bean production reached higher values than when adding 1% fertilizer. Biochar produced from the studied biomass improved the productivity of agricultural soils. The avoidance of selective collection by farmers as well as the non-use of carrier gas in the pyrolysis process made the implementation of the pyrolysis system in situ easier. Consequently, this research has great potential for practical application in modest agricultural areas. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Graphical abstract

36 pages, 4822 KB  
Review
Converting Wastewater Sludge into Slow-Release Fertilizers via Biochar and Encapsulation Technologies
by Babar Azeem
Appl. Sci. 2025, 15(20), 10954; https://doi.org/10.3390/app152010954 - 12 Oct 2025
Viewed by 870
Abstract
The rising demand for sustainable agriculture and circular resource management has intensified interest in converting wastewater sludge into value-added products. This review explores the transformation of sewage sludge into slow- and controlled-release fertilizers (CRFs), with a focus on biochar production and encapsulation technologies. [...] Read more.
The rising demand for sustainable agriculture and circular resource management has intensified interest in converting wastewater sludge into value-added products. This review explores the transformation of sewage sludge into slow- and controlled-release fertilizers (CRFs), with a focus on biochar production and encapsulation technologies. Sewage sludge is rich in essential macronutrients (N, P, K), micronutrients, and organic matter, making it a promising feedstock for agricultural applications. However, its use is constrained by challenges including compositional variability, presence of heavy metals, pathogens, and emerging contaminants such as microplastics and PFAS (Per- and Polyfluoroalkyl Substances). The manuscript discusses a range of stabilization and conversion techniques, such as composting, anaerobic digestion, pyrolysis, hydrothermal carbonization, and nutrient recovery from incinerated sludge ash. Special emphasis is placed on coating and encapsulation technologies that regulate nutrient release, improve fertilizer efficiency, and reduce environmental losses. The role of natural, synthetic, and biodegradable polymers in enhancing release mechanisms is analyzed in the context of agricultural performance and soil health. While these technologies offer environmental and agronomic benefits, large-scale adoption is hindered by technical, economic, and regulatory barriers. The review highlights key challenges and outlines future perspectives, including the need for advanced coating materials, improved contaminant mitigation strategies, harmonized regulations, and field-scale validation of CRFs. Overall, the valorisation of sewage sludge into CRFs presents a viable strategy for nutrient recovery, waste minimization, and sustainable food production. With continued innovation and policy support, sludge-based fertilizers can become a critical component of the green transition in agriculture. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

16 pages, 2535 KB  
Article
Straw-Increased C/N Ratio Mitigates Nitrate Leaching in Fluvial Soil by Enhancing Microbial N Pool and Reducing N Mineralization
by Yuhan Hu, Chunyuan Zhao, Wenwen Zhang, Peng Zhao, Shiyu Qin, Yupeng Zhang and Fuqing Sui
Agronomy 2025, 15(10), 2371; https://doi.org/10.3390/agronomy15102371 - 10 Oct 2025
Viewed by 432
Abstract
Excessive application of nitrogen (N) fertilizer increases the risk of soil NO3-N leaching in fluvial soil, threatening soil and groundwater quality and safety. Enhancing soil carbon (C) by returning straw to the field can efficiently improve soil quality. The process [...] Read more.
Excessive application of nitrogen (N) fertilizer increases the risk of soil NO3-N leaching in fluvial soil, threatening soil and groundwater quality and safety. Enhancing soil carbon (C) by returning straw to the field can efficiently improve soil quality. The process of increasing C/N by straw returning to regulate soil nitrogen transformation and mitigate NO3-N leaching, and the ecological threshold of straw application rate in fluvial soil need to be further explored. This study aims to research a series of soil C/N ratio treatments (including no straw, CK; C/N of 15, 20, 25, 30, 35 and 40), which were set up by adding straw at different application rates, and to investigate the underlying process of increasing C/N ratio by incorporating straw to mitigate NO3-N leaching. As the soil C/N ratio increased, the total soil nitrogen showed a fluctuating increase with the highest value in S40 treatment (increased by 358 mg kg−1), while the NO3-N leaching amount reached the lowest value at the C/N ratio of 20, with an average reduction of 45% (decreased by 29.3 mg kg−1). Increasing soil C/N ratio significantly increased soil microbial biomass, cellulase, urease and N-acetyl-β-D-glucosaminidase activities while it decreased the net N mineralization rate, ammonification rate and nitrification rate. Principal component analysis showed that the NO3-N leaching was positively correlated with the ammonification rate, nitrification rate and net N mineralization rate, and negatively correlated with the abundances of bacteria, fungi and nitrogen-fixing genes (nifH) (p < 0.01). Structural equation model analysis showed that straw-regulated C/N, dissolved organic N and soil fungi were the most important factors affecting NO3-N leaching, followed by the ammonification rate. Overall, increasing soil C/N by adding straw could enhance soil microbial biomass (especially fungi) and enzyme activities to promote soil N storage and reduce net N mineralization, ammonification and nitrification to decrease NO3-N leaching. Full article
Show Figures

Figure 1

25 pages, 1378 KB  
Review
Microbial Keratinolysis: Eco-Friendly Valorisation of Keratinous Waste into Functional Peptides
by Lindelwa Mpaka, Nonso E. Nnolim and Uchechukwu U. Nwodo
Microorganisms 2025, 13(10), 2270; https://doi.org/10.3390/microorganisms13102270 - 27 Sep 2025
Cited by 1 | Viewed by 938
Abstract
Keratinous wastes, generated from various industries such as poultry processing, slaughterhouses, and salons, accumulate in the environment due to their slow degradation caused by high disulfide cysteine bonds. Traditional methods of managing these wastes, including incineration, composting, open-air burning, and landfilling, have several [...] Read more.
Keratinous wastes, generated from various industries such as poultry processing, slaughterhouses, and salons, accumulate in the environment due to their slow degradation caused by high disulfide cysteine bonds. Traditional methods of managing these wastes, including incineration, composting, open-air burning, and landfilling, have several disadvantages, such as environmental pollution, release of toxic compounds, and breeding of pathogenic and multidrug-resistant microorganisms. Microbial keratinases, produced by bacteria, fungi, and actinomycetes, offer an eco-friendly alternative for valorizing keratinous waste into valuable peptides and amino acids. The biodegradation of keratinous biomass involves four sequential steps: adhesion, colonization, production of keratinolytic enzymes, and breakdown of the keratin substrate. Optimization of culture conditions, such as pH, temperature, substrate concentration, and metal ions, can enhance keratinase production for industrial applications. Keratinases have multifaceted applications in various sectors, including cosmetics, organic fertilizers, leather treatment, animal feed, detergents, and pharmaceuticals. This review highlights the need to explore keratinolytic strains further and improve keratinase yields to develop sustainable solutions for keratinous waste management and generate value-added products, promoting a circular economy. The techno-economic considerations and current limitations in industrial-scale keratinase production are also discussed, emphasizing the importance of future research in this field. Full article
(This article belongs to the Special Issue Microbial Biotechnological Application for Metabolite Bioprocesses)
Show Figures

Figure 1

16 pages, 1045 KB  
Article
Economic Feasibility of Solid–Liquid Separation and Hydraulic Retention Time in Composting or Anaerobic Digestion Systems for Recycling Dairy Cattle Manure
by Isabelly Alencar Macena, Ana Carolina Amorim Orrico, Erika do Carmo Ota, Régio Marcio Toesca Gimenes, Vanessa Souza, Fernando Miranda de Vargas Junior, Brenda Kelly Viana Leite and Marco Antonio Previdelli Orrico Junior
AgriEngineering 2025, 7(9), 306; https://doi.org/10.3390/agriengineering7090306 - 19 Sep 2025
Viewed by 797
Abstract
Given the demand for sustainable and cost-effective manure management in livestock systems, this study evaluated the economic feasibility of cattle manure treatment via composting and anaerobic digestion (AD) under different configurations. Five scenarios were compared: composting without solid–liquid separation, AD without separation at [...] Read more.
Given the demand for sustainable and cost-effective manure management in livestock systems, this study evaluated the economic feasibility of cattle manure treatment via composting and anaerobic digestion (AD) under different configurations. Five scenarios were compared: composting without solid–liquid separation, AD without separation at 20- and 30-day hydraulic retention times (HRTs), and combined systems with separation, composting the solid fraction and digesting the liquid. The analysis was based on a 200-cow herd and experimental data, with 15-year projected cash flows. Economic indicators included net present value (NPV), internal rate of return (IRR), discounted payback period (DPP), benefit–cost ratio (B/C), modified internal rate of return (MIRR), uniform annual equivalent (UAE), and profitability index (PI), supported by sensitivity analysis and Monte Carlo simulation. All scenarios were viable and posed low risk. Energy and fertilizer value were key drivers. The scenario 30-day HRT without separation had the best financial performance (NPV = 53,407.15 USD; IRR = 15.54%; DPP = 7.33 years; B/C = 1.57; MIRR = 9.28%; UAE = 5654.48 USD; PI = 1.66) and is recommended for capitalized farms seeking higher returns. Composting had lower returns (NPV = 9832.06 USD) but required the lowest investment, remaining a cost-effective alternative for smallholders. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

22 pages, 2035 KB  
Article
Chemotyping of Koelreuteria paniculata Seed Cake with Bioactive and Feed Potential
by Veljko Šarac, Dragana Šunjka, Magdalena Pušić Devai, Tea Sedlar, Nedeljka Spasevski, Slađana Rakita, Danka Dragojlović, Zorica Tomičić, Katarina Šavikin, Jelena Živković, Ivana Čabarkapa and Mirjana Ljubojević
Plants 2025, 14(18), 2873; https://doi.org/10.3390/plants14182873 - 15 Sep 2025
Viewed by 621
Abstract
Koelreuteria paniculata is an amenity landscape tree whose seed extracts and cold-pressed oil are proven biopesticides and biodiesel feedstocks. However, the residual seed cake phytochemical profile has not been systematically assessed or evaluated for multifunctionality across pesticidal, fertilizing, and nutritional domains. Therefore, the [...] Read more.
Koelreuteria paniculata is an amenity landscape tree whose seed extracts and cold-pressed oil are proven biopesticides and biodiesel feedstocks. However, the residual seed cake phytochemical profile has not been systematically assessed or evaluated for multifunctionality across pesticidal, fertilizing, and nutritional domains. Therefore, the aim of this study was to perform a comprehensive chemotyping of K. paniculata seed cake and evaluate its potential for use as a biopesticide, biofertilizer, and feed additive, contributing to sustainable and circular agricultural systems. Detailed analyses of the defatted seed cake included moisture, crude protein, crude ash, crude fat, and crude fiber determination, as well as amino acid and fatty acid composition determination, supplemented with HPLC and antioxidative capacity investigation. Results delivered a comprehensive chemotyping of K. paniculata seed cake, revealing a nutrient-rich profile with moderate protein (20.01%), substantial monounsaturated fatty acids (75.8%, mainly eicosenoic and oleic), and significant phenolic content, including ellagic acid, rutin, catechin, and gallic acid. Antioxidant assays (DPPH and ABTS) confirmed moderate radical scavenging activity, indicating that bioactivity is retained after cold-press extraction. These compositional and functional traits highlight the potential of the seed cake as a raw material for natural biopesticides, biofertilizers, and value-added agro-industrial products. However, due to its unusual fatty acid profile and possible anti-nutritional factors, feed applications should proceed with caution and be preceded by targeted safety evaluations. Full article
Show Figures

Figure 1

22 pages, 3789 KB  
Article
Addition of Earthworms to Continuous Cropping Soil Inhibits the Fusarium Wilt in Watermelon: Evidence Under Both Field and Pot Conditions
by Xin Zhao, Liang Zheng, Dong Liu, Ke Song, Ping Lu, Yefeng Yang, Lijuan Yang, Xiaoxiao Li, Yinsheng Li, Yue Zhang, Weiguang Lv and Xianqing Zheng
Horticulturae 2025, 11(9), 1088; https://doi.org/10.3390/horticulturae11091088 - 9 Sep 2025
Viewed by 754
Abstract
Fusarium wilt is a devastating soilborne disease that significantly reduces watermelon production worldwide. This disease is caused by Fusarium oxysporum subsp. niveum (E.F.Sm.) W.C. Snyder & H.N.Hansen. Earthworms can influence fungal populations either by consuming or dispersing fungal propagules, making them a promising [...] Read more.
Fusarium wilt is a devastating soilborne disease that significantly reduces watermelon production worldwide. This disease is caused by Fusarium oxysporum subsp. niveum (E.F.Sm.) W.C. Snyder & H.N.Hansen. Earthworms can influence fungal populations either by consuming or dispersing fungal propagules, making them a promising candidate for the biological control of Fusarium wilt. However, the underlying mechanisms remain poorly understood. In this study, we investigated the effects of adding the local earthworm species Metaphire guillelmi (Michaelsen, 1895) on Fusarium wilt in watermelon under field conditions, laboratory pot experiments, and laboratory pot experiments with sterilized soil. The results demonstrated that, compared to the control, the earthworm addition reduced the population of F. oxysporum by approximately 105 copies/mg and suppressed the incidence of Fusarium wilt by 84.4%. A correlation analysis revealed that the abundance of F. oxysporum was negatively correlated with soil organic matter (SOM), available nitrogen (AN), and available phosphorus (AP). The relative interaction index values indicated that earthworms could enhance SOM and AN levels in the soil. A two-factor network relationship analysis showed that the earthworm addition could inhibit bacteria and fungi to stimulate growth of F. oxysporum while restraining them. A metabolomics analysis revealed that most differential metabolites associated with F. oxysporum were upregulated in the presence of earthworms. Overall, M. guillelmi can reduce the occurrence of Fusarium wilt by improving soil fertility, the relationship of F. oxysporum and microorganisms, and may influence the metabolic process, which need further exploration. It is a potential pathway for the biocontrol of Fusarium wilt. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

27 pages, 5376 KB  
Review
Recycling Spent LFP Batteries: From Resource Recovery to High-Value Functional Materials
by Chang Wang, Lizhi Wang, Zixuan Fu, Fan Yin, Fangyu Zheng, Jun Wang, Fei Fang, Qiangchun Liu and Xiangkai Kong
Molecules 2025, 30(17), 3557; https://doi.org/10.3390/molecules30173557 - 30 Aug 2025
Viewed by 2080
Abstract
With the growing wave of end-of-life new energy vehicles, the recycling of lithium iron phosphate (LFP) batteries has become increasingly imperative. In contrast to conventional pyrometallurgical and hydrometallurgical approaches, recent efforts have shifted toward innovative recycling strategies and emerging applications for spent LFP [...] Read more.
With the growing wave of end-of-life new energy vehicles, the recycling of lithium iron phosphate (LFP) batteries has become increasingly imperative. In contrast to conventional pyrometallurgical and hydrometallurgical approaches, recent efforts have shifted toward innovative recycling strategies and emerging applications for spent LFP materials. During battery operation, the irreversible oxidation of Fe2+ to Fe3+ often leads to lithium loss and performance degradation. To address this, various approaches—such as electrochemical delamination and ultrasonic separation—have been developed to efficiently detach cathode materials from current collectors, followed by thermal or wet-chemical regeneration to restore their electrochemical activity. Beyond conventional regeneration, the upcycling of spent LFP into value-added functional materials offers a sustainable pathway for resource reutilization. Notably, phosphorus extracted from LFP can be converted into slow-release fertilizers, broadening the scope of secondary applications. As the volume of spent LFP batteries continues to rise, there is an urgent need to establish an integrated recycling framework that harmonizes environmental impact, technical efficiency, and economic viability. Henceforth, this review summarizes recent advances in LFP recycling and upcycling, discusses critical challenges, and provides strategic insights for the sustainable and high-value reuse of spent LFP cathodes. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

17 pages, 599 KB  
Review
Bioeconomy-Based Approaches for the Microbial Valorization of Citrus Processing Waste
by Ioannis Stavrakakis, Paraschos Melidis, Nektarios Kavroulakis, Michael Goliomytis, Panagiotis Simitzis and Spyridon Ntougias
Microorganisms 2025, 13(8), 1891; https://doi.org/10.3390/microorganisms13081891 - 13 Aug 2025
Cited by 1 | Viewed by 1055
Abstract
The citrus processing industry is an economically important agro-industrial sector worldwide; however, it produces significant amounts of waste annually. The biorefinery concept and the recovery of bio-based materials from agro-industrial residues, including citrus processing waste, are emphasized in the European Green Deal, reflecting [...] Read more.
The citrus processing industry is an economically important agro-industrial sector worldwide; however, it produces significant amounts of waste annually. The biorefinery concept and the recovery of bio-based materials from agro-industrial residues, including citrus processing waste, are emphasized in the European Green Deal, reflecting the EU’s commitment to fostering circularity. Biotreatment of citrus processing waste, including bioconversion into biomethane, biohydrogen, bioethanol and biodiesel, has been applied to valorize biomass for energy recovery. It can also be composted into a valuable soil conditioners and fertilizers, while raw and fermented citrus residues may exhibit phytoprotective activity. Citrus-derived residues can be converted into materials such as nanoparticles with adsorptive capacity for heavy metals and recalcitrant organic pollutants, and materials with antimicrobial properties against various microbial pathogens, or the potential to remove antibiotic-resistance genes (ARGs) from wastewater. Indeed, citrus residues are an ideal source of industrial biomolecules, like pectin, and the recovery of bioactive compounds with added value in food processing industry. Citrus processing waste can also serve as a source for isolating specialized microbial starter cultures or as a substrate for the growth of bioplastic-producing microorganisms. Solid-state fermentation of citrus residues can enhance the production of hydrolytic enzymes, with applications in food and environmental technology, as well as in animal feed. Certain fermented products also exhibit antioxidant properties. Citrus processing waste may be used as alternative feedstuff that potentially improves the oxidative stability and quality of animal products. Full article
(This article belongs to the Special Issue Earth Systems: Shaped by Microbial Life)
Show Figures

Figure 1

19 pages, 4735 KB  
Article
Evaluation of the Effect of Tenebrio molitor Frass on the Growth Parameters of Canasta Lettuce (Lactuca sativa var. capitata) as a Model Plant
by Simona Errico, Paola Sangiorgio, Salvatore Dimatteo, Stefania Moliterni, Raffaella Rebuzzi, Gerardo Coppola, Catia Giovanna Lopresto and Alessandra Verardi
Agriculture 2025, 15(16), 1731; https://doi.org/10.3390/agriculture15161731 - 12 Aug 2025
Viewed by 977
Abstract
The European Commission approval of some insect species for human consumption, starting with Tenebrio molitor (TM) in 2021, has drawn attention to the production of insect-derived protein flours and the sustainability of insect-rearing systems, particularly on a large scale. This has also highlighted [...] Read more.
The European Commission approval of some insect species for human consumption, starting with Tenebrio molitor (TM) in 2021, has drawn attention to the production of insect-derived protein flours and the sustainability of insect-rearing systems, particularly on a large scale. This has also highlighted the importance of utilizing byproducts, such as frass, and obtaining high-value-added products, such as biofertilizers. This study explored the potential for TM frass (TMF) to serve as a natural fertilizer for the cultivation of Canasta lettuce (Lactuca sativa var. capitata). Specifically, a series of tests was carried out to assess the efficacy of thermal treatment and to verify the trend of certain chemical and growth parameters as a function of the TMF percentage to be added to the potting soil. For this purpose, different percentages of both thermal-treated and untreated TMF and their effects on various growth parameters of Canasta lettuce were evaluated through pot trials. Furthermore, TMF was characterized by using scanning electron microscopy (SEM) to gain insights into its structural features and potential influence on soil–plant interactions. Our results show that heat treatment of TMF is essential to ensure plant survival, and at least in pots, TMF percentages above 5% of soil dry weight are not recommended. In our tests, the most suitable percentage was 4%. Full article
Show Figures

Graphical abstract

18 pages, 2723 KB  
Article
Study on Harmless Treatment and Performance of Phosphogypsum-Based Inorganic Cementing Material
by Hui Xiang, Chenyang Dong, Hao Wu, Xiaodi Hu, Bo Gao, Zhiwei Fan, Jiuming Wan, Yuan Ma and Hongtao Guan
Infrastructures 2025, 10(8), 196; https://doi.org/10.3390/infrastructures10080196 - 25 Jul 2025
Cited by 1 | Viewed by 752
Abstract
Phosphogypsum, a by-product of phosphate fertilizer production, was predominantly used as a supplementary additive in recycled construction materials. However, there are few detailed studies on utilizing phosphogypsum as the primary component in inorganic cementing materials while achieving cost-effective detoxification. This study aimed to [...] Read more.
Phosphogypsum, a by-product of phosphate fertilizer production, was predominantly used as a supplementary additive in recycled construction materials. However, there are few detailed studies on utilizing phosphogypsum as the primary component in inorganic cementing materials while achieving cost-effective detoxification. This study aimed to develop a harmless phosphogypsum-based inorganic cementing material (PICM) mainly based on phosphogypsum, in which cement, quicklime, and a stabilizer were used as additives. Harmful ions and acidity were first detected through X-ray fluorescence and ion chromatography and then harmlessly treated with quicklime. Compaction parameters, mechanical performance, X-ray diffraction analysis, moisture, and freezing resistance were characterized successively. The results illustrated that fluoride and phosphate ions were the primary soluble contaminants, whose leaching solution concentration can be reduced to 15.31 mg/L and undetectable with 2% quicklime through the mass proportion of phosphogypsum added and mixed. Meanwhile, the corresponding pH value was also raised to over 8. Cement content and quicklime were positively correlated with PICM’s maximum dry density. PICM with 25% cement and 2.5% stabilizer presented the highest unconfined compression strength, and flexural strength did not show significant regularity. PICM was mainly composed of quartz, gypsum, ettringite, and calcite, whose content decreased as cement content and quicklime content increased. Stabilizer, quicklime and cement content were positively correlated with PICM’s freezing and moisture resistance. Full article
(This article belongs to the Section Sustainable Infrastructures)
Show Figures

Figure 1

16 pages, 992 KB  
Article
Relative Growth Rate and Specific Absorption Rate of Nutrients in Lactuca sativa L. Under Secondary Paper Sludge Application and Soil Contamination with Lead
by Elena Ikkonen and Marija Yurkevich
Agriculture 2025, 15(14), 1541; https://doi.org/10.3390/agriculture15141541 - 17 Jul 2025
Viewed by 533
Abstract
Cost-effective methods for improving soil fertility and mitigating the negative impact of heavy metal contamination in agricultural soils are currently under investigation. This study aimed to evaluate the impact of soil lead (Pb) contamination and the application of secondary pulp and paper mill [...] Read more.
Cost-effective methods for improving soil fertility and mitigating the negative impact of heavy metal contamination in agricultural soils are currently under investigation. This study aimed to evaluate the impact of soil lead (Pb) contamination and the application of secondary pulp and paper mill sludge on the relative growth rate (RGR) and its determinants, as well as the specific absorption rate (SAR) of nutrients of Lactuca sativa L. For the 46-day pot experiment, which was carried out in 2022 under controlled conditions at the Karelian Research Centre of RAS, sandy loam soil was used, to which Pb was added at rates of 0, 50, and 250 mg Pb(NO3)2 kg−1. Secondary sludge was applied with each watering at concentrations of 0%, 20%, and 40%. RGR values varied significantly, primarily due to changes in net assimilation rate (NAR) rather than specific leaf area. Positive relationships were found between RGR and NAR, and RGR and SAR of nitrogen and phosphorus, but not potassium. Sludge applications can stimulate NAR at early stages of plant growth. For plants grown on soil with the highest Pb concentration studied, secondary sludge reduced root lead content by an average of 35%. Soil contamination with lead increased nutrient SAR by 79 and 39% when applied as 20 and 40% sludge, respectively, while 40% sludge increased nitrogen SAR by 51% but did not change phosphorus and potassium SAR. A sludge-mediated reduction in root Pb content and an increase in NAR suggest that secondary paper sludge may contribute to the remediation of Pb-contaminated soils and reduce the toxicity of heavy metals to plants. The results may help in finding new ways to manage soil fertility, especially for contaminated soils. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 2200 KB  
Article
Phosphogypsum Processing into Innovative Products of High Added Value
by Daniil I. Monastyrsky, Marina A. Kulikova, Marina A. Egorova, Nina P. Shabelskaya, Oleg A. Medennikov, Asatullo M. Radzhabov, Yuliya A. Gaidukova and Vera A. Baranova
Sustainability 2025, 17(13), 6228; https://doi.org/10.3390/su17136228 - 7 Jul 2025
Viewed by 770
Abstract
The paper presents a comprehensive study of the processing possibilities for phosphogypsum, a large-tonnage chemical industry waste, into highly sought-after products, such as ultraviolet pigments, and alkalizing reagents for the preparation of organomineral fertilizers. The materials obtained were characterized by X-ray diffraction (XRD), [...] Read more.
The paper presents a comprehensive study of the processing possibilities for phosphogypsum, a large-tonnage chemical industry waste, into highly sought-after products, such as ultraviolet pigments, and alkalizing reagents for the preparation of organomineral fertilizers. The materials obtained were characterized by X-ray diffraction (XRD), transmission electron microscopy, and thermogravimetric analysis (TGA). It was found that the phosphogypsum thermal treatment process in the presence of a reducing agent (charcoal, sunflower husk) allowed us to obtain new products with a high added value. For the first time, the possibility of obtaining various products by varying process conditions was established. The process of thermal reduction of phosphogypsum in the presence of charcoal at temperatures of 800–900 °C and an isothermal holding time of 60 min resulted in us obtaining samples capable of glowing when irradiated with ultraviolet light. This effect is due to the formation of a composite material based on calcium sulfide and calcium sulfate in the system. The process of the regenerative heat treatment of phosphogypsum at temperatures of 1000–1200 °C resulted in us obtaining a composite material consisting of calcium oxide and sulfate, which can be used for fractionating liquid waste from livestock farming and to obtain organomineral fertilizer. The technological methods developed allow the usage of chemical industrial waste and agricultural waste in secondary processing to produce highly innovative products that will contribute to the achievement of the sustainable development goals, in particular, “Ensuring rational consumption and production patterns”. Full article
Show Figures

Figure 1

Back to TopTop