Converting Wastewater Sludge into Slow-Release Fertilizers via Biochar and Encapsulation Technologies
Abstract
1. Introduction
- 1.
- Summarize the nutrient potential and environmental challenges of sewage sludge.
- 2.
- Critically evaluate thermochemical, biological, and stabilization processes in terms of their implications for CRF development.
- 3.
- Examine coating and encapsulation strategies that enable nutrient release.
- 4.
- Identify limitations, regulatory gaps, and research needs for scaling sludge-derived CRFs.
1.1. Global Challenges of Sludge Disposal
1.1.1. Wastewater Sludge Valorisation and Its Challenges in the Circular Economy
1.1.2. Turning Sewage Sludge into Value-Added Energy and Materials
1.2. Need for Sustainable Fertilizers
1.2.1. Potential Use of Sewage Sludge as Fertilizer in Organic Farming
1.2.2. Sustainable Fertilizers: Publication Landscape on Wastes as Fertilizer Sources
2. Composition and Nutrient Potential of Wastewater Sludge
2.1. Macronutrients and Micronutrients in Sludge
2.1.1. Macronutrients N, P, K
2.1.2. Micronutrients and Organic Matter
2.1.3. Variability in Nutrient Composition
2.2. Factors Affecting Nutrient Content
2.2.1. Seasonal Variations
2.2.2. Treatment Technologies and Process Influence
2.2.3. Nutrient Speciation and Bioavailability
2.2.4. Sludge Fertilizer Quality Index (SFQI)
2.3. Key Challenges in Sludge Use as Fertilizer
2.3.1. Microplastics and Emerging Contaminants
2.3.2. Heavy Metal Accumulation
2.3.3. Pathogenic Microorganisms and Biofilms
2.3.4. Public Perception and Regulatory Gaps
2.3.5. Regulatory and Legal Frameworks
2.4. Summary of the Key Studies on Sludge Valorization
3. Sludge Conversion into Fertilizer Products
3.1. Stabilization and Hygienization Techniques
3.2. Advanced Conversion Technologies
3.3. Nutrient Recovery from Incinerated Sludge Ash (ISA) and Other Residues
3.4. Biochar and Hydrochar as Fertilizer and Soil Amendment
3.5. Encapsulation and Coating Techniques for Controlled-Release Fertilizers
3.5.1. Encapsulation Methods
3.5.2. Types of Materials Used
3.5.3. Nutrient Release Mechanisms
3.5.4. Environmental and Agricultural Relevance
4. Performance Evaluation and Environmental Safety of Sludge-Derived Fertilizers
4.1. Performance of Biochar-Based CRFs in Soil Systems
4.2. Environmental and Health Risks of Sewage Sludge Use in Agriculture
4.2.1. Heavy Metal Accumulation
4.2.2. Organic Contaminants and Pharmaceuticals
4.2.3. Pathogen Risks
4.2.4. Emerging Concerns: PFAS and Microplastics
4.2.5. Soil and Water Contamination
4.3. Hygienization and Pathogen Control in Sludge-Derived Fertilizers
4.4. Techno-Economic Feasibility of Sewage Sludge Fertilizer Technologies
4.5. Comparative Analysis of Sludge Management Practices
4.5.1. Land Application
4.5.2. Incineration
4.5.3. Landfilling
5. Challenges and Future Perspectives
5.1. Technical and Environmental Challenges
5.2. Socioeconomic and Policy Barriers
5.3. Future Research Directions and Innovations
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods, A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical conversion of sewage sludge: A critical review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Dutta, N.; Giduthuri, A.T.; Khan, M.U.; Garrison, R.; Ahring, B.K. Improved valorization of sewage sludge in the circular economy by anaerobic digestion: Impact of an innovative pretreatment technology. Waste Manag. 2022, 154, 105–112. [Google Scholar] [CrossRef]
- Cebi, D.; Celiktas, M.S.; Sarptas, H. A review on sewage sludge valorization via hydrothermal carbonization and applications for circular economy. Circ. Econ. Sustain. 2022, 2, 1345–1367. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.; Lee, D.J.; Chang, Y.; Lee, Y.J. Sludge treatment: Current research trends. Bioresour. Technol. 2017, 243, 1159–1172. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Karakaya, K.; Bahramian, M.; Abdul-Wahab, S.A.; Goncaloğlu, B.İ. Black-, gray-, and white-box modeling of biogas production rate from a real-scale anaerobic sludge digestion system in a biological and advanced biological treatment plant. Neural Comput. Appl. 2021, 33, 11043–11066. [Google Scholar] [CrossRef]
- Huang, D.; Gao, Y.; Zhang, L.; Zhang, R.; Wu, Y.; Guan, H.; Luo, D. Enhancing waste management and nutrient recovery: Preparation of N slow-release fertilizer using sewage sludge and its release behavior, effects on ryegrass (Lolium perenne L.) growth. Biochem. Eng. J. 2025, 216, 109664. [Google Scholar] [CrossRef]
- Guo, X.; Liang, S.; Zou, Z.; Xu, X.; Yang, F.; Quan, J.; Li, X.; Duan, H.; Yu, W.; Yang, J. Enhanced phosphorus bioavailability of biochar derived from sewage sludge co-pyrolyzed with K, Ca-rich biomass ash. Water Res. 2025, 271, 122901. [Google Scholar] [CrossRef]
- Wang, L.; Chang, Y.; Li, A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renew. Sustain. Energy Rev. 2019, 108, 423–440. [Google Scholar] [CrossRef]
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Sewage Sludge Production and Disposal Statistics. 2022. Available online: https://ec.europa.eu/eurostat/ (accessed on 12 June 2025).
- United States Environmental Protection Agency. Biosolids Annual Report 2022–2023. 2023. Available online: https://www.epa.gov/biosolids (accessed on 15 June 2025).
- Gherghel, A.; Teodosiu, C.; De Gisi, S. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Hu, M.; Hu, H.; Ye, Z.; Tan, S.; Yin, K.; Chen, Z.; Guo, D.; Rong, H.; Wang, J.; Pan, Z.; et al. A review on turning sewage sludge to value-added energy and materials via thermochemical conversion towards carbon neutrality. J. Clean. Prod. 2022, 379, 134657. [Google Scholar] [CrossRef]
- Manara, P.; Zabaniotou, A. Towards sewage sludge based biofuels via thermochemical conversion—A review. Renew. Sustain. Energy Rev. 2012, 16, 2566–2582. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Olsson, G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2019, 12, 266. [Google Scholar] [CrossRef]
- Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage sludge pyrolysis for liquid production: A review. Renew. Sustain. Energy Rev. 2012, 16, 2781–2805. [Google Scholar] [CrossRef]
- Pelagalli, V.; Langone, M.; Matassa, S.; Race, M.; Tuffi, R.; Papirio, S.; Lens, P.N.L.; Lazzazzara, M.; Frugis, A.; Petta, L.; et al. Pyrolysis of municipal sewage sludge: Challenges, opportunities and new valorization routes for biochar, bio-oil, and pyrolysis gas. Environ. Sci. Water Res. Technol. 2024, 10, 2282–2312. [Google Scholar] [CrossRef]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Migliaccio, R.; Brachi, P.; Montagnaro, F.; Papa, S.; Tavano, A.; Montesarchio, P.; Ruoppolo, G.; Urciuolo, M. Sewage sludge gasification in a fluidized bed: Experimental investigation and modeling. Ind. Eng. Chem. Res. 2021, 60, 5034–5047. [Google Scholar] [CrossRef]
- Li, L.; Wang, G.; Li, X.; Wang, L.; Zhang, J.; Cheng, K.; Peng, P.; Cao, W.; Jin, H.; Guo, L. Experimental study on alkali catalytic gasification of oily sludge in supercritical water with a continuous reactor. J. Environ. Manag. 2023, 327, 116957. [Google Scholar] [CrossRef]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.H.; Kwon, E.E. Biochar as a catalyst. Renew. Sustain. Energy Rev. 2017, 77, 70–79. [Google Scholar] [CrossRef]
- Hazrati, S.; Farahbakhsh, M.; Cerdà, A.; Heydarpoor, G. Functionalization of ultrasound enhanced sewage sludge-derived biochar: Physicochemical improvement and its effects on soil enzyme activities and heavy metals availability. Chemosphere 2021, 269, 128767. [Google Scholar] [CrossRef]
- Cyr, M.; Coutand, M.; Clastres, P. Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem. Concr. Res. 2007, 37, 1278–1289. [Google Scholar] [CrossRef]
- Piasta, W.; Lukawska, M. The effect of sewage sludge ash on properties of cement composites. Procedia Eng. 2016, 161, 1018–1024. [Google Scholar] [CrossRef]
- Kumar, V.; Chopra, A.K.; Kumar, A. A Review on Sewage Sludge (Biosolids) a Resource for Sustainable Agriculture. Arch. Agric. Environ. Sci. 2017, 2, 340–347. [Google Scholar] [CrossRef]
- Cárdenas-Talero, J.L.; Silva-Leal, J.A.; Pérez-Vidal, A.; Torres-Lozada, P. The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review. Sustainability 2022, 14, 5910. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.-C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef]
- Mabrouk, O.; Hamdi, H.; Sayadi, S.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H.; Zouari, N. Reuse of sludge as organic soil amendment: Insights into the current situation and potential challenges. Sustainability 2023, 15, 6773. [Google Scholar] [CrossRef]
- Babcock-Jackson, L.; Konovalova, T.; Krogman, J.P.; Bird, R.; Lotti Díaz, L. Sustainable Fertilizers: Publication Landscape on Wastes as Nutrient Sources, Wastewater Treatment Processes for Nutrient Recovery, Biorefineries, and Green Ammonia Synthesis. J. Agric. Food Chem. 2023, 71, 8265–8296. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, D.; Martín-Marroquín, J.M.; Corona, F.; Verdugo, F. Waste-Derived Fertilizers: Conversion Technologies, Circular Bioeconomy Perspectives and Agronomic Value. Agronomy 2025, 15, 2167. [Google Scholar] [CrossRef]
- Zaika, S.; Gridin, O.; Zaika, O. Innovations in sustainable agricultural development: Trends, issues, perspectives. Econ. Soc. 2023, 52, 158–163. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Dissanayake, P.D.; Igalavithana, A.D.; Tang, R.; Cai, Y.; Chang, S.X. Converting food waste into soil amendments for improving soil sustainability and crop productivity: A review. Sci. Total Environ. 2023, 881, 163311. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Sandilya, S.P.; Sarma, B.; Pandey, A.K.; Dutta, J.; Mahanta, K.; Lesueur, D.; Nath, B.C.; Borah, D.; Borgohain, D.J. Biochar as Soil Amendment in Climate-Smart Agriculture: Opportunities, future prospects, and challenges. J. Soil Sci. Plant Nutr. 2024, 24, 135–158. [Google Scholar] [CrossRef]
- Sim, D.H.H.; Tan, I.A.W.; Lim, L.L.P.; Hameed, B.H. Encapsulated biochar-based sustained release fertilizer for precision agriculture: A review. J. Clean. Prod. 2021, 303, 127018. [Google Scholar] [CrossRef]
- Buss, W.; Bogush, A.; Ignatyev, K.; Masek, O. Unlocking the fertilizer potential of waste-derived biochar. ACS Sustain. Chem. Eng. 2020, 8, 12295–12303. [Google Scholar] [CrossRef]
- Yilmazel, Y.D.; Demirer, G.N. Removal and recovery of nutrients as struvite from anaerobic digestion residues of poultry manure. Environ. Technol. 2011, 32, 783–794. [Google Scholar] [CrossRef]
- Valle, S.F.; Giroto, A.S.; Dombinov, V.; Robles-Aguilar, A.A.; Jablonowski, N.D.; Ribeiro, C. Struvite-based composites for slow-release fertilization: A case study in sand. Sci. Rep. 2022, 12, 14176. [Google Scholar] [CrossRef]
- Avila-Quezada, G.D.; Ingle, A.P.; Golińska, P.; Rai, M. Strategic applications of nano-fertilizers for sustainable agriculture: Benefits and bottlenecks. Nanotechnol. Rev. 2022, 11, 2123–2140. [Google Scholar] [CrossRef]
- Pirzadah, T.B.; Malik, B.; Maqbool, T.; Rehman, R.U. Development of nano-bioformulations of nutrients for sustainable agriculture. In Nanobiotechnology in Bioformulations; Springer: Cham, Switzerland, 2019; pp. 381–394. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Ma, L.; Huang, G.; Oenema, O.; Zhang, F.; Dou, Z. An analysis of China’s fertilizer policies: Impacts on the industry, food security, and the environment. J. Environ. Qual. 2013, 42, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.-W.; Verniquet, A.; Broeze, J.; et al. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Crit. Rev. Environ. Sci. Technol. 2018, 48, 614–654. [Google Scholar] [CrossRef]
- De Backer, E.; Aertsens, J.; Vergucht, S.; Steurbaut, W. Assessing the ecological soundness of organic and conventional agriculture by means of life cycle assessment (LCA): A case study of leek production. Br. Food J. 2009, 111, 1028–1061. [Google Scholar] [CrossRef]
- Chanda, R.; Jahid, T.; Karmokar, A.; Hossain, B.; Moktadir, M.D.; Islam, M.S.; Aich, N.; Biswas, B.K. Functionalized biochar from vegetable waste for phosphorus removal from aqueous solution and its potential use as a slow-release fertilizer. Clean. Mater. 2025, 15, 100287. [Google Scholar] [CrossRef]
- Sarrion, A.; de la Rubia, M.A.; Berge, N.D.; Mohedano, A.F.; Diaz, E. Comparison of nutrient-release strategies in hydrothermally treated digested sewage sludge. ACS Sustain. Chem. Eng. 2023, 11, 6498–6509. [Google Scholar] [CrossRef]
- de Melo, W.J.; de Melo, G.M.; de Melo, V.P.; Donha, R.M.; Delarica, D.D.L.D. Nitrogen dynamic in agricultural soils amended with sewage sludge. In Soil Management and Climate Change; Academic Press: Cambridge, MA, USA, 2018; pp. 189–205. [Google Scholar] [CrossRef]
- Balkrishna, A.; Kaushik, P.; Singh, S.; Agrahari, P.; Kumar, B.; Kumar, P.; Arya, V.P. Potential Use of Sewage Sludge as Fertilizer in Organic Farming. Clean. Waste Syst. 2025, 10, 100245. [Google Scholar] [CrossRef]
- Arrobas, M.; Meneses, R.; Gusmão, A.G.; da Silva, J.M.; Correia, C.M.; Rodrigues, M.Â. Nitrogen-rich sewage sludge mineralized quickly, improving lettuce nutrition and yield. Agronomy 2024, 14, 924. [Google Scholar] [CrossRef]
- Zaragüeta, A.; Enrique, A.; Virto, I.; Antón, R.; Urmeneta, H.; Orcaray, L. Effect of the long-term application of sewage sludge to a calcareous soil on its total and bioavailable content in trace elements, and their transfer to the crop. Minerals 2021, 11, 356. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S. Recycling sludge on cropland as fertilizer–Advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Uddin, S.; Zaman, M.; Martínez-Guijarro, K.; Al-Murad, M.; Behbehani, M.; Habibi, N.; Al-Mutairi, A. Sewage sludge as soil amendment in arid soils-A trace metal, nutrient and trace organics perspective. Emerg. Contam. 2025, 11, 100420. [Google Scholar] [CrossRef]
- Process Design Manual: Land Application of Sewage Sludge Domestic Septage. U.S. Environmental Protection Agency (EPA). Available online: https://www.epa.gov/biosolids/process-design-manual-land-application-sewage-sludge-and-domestic-septage (accessed on 1 July 2025).
- Milik, J.; Pasela, R.; Lachowicz, M.; Chalamoński, M. The concentration of trace elements in sewage sludge from wastewater treatment plant in Gniewino. J. Ecol. Eng. 2017, 18, 118–124. [Google Scholar] [CrossRef]
- Wen, G.; Winter, J.P.; Voroney, R.P.; Bates, T.E. Potassium availability with application of sewage sludge, and sludge and manure composts in field experiments. Nutr. Cycl. Agroecosyst. 1996, 47, 233–241. [Google Scholar] [CrossRef]
- Nunes, N.; Ragonezi, C.; Gouveia, C.S.; Pinheiro de Carvalho, M.Â. Review of sewage sludge as a soil amendment in relation to current international guidelines: A heavy metal perspective. Sustainability 2021, 13, 2317. [Google Scholar] [CrossRef]
- Chowdhury, S.D.; Bandyopadhyay, R.; Bhunia, P. Reutilization of sludge as fertilizer. In Clean Energy and Resource Recovery; Elsevier: Amsterdam, The Netherlands, 2022; pp. 423–434. [Google Scholar]
- Salazar-Batres, K.J.; Moreno-Andrade, I. Review of the Effects of Trace Metal Concentrations on the Anaerobic Digestion of Organic Solid Waste. BioEnergy Res. 2025, 18, 24. [Google Scholar] [CrossRef]
- Patel, S.; Kundu, S.; Halder, P.; Ratnnayake, N.; Marzbali, M.H.; Aktar, S.; Selezneva, E.; Paz-Ferreiro, J.; Surapaneni, A.; de Figueiredo, C.C.; et al. A critical literature review on biosolids to biochar: An alternative biosolids management option. Rev. Environ. Sci. Bio/Technol. 2020, 19, 807–841. [Google Scholar] [CrossRef]
- Silva, M.B.D.; Camargos, L.S.D.; Teixeira Filho, M.C.M.; Souza, L.A.; Coscione, A.R.; Lavres, J.; Abreu-Junior, C.H.; He, Z.; Zhao, F.; Jani, A.D.; et al. Residual effects of composted sewage sludge on nitrogen cycling and plant metabolism in a no-till common bean-palisade grass-soybean rotation. Front. Plant Sci. 2023, 14, 1281670. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Wyszkowska, J.; Borowik, A.; Kordala, N. Sewage sludge as a tool in limiting the content of trace elements in Avena sativa L. on the soil polluted with diesel oil. Materials 2021, 14, 4003. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Wang, J.; Qiu, Y.; Zhu, F.; Chen, Q.; Zhang, Y.; Wang, H.; Fu, X. Seasonal variations in nutrient changes during sludge anaerobic digestion combined with thermal hydrolysis and deep dewatering. Waste Manag. 2025, 201, 114785. [Google Scholar] [CrossRef]
- Luo, B.; Chen, J.; Li, H.; Gao, Y. Phosphorus Adsorption by Co-Pyrolysis Biochar of Corn Straw and Sewage Sludge-Hydrochar and its Potential Application as a Slow-Release Phosphorus Fertilizer. SSRN. 2025. [Google Scholar] [CrossRef]
- Botte, G.G.; Donneys-Victoria, D.; Alvarez-Pugliese, C.E.; Adjei, J.; Sahin, S.; Wilson, N.W.; Millerick, K.; Hardberger, A.; Furst, A.L.; Hu, N.; et al. Innovative Approach to Sustainable Fertilizer Production: Leveraging Electrically Assisted Conversion of Sewage Sludge for Nutrient Recovery. ACS Omega 2024, 9, 49692–49706. [Google Scholar] [CrossRef]
- Choudhary, M.; Datta, S.P.; Meena, M.C.; Dwivedi, B.S.; Golui, D.; Sharma, V.K.; Trivedi, V.K.; Pattanayak, A.; Patel, K.C. Changes in macronutrient content in sludge as affected by sources and seasons. Indian J. Agric. Sci. 2021, 91, 84–88. [Google Scholar] [CrossRef]
- Antonkiewicz, J.; Kuc, A.; Witkowicz, R.; Tabak, M. Effect of municipal sewage sludge on soil chemical properties and chemical composition of spring wheat. Ecol. Chem. Eng. 2019, 26, 583–595. [Google Scholar] [CrossRef]
- Wang, X.; Chen, T.; Ge, Y.; Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 2008, 160, 554–558. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Wang, Y.; Chen, Y.; Lei, T. Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients. Geoderma 2016, 267, 17–23. [Google Scholar] [CrossRef]
- Kiper, J.; Głowacka, A.; Rucińska, T. Analysis of the variability of the composition of sewage sludge before and after drying treatment–SEM studies. J. Ecol. Eng. 2019, 20, 45–52. [Google Scholar] [CrossRef]
- Ngo, P.L. Conventional and Advanced Thermal Hydrolysis in Sewage Sludge Pre-Treatment. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2023. Available online: https://researchspace.auckland.ac.nz/server/api/core/bitstreams/3a0a0946-68ee-45d9-85e3-f48d509f47cb/content (accessed on 23 June 2025).
- Guo, Y.; Guo, Y.; Gong, H.; Fang, N.; Tan, Y.; Zhou, W.; Huang, J.; Dai, L.; Dai, X. Variations of heavy metals, nutrients, POPs and particle size distribution during “sludge anaerobic digestion-solar drying-land utilization process”: Case study in China. Sci. Total Environ. 2021, 801, 149609. [Google Scholar] [CrossRef] [PubMed]
- Iticescu, C.; Georgescu, P.L.; Arseni, M.; Rosu, A.; Timofti, M.; Carp, G.; Cioca, L.I. Optimal solutions for the use of sewage sludge on agricultural lands. Water 2021, 13, 585. [Google Scholar] [CrossRef]
- Singh, V.; Phuleria, H.C.; Chandel, M.K. Unlocking the nutrient value of sewage sludge. Water Environ. J. 2022, 36, 321–331. [Google Scholar] [CrossRef]
- Worek, J.; Kawoń, K.; Chwiej, J.; Berent, K.; Rego, R.; Styszko, K. Assessment of the Presence of Microplastics in Stabilized Sewage Sludge: Analysis Methods and Environmental Impact. Appl. Sci. 2025, 15, 7420. [Google Scholar] [CrossRef]
- Hatinoglu, M.D.; Sanin, F.D. Sewage Sludge as a Source of Microplastics in the Environment: A Review of Occurrence and Fate during Sludge Treatment. J. Environ. Manag. 2021, 295, 113028. [Google Scholar] [CrossRef]
- Mahon, A.M.; O’cOnnell, B.; Healy, M.G.; O’cOnnor, I.; Officer, R.; Nash, R.; Morrison, L. Microplastics in Sewage Sludge: Effects of Treatment. Environ. Sci. Technol. 2017, 51, 810–818. [Google Scholar] [CrossRef]
- Giuffréde López Carnelo, L.; de Miguez, S.R.; Marbán, L. Heavy Metals Input with Phosphate Fertilizers Used in Argentina. Sci. Total Environ. 1997, 204, 245–250. [Google Scholar] [CrossRef]
- ISO 5667-13:2011; Water quality—Sampling—Part 13: Guidance on sampling of sludge. International Organization for Standardization: Geneva, Switzerland, 2011.
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Sol, D.; Laca, A.; Laca, A.; Díaz, M. Approaching the Environmental Problem of Microplastics: Importance of WWTP Treatments. Sci. Total Environ. 2020, 740, 140016. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Standards for the Use or Disposal of Sewage Sludge (40 CFR Part 503). Washington, DC. 1994. Available online: https://p2infohouse.org/ref/48/47618.pdf (accessed on 22 June 2025).
- Clarke, B.O.; Smith, S.R. Review of ‘Emerging’ Organic Contaminants in Biosolids and Assessment of International Research Priorities for the Agricultural Use of Biosolids. Environ. Int. 2011, 37, 226–247. [Google Scholar] [CrossRef] [PubMed]
- Yanko, W.A. Occurrence of Pathogens in Distribution and Marketing Municipal Sludges. Research Triangle Park, NC: US Environmental Protection Agency, Health Effects Research Laboratory. 1988. Available online: https://p2infohouse.org/ref/19/18587.pdf (accessed on 17 June 2025).
- Münch, E.V.; Barr, K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester supernatant. Water Res. 2001, 35, 151–159. [Google Scholar] [CrossRef]
- Goldan, K.; Yadav, M.; Parmar, S. Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment, A Review. Sustainability 2022, 14, 5309. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.F.; Pan, X.W.; Tan, J.Y.; Yang, S.S.; Wu, J.T.; Chen, C.; Yuan, Y.; Ren, N.-Q. Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions. Water Res. X 2023, 18, 100167. [Google Scholar] [CrossRef]
- Han, M.; Zhang, J.; Zhang, L.; Wang, Z. Effect of biochar addition on crop yield, water and nitrogen use efficiency: A meta-analysis. J. Clean. Prod. 2023, 420, 138425. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, W.; Geng, Z.; Bai, J.; Dong, B.; Zhao, J.; Zhuang, X.; Shih, K. Immobilization of heavy metals in biochar by co-pyrolysis of sludge and CaSiO3. J. Environ. Manag. 2023, 326, 116635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, C.; Gray, E.M.; Boyd, S.E. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenergy 2017, 105, 136–146. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Chen, Y. Synthesis and characterization of starch-g-Poly (acrylic acid)/Organo-Zeolite 4 A superabsorbent composites with respect to their water-holding capacities and nutrient-release behavior. Polym. Compos. 2017, 38, 1838–1848. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; He, L.; Lu, K.; Sarmah, A.; Li, J.; Bolan, N. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. Res. 2013, 20, 8472–8483. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Sun, J.; Shao, H.; Chang, S.X. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng. 2014, 62, 54–60. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Mei, Q.; Dong, B.; Dai, X.; Ding, G.; Zeng, E.Y. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res. 2018, 142, 75–85. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, M.; Srivastava, S. Recent advances in wastewater sludge valorization. In Bio-Valorization of Waste: Trends and Perspectives; Springer: Singapore, 2021; pp. 225–247. [Google Scholar] [CrossRef]
- Shao, X.; Sun, X.; Yuan, J.; Zhu, Y.; Wang, J.; Dai, Y.; Zhang, T.; Qiu, F. Agricultural Waste–Biochar (Reclaiming Phosphate from Wastewater)–Soil (Slow-Release Phosphate Fertilizer)–Plant (Peanut Growth) System: Economical and Environmentally Sustainable Strategy. ACS Sustain. Chem. Eng. 2025, 13, 6451–6462. [Google Scholar] [CrossRef]
- EPA, U.S. Environmental Regulations and Technology: Control of Pathogens and Vector Attraction in Sewage Sludge. United States Environmental Protection Agency, Office of Research and Development, Washington, DC. 2003. Available online: https://www.epa.gov/sites/default/files/2015-04/documents/control_of_pathogens_and_vector_attraction_in_sewage_sludge_july_2003.pdf (accessed on 25 May 2025).
- Smith, S.R.; Lang, N.L.; Cheung, K.H.M.; Spanoudaki, K. Factors controlling pathogen destruction during anaerobic digestion of biowastes. Waste Manag. 2005, 25, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Boczek, L.; Herrmann, R.; Resek, E.; Richman, T. Pathogens and Vector Attraction in Sewage Sludge. US Environmental Protection Agency. 2023. Available online: https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=546252&Lab=CESER (accessed on 17 May 2025).
- Martin, J.H., Jr.; Bostian, H.E.; Stern, G. Reductions of enteric microorganisms during aerobic sludge digestion. Water Res. 1990, 24, 1377–1385. [Google Scholar] [CrossRef]
- Romdhana, M.H.; Lecomte, D.; Ladevie, B.; Sablayrolles, C. Monitoring of pathogenic microorganisms contamination during heat drying process of sewage sludge. Process Saf. Environ. Prot. 2009, 87, 377–386. [Google Scholar] [CrossRef]
- Schafer, P.L.; Uhte, R. Pre-pasteurization, European and north American assessment and experience. In Proceedings of the 1994 WEF International Biosolids Conference, Chicago, IL, USA, 15–19 October 1994. [Google Scholar]
- Martha, G.P.; Nancy, P.D. CWA Section 404(q): Memorandum of Agreement Between EPA and Department of the Army. Available online: https://www.epa.gov/cwa-404/cwa-section-404q-memorandum-agreement-between-epa-and-department-army-text#:~:text=The%20Memorandum%20of%20Agreement%20between,be%20governed%20by%20that%20MOA (accessed on 1 July 2025).
- Boczek, L.; Herrmann, R. Pathogen/Vector Attraction Reduction Requirements of the Sludge Rules, Document No. EPA/600/R-22/194. 1993. Available online: https://www.oregon.gov/deq/wq/Documents/EPAWhitehouse.pdf (accessed on 19 July 2025).
- Gibbs, R.A.; Hu, C.J.; Ho, G.E.; Unkovich, I. Regrowth of faecal coliforms and salmonellae in stored biosolids and soil amended with biosolids. Water Sci. Technol. 1997, 35, 269–275. [Google Scholar] [CrossRef]
- Dumontet, S.; Scopa, A.; Kerje, S.; Krovacek, K. The importance of pathogenic organisms in sewage and sewage sludge. J. Air Waste Manag. Assoc. 2001, 51, 848–860. [Google Scholar] [CrossRef]
- Lepesteur, M. Human and livestock pathogens and their control during composting. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1639–1683. [Google Scholar] [CrossRef]
- Djandja, O.S.; Wang, Z.C.; Wang, F.; Xu, Y.P.; Duan, P.G. Pyrolysis of municipal sewage sludge for biofuel production: A review. Ind. Eng. Chem. Res. 2020, 59, 16939–16956. [Google Scholar] [CrossRef]
- Frišták, V.; Pipíška, M.; Soja, G. Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertilizer. J. Clean. Prod. 2018, 172, 1772–1778. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhao, Y.; Qi, M.; Wang, L.; Feng, J.; Li, B. Struvite-loaded biochar beads fertilizer for different soils: Nutrient slow release, soil properties improvement and heavy metal remediation. Front. Environ. Sci. Eng. 2025, 19, 73. [Google Scholar] [CrossRef]
- Śpiewak, K. Gasification of Sewage Sludge—A Review. Energies 2024, 17, 4476. [Google Scholar] [CrossRef]
- Smol, M.; Adam, C.; Kugler, S.A. Thermochemical treatment of sewage sludge ash (SSA)—Potential and perspective in Poland. Energies 2020, 13, 5461. [Google Scholar] [CrossRef]
- Rathika, K.; Kumar, S.; Yadav, B.R. Enhanced energy and nutrient recovery via hydrothermal carbonisation of sewage sludge: Effect of process parameters. Sci. Total Environ. 2024, 906, 167828. [Google Scholar] [CrossRef]
- Gerner, G.; Meyer, L.; Wanner, R.; Keller, T.; Krebs, R. Sewage sludge treatment by hydrothermal carbonization: Feasibility study for sustainable nutrient recovery and fuel production. Energies 2021, 14, 2697. [Google Scholar] [CrossRef]
- Aragón-Briceño, C.I.; Ross, A.B.; Camargo-Valero, M.A. Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge. Renew. Energy 2021, 167, 473–483. [Google Scholar] [CrossRef]
- Piersa, P.; Szufa, S.; Czerwińska, J.; Ünyay, H.; Adrian, Ł.; Wielgosinski, G.; Obraniak, A.; Lewandowska, W.; Marczak-Grzesik, M.; Dzikuć, M.; et al. Pine Wood and Sewage Sludge Torrefaction Process for Production of Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers. Energies 2021, 14, 8176. [Google Scholar] [CrossRef]
- Nang, S.; Mercl, F.; Košnář, Z.; Pierdonà, L.; Doležal, P.; Paul, C.S.; Tlustoš, P. Torrefaction of sewage sludge: An approach to nutrient recycling and contaminant reduction in agriculture. Environ. Res. 2025, 275, 121409. [Google Scholar] [CrossRef] [PubMed]
- Zacher, A.; Vitow, N.; Heinrich, S.; Leinweber, P.K. The phosphorus fertilizer effect of biochar from municipal sewage sludge. Arch. Agron. Soil Sci. 2025, 71, 1–13. [Google Scholar] [CrossRef]
- Cornel, P.; Schaum, C. Phosphorus recovery from wastewater: Needs, technologies and costs. Water Sci. Technol. 2009, 59, 1069–1076. [Google Scholar] [CrossRef]
- Cieślik, B.; Konieczka, P. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean. Prod. 2017, 142, 1728–1740. [Google Scholar] [CrossRef]
- Fang, L.; Li, J.S.; Donatello, S.; Cheeseman, C.R.; Wang, Q.; Poon, C.S.; Tsang, D.C. Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation. Chem. Eng. J. 2018, 348, 74–83. [Google Scholar] [CrossRef]
- Meng, X.; Huang, Q.; Xu, J.; Gao, H.; Yan, J. A review of phosphorus recovery from different thermal treatment products of sewage sludge. Waste Dispos. Sustain. Energy 2019, 1, 99–115. [Google Scholar] [CrossRef]
- Otieno, B.; Funani, C.K.; Khune, S.M.; Kabuba, J.; Osifo, P. Struvite recovery from anaerobically digested waste-activated sludge: A short review. J. Mater. Res. 2023, 38, 3815–3826. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef]
- Gebretsadkan, A.A.; Belete, Y.Z.; Krounbi, L.; Gelfand, I.; Bernstein, R.; Gross, A. Soil application of activated hydrochar derived from sewage sludge enhances plant growth and reduces nitrogen loss. Sci. Total Environ. 2024, 949, 174965. [Google Scholar] [CrossRef]
- Malghani, S.; Gleixner, G.; Trumbore, S.E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol. Biochem. 2013, 62, 137–146. [Google Scholar] [CrossRef]
- de Figueiredo, C.C.; Chagas, J.K.M.; da Silva, J.; Paz-Ferreiro, J. Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma 2019, 344, 31–39. [Google Scholar] [CrossRef]
- Conz, R.F.; Abbruzzini, T.F.; de Andrade, C.A.; Milori, D.M.; Cerri, C.E. Effect of pyrolysis temperature and feedstock type on agricultural properties and stability of biochars. Agric. Sci. 2017, 8, 914. [Google Scholar] [CrossRef]
- Siedt, M.; Vonhoegen, D.; Smith, K.E.; Roß-Nickoll, M.; van Dongen, J.T.; Schäffer, A. Fermented biochar has a markedly different effect on fate of pesticides in soil than compost, straw, and a mixed biochar-product. Chemosphere 2023, 344, 140298. [Google Scholar] [CrossRef] [PubMed]
- Mendonca Cidreira, A.C.; Wei, L.; Aldekhail, A.; Islam Rubel, R. Controlled-release nitrogen fertilizers: A review on bio-based and smart coating materials. J. Appl. Polym. Sci. 2025, 142, e56390. [Google Scholar] [CrossRef]
- Cong, Z.; Yazhen, S.; Changwen, D.; Jianmin, Z.; Huoyan, W.; Xiaoqin, C. Evaluation of waterborne coating for controlled-release fertilizer using Wurster fluidized bed. Ind. Eng. Chem. Res. 2010, 49, 9644–9647. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, L.; Dong, J.; Wu, L.; Fang, F.; Wang, Y.; Li, H.; Xie, C.; Li, W.; Wei, Z.; et al. A one-step surface modification technique improved the nutrient release characteristics of controlled-release fertilizers and reduced the use of coating materials. J. Clean. Prod. 2022, 369, 133331. [Google Scholar] [CrossRef]
- Abdullah, B.; Niazi, M.B.K.; Jahan, Z.; Khan, O.; Shahid, A.; Shah, G.A.; Azeem, B.; Iqbal, Z.; Mahmood, A. Role of zinc-coated urea fertilizers in improving nitrogen use efficiency, soil nutritional status, and nutrient use efficiency of test crops. Front. Environ. Sci. 2022, 10, 888865. [Google Scholar] [CrossRef]
- Irfan, S.A.; Azeem, B.; Irshad, K.; Algarni, S.; KuShaari, K.; Islam, S.; Abdelmohimen, M.A. Machine learning model for nutrient release from biopolymers coated controlled-release fertilizer. Agriculture 2020, 10, 538. [Google Scholar] [CrossRef]
- Gutiérrez, C.A.; Ledezma-Delgadillo, A.; Juárez-Luna, G.; Neri-Torres, E.E.; Ibanez, J.G.; Quevedo, I.R. Production, mechanisms, and performance of controlled-release fertilizers encapsulated with biodegradable-based coatings. ACS Agric. Sci. Technol. 2022, 2, 1101–1125. [Google Scholar] [CrossRef]
- Zhalehrajabi, E.; Lau, K.K.; Ku Shaari, K.Z.; Zahraee, S.M.; Seyedin, S.H.; Azeem, B.; Shaaban, A. Effect of biodegradable binder properties and operating conditions on growth of urea particles in a fluidized bed granulator. Materials 2019, 12, 2320. [Google Scholar] [CrossRef]
- Basit, A.; Siwayanan, P.; KuShaari, K.; Keong, L.K.; Azeem, B. An investigation on dissolutive wetting of porous urea surface. Can. J. Chem. Eng. 2018, 96, 2690–2699. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, R.; Lin, Y.; Li, Y.; Li, J.; Zhao, B. Nitrogen release characteristics of polyethylene-coated controlled-release fertilizers and their dependence on membrane pore structure. Particuology 2018, 36, 158–164. [Google Scholar] [CrossRef]
- Du, C.W.; Zhou, J.M.; Shaviv, A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. J. Polym. Environ. 2006, 14, 223–230. [Google Scholar] [CrossRef]
- Irfan, S.A.; Razali, R.; KuShaari, K.; Mansor, N.; Azeem, B.; Versypt, A.N.F. A review of mathematical modeling and simulation of controlled-release fertilizers. J. Control. Release 2018, 271, 45–54. [Google Scholar] [CrossRef]
- Basit, A.; KuShaari, K.; Siwayanan, P.; Azeem, B. Effect of process parameters on droplet spreading behaviour over porous surface. Can. J. Chem. Eng. 2018, 96, 352–359. [Google Scholar] [CrossRef]
- Nouh, S.A.; Lau, K.K.; Samsuri, S.; Azeem, B. Fly Ash-Based Geopolymer as a Coating Material for Urea Encapsulation: Characterization, DEM Simulation and Validation. Arab. J. Sci. Eng. 2025, 1–15. [Google Scholar] [CrossRef]
- Adams, C.; Frantz, J.; Bugbee, B. Macro-and micronutrient-release characteristics of three polymer-coated fertilizers: Theory and measurements. J. Plant Nutr. Soil Sci. 2013, 176, 76–88. [Google Scholar] [CrossRef]
- Fan, X.L.; Wang, H. Effect of granule size and coating thickness on nitrogen release characteristics of controlled release fertilizers (CRFs). J. Plant Nutr. Fertil. 2005, 11, 327–333. [Google Scholar] [CrossRef]
- Trinh, T.H.; Kushaari, K.; Shuib, A.S.; Ismail, L.; Azeem, B. Modelling the release of nitrogen from controlled release fertiliser: Constant and decay release. Biosyst. Eng. 2015, 130, 34–42. [Google Scholar] [CrossRef]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Tillage Res. 2016, 160, 1–13. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Delibacak, S.; Voronina, L.; Morachevskaya, E. Use of sewage sludge in agricultural soils: Useful or harmful. Eurasian J. Soil Sci. 2020, 9, 126–139. [Google Scholar] [CrossRef]
- Wojciula, A.; Boruszko, D.; Pajewska, G. Analysis of heavy metal fraction content in sewage sludge from selected wastewater treatment plants. J. Ecol. Eng. 2021, 22, 98–105. [Google Scholar] [CrossRef]
- Verlicchi, P.; Zambello, E.J.S.O.T.T.E. Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil—A critical review. Sci. Total Environ. 2015, 538, 750–767. [Google Scholar] [CrossRef]
- Ekane, N.; Barquet, K.; Rosemarin, A. Resources and risks: Perceptions on the application of sewage sludge on agricultural land in Sweden, a case study. Front. Sustain. Food Syst. 2021, 5, 647780. [Google Scholar] [CrossRef]
- Simões-Mota, A.; Virto, I.; Poch, R.M. Effects of long-term sewage sludge application to a calcareous soil structure. Soil Use Manag. 2022, 38, 1693–1704. [Google Scholar] [CrossRef]
- Arthurson, V. Proper sanitization of sewage sludge: A critical issue for a sustainable society. Appl. Environ. Microbiol. 2008, 74, 5267–5275. [Google Scholar] [CrossRef] [PubMed]
- Schnell, M.; Horst, T.; Quicker, P. Thermal treatment of sewage sludge in Germany: A review. J. Environ. Manag. 2020, 263, 110367. [Google Scholar] [CrossRef]
- Dumontet, S.; Dinel, H.; Baloda, S.B. Pathogen reduction in sewage sludge by composting and other biological treatments: A review. Biol. Agric. Hortic. 1999, 16, 409–430. [Google Scholar] [CrossRef]
- Breda, C.C.; Soares, M.B.; Tavanti, R.F.R.; Viana, D.G.; da Silva Freddi, O.; Piedade, A.R.; Mahl, D.; Traballi, R.C.; Guerrini, I.A. Successive sewage sludge fertilization: Recycling for sustainable agriculture. Waste Manag. 2020, 109, 38–50. [Google Scholar] [CrossRef]
- Carrard, N.; Jayathilake, N.; Willetts, J. Life-cycle costs of a resource-oriented sanitation system and implications for advancing a circular economy approach to sanitation. J. Clean. Prod. 2021, 307, 127135. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Basic Information about Sewage Sludge and Biosolids. Available online: https://www.epa.gov/biosolids/basic-information-about-sewage-sludge-and-biosolids (accessed on 11 June 2025).
- Marchuk, S.; Tait, S.; Sinha, P.; Harris, P.; Antille, D.L.; McCabe, B.K. Biosolids-derived fertilisers: A review of challenges and opportunities. Sci. Total Environ. 2023, 875, 162555. [Google Scholar] [CrossRef] [PubMed]
- Jha, G.; Kankarla, V.; McLennon, E.; Pal, S.; Sihi, D.; Dari, B.; Diaz, D.; Nocco, M. Per-and polyfluoroalkyl substances (PFAS) in integrated crop–livestock systems: Environmental exposure and human health risks. Int. J. Environ. Res. Public Health 2021, 18, 12550. [Google Scholar] [CrossRef]
- Jakubus, M.; Černe, M.; Palčić, I.; Pasković, I.; Ban, S.G.; Ban, D. The Application of Sewage Sludge-Derived Compost or Biochar as a Nature-Based Solution (NBS) for Healthier Soil. Sustainability 2025, 17, 1630. [Google Scholar] [CrossRef]
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land application of biosolids in the USA: A review. Appl. Environ. Soil Sci. 2012, 2012, 201462. [Google Scholar] [CrossRef]
- Englande, A.J., Jr.; Reimers, R.S. Biosolids management-sustainable development status and future direction. Water Sci. Technol. 2001, 44, 41–46. [Google Scholar] [CrossRef]
Nutrient | Content (g/kg or mg/kg) | Plant Function |
---|---|---|
Total Nitrogen | 13.9–15.3 g/kg | Leaf growth, protein synthesis |
Phosphorus | 12.3–14.1 g/kg | Root development, energy transfer |
Potassium | 6.0–8.2 g/kg | Water regulation, stress tolerance |
Calcium | 19.4–31.1 g/kg | Cell wall structure, enzyme activation |
Magnesium | 5.2–9.9 g/kg | Chlorophyll synthesis |
Zinc | 456–684 mg/kg | Enzyme function, hormone regulation |
Copper | 191.2–237 mg/kg | Lignin synthesis, reproductive growth |
Iron | 14,708–16,400 mg/kg | Chlorophyll synthesis, respiration |
Manganese | 246–310 mg/kg | Photosynthesis, nitrogen metabolism |
Boron | 94.0 mg/kg | Cell wall integrity, flowering |
Nutrient | Sewage Sludge (Typical Range, % Dry Matter) | Commercial Fertilizer (Typical Content) | Remarks for Agricultural Use |
---|---|---|---|
Nitrogen | 1.5–4.0% | Urea: ~46% N | Sludge N mainly organic → slow mineralization; lower concentration requires higher application rates but reduces leaching risk. |
Phosphorus | 0.5–2.0% | Triple Superphosphate (TSP): ~20% P | P in sludge released gradually (organic + inorganic forms); improves nutrient use efficiency compared to soluble fertilizers. |
Potassium | 0.5–2.5% | Muriate of Potash (KCl): ~60% K2O | Lower K content in sludge; often insufficient as sole K source; useful supplement alongside other fertilizers. |
Calcium | 2.0–3.0% | Agricultural Lime: ~35–40% Ca | Provides liming effect in soils; contributes to pH buffering and soil structure. |
Magnesium | 0.5–1.0% | Dolomitic Lime: ~10–15% Mg | Contributes to chlorophyll synthesis; helps correct Mg deficiency in soils. |
Micronutrients (Zn, Cu, Fe, Mn) | Zn: 200–700 mg/kg; Cu: 150–250 mg/kg; Fe: 14,000–16,000 mg/kg; Mn: 200–300 mg/kg | Applied via trace-element fertilizers (ZnSO4, CuSO4, Fe-EDDHA, MnSO4) | Sludge provides valuable trace elements often deficient in soils; must be monitored to avoid accumulation beyond safe limits. |
Study | Feedstock | Valorisation Method | Key Outputs | Coating Type (If Any) | Nutrient Recovery | Notable Findings |
---|---|---|---|---|---|---|
[1] | Sewage sludge (EU practices) | Various (incineration, composting) | Energy, soil amendments | None | Variable | Overview of EU strategies and challenges |
[5] | Sludge + agro-waste | Sustainable CRFs | Slow-release granules | Biopolymer-based | N, K | Synergistic nutrient control from waste blend |
[7] | Composted sludge | Composting | Organic amendment | None | N, C | High fertilizer potential with seasonal variation |
[12] | Sludge biochar | Functionalization | Enhanced biochar | Surface-treated | P, C | Boosted performance in soil applications |
[15] | WWTP sludge | Integrated valorisation | Energy, nutrients | Not specified | Multiple | Circular economy framework proposed |
[16] | Sewage sludge | Pyrolysis, HTC | Biochar, hydrochar | None | P, C | Process integration and carbon neutrality emphasized |
[23] | Sludge biochar | Stabilization | Nutrient-enriched biochar | None | N, P | Immobilized metals and improved CEC |
[24] | Sewage sludge | Pyrolysis | Biochar | None | P | Heavy metal immobilization by biochar |
[25] | Sewage sludge ash | Acid leaching, precipitation | P-enriched product | None | P | Recovery of P from SSA efficiently optimized |
[30] | Biosolids | Land application | Soil enhancer | None | N, P, K | Benefits and risks of biosolids use discussed |
[33] | Sewage sludge | Composting, organic reuse | Organic fertilizer | None | Organic N | Focused on public acceptance and safety |
[37] | Sewage sludge | Coated fertilizer production | CRF pellets | Biodegradable coating | N | CRF reduced ammonia volatilization |
[44] | Sludge-char composite | Blending, thermal processing | Composite biochar | None | N, K | Reduced leaching; enhanced nutrient stability |
[45] | Municipal sludge | Composting + additives | Stabilized compost | None | N, K | Additives improved composting performance |
[66] | Sludge biochar | Nanocoating | Smart-release fertilizer | Chitosan-nano coat | N | Moisture-triggered release response |
[70] | Sludge ash | Acid-extraction | Crystalline fertilizers | None | P, Fe | Chemical recovery with high yield |
[86] | Sewage sludge | Granulation + coating | Uniform fertilizer granules | Thermoplastic | N, P | Enhanced mechanical strength and release control |
[87] | Sludge liquor | Struvite precipitation | MgNH4PO4·6H2O crystals | None | P | Effective P recovery from digestate |
[88] | Sewage sludge | Immobilization | Soil conditioner | None | N, P | Addressed heavy metal fixation |
[89] | Sludge-carbon blend | Granulation | Slow-release fertilizer | Natural wax coat | N | Controlled kinetics and hydrophobicity |
[90] | Sludge ash | Struvite recovery | Granular fertilizer | None | P, Mg | Sustainable recovery from incineration ash |
[91] | Sludge biochar | Pyrolysis | Nutrient-rich biochar | None | K, C | Enhanced soil retention and porosity |
[92] | Sewage sludge | HTC + coating | Hydrochar pellets | Biopolymer film | N, P | Nutrient retention improved by dual process |
[93] | Biosolids | Integrated composting | Mature compost | None | N, micronutrients | Improved pathogen reduction and maturity |
[94] | Treated sludge | Pelletization + drying | Organic fertilizer | None | N, K | Transportable, low-odor fertilizer pellets |
[95] | Sludge-derived biochar | Biochar-based CRFs | Controlled N and P release | Polymer/nanocomposite | N, P, K | Improved nutrient retention; reduced leaching |
[76] | Urban sewage sludge | Land application | Organic fertilizer | None | N, P, metals | Addressed metal accumulation and plant growth |
[96] | Sludge-derived ash | Crystallization | Mineral fertilizer | None | P | Produced struvite from ash with high purity |
[97] | Sludge + lignin | Composite coating | Bio-CRF | Lignin polymer | N | Cost-effective slow release and stability |
[98] | Sludge + starch | Encapsulation | CRF spheres | Starch-based | N | Reduced initial burst release; biodegradable shell |
Technology | Nutrient Recovery | Contaminant Mitigation | Cost/Scalability | Relevance for CRF Design | Limitations |
---|---|---|---|---|---|
Composting | Moderate (organic N and P retained) | Reduces pathogens only | Low cost; widely implemented | Provides organic matrix; uncontrolled nutrient release | Odor, GHG emissions, long processing time, land demand |
Lime stabilization | Low–moderate (mainly pH adjustment) | Strong pathogen kill; limited metal control | Very low cost; simple process | Limited CRF use due to high salinity/alkalinity | Reduces agronomic quality; requires blending |
Anaerobic digestion | Moderate (retains N; produces biogas) | Reduces pathogens; partial metal stabilization | Established; scalable | Generates stable sludge cores for encapsulation or blending | Nutrient losses possible; methane leakage risks |
Pyrolysis | Moderate (biochar retains P; some N loss) | Strong heavy-metal immobilization | Higher cost; pilot–commercial | Biochar as engineered carrier for nutrient impregnation and coatings | High energy demand; product variability |
Hydrothermal carbonization (HTC) | High (hydrochar retains nutrients; liquor recoverable) | Effective pathogen kill; some metals immobilized | Moderate cost; pilot scale | Hydrochar matrix supports adsorption-controlled release and coating adhesion | Process water management; soil impact uncertain |
Gasification | Nutrients concentrated in ash (P, K) | Metals partly stabilized | High cost; energy intensive | Ash usable as P/K-rich input for CRFs after stabilization | Limited scalability; high operating costs |
ISA recovery | High (struvite or leached P) | Metals can be reduced via thermochemical steps | Cost-intensive; not widespread | Struvite usable as CRF core; ISA powders as fillers in polymer coatings | Regulatory hurdles; secondary waste generation |
Sludge Management Strategy | Environmental Impact | Economic Feasibility | Nutrient Recovery Potential | Technology Readiness |
---|---|---|---|---|
Landfilling | High greenhouse gas emissions; risk of leachate | Low cost but unsustainable | Negligible | Established |
Land Application (Agricultural Use) | Risk of heavy metal contamination; nutrient recycling | Moderate cost; cost-effective for farmers | High (N, P, K) | Established |
Incineration | Air pollution; ash disposal required | High operational cost | Low | Mature |
Composting | Moderate emissions; stabilizes organics | Moderate; revenue from compost | Moderate | Mature |
Anaerobic Digestion | Biogas production; reduced volume | Good return via energy recovery | Moderate to High | Mature |
Biochar Production | Carbon sequestration; contaminant immobilization | High initial investment; long-term benefit | High | Emerging |
Encapsulation for Fertilizers | Minimized nutrient leaching; controlled release | Moderate cost; market for CRFs | High | Emerging |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azeem, B. Converting Wastewater Sludge into Slow-Release Fertilizers via Biochar and Encapsulation Technologies. Appl. Sci. 2025, 15, 10954. https://doi.org/10.3390/app152010954
Azeem B. Converting Wastewater Sludge into Slow-Release Fertilizers via Biochar and Encapsulation Technologies. Applied Sciences. 2025; 15(20):10954. https://doi.org/10.3390/app152010954
Chicago/Turabian StyleAzeem, Babar. 2025. "Converting Wastewater Sludge into Slow-Release Fertilizers via Biochar and Encapsulation Technologies" Applied Sciences 15, no. 20: 10954. https://doi.org/10.3390/app152010954
APA StyleAzeem, B. (2025). Converting Wastewater Sludge into Slow-Release Fertilizers via Biochar and Encapsulation Technologies. Applied Sciences, 15(20), 10954. https://doi.org/10.3390/app152010954