Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,704)

Search Parameters:
Keywords = value added chemicals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 940 KiB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Viewed by 633
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

16 pages, 6123 KiB  
Article
Functional Analysis of Penicillium expansum Glucose Oxidase-Encoding Gene, GOX2, and Its Expression Responses to Multiple Environmental Factors
by Yongcheng Yuan, Yutong Ru, Xiaohe Yuan, Shuqi Huang, Dan Yuan, Maorun Fu and Wenxiao Jiao
Horticulturae 2025, 11(7), 860; https://doi.org/10.3390/horticulturae11070860 - 21 Jul 2025
Viewed by 268
Abstract
Penicillium expansum is an acidogenic fungal species that belongs to the phylum Ascomycota. During the infection and colonization of host fruits, P. expansum can efficiently express glucose oxidase (GOX) and oxidize β-D-glucose to generate gluconic acid (GLA). In this study, the bioinformatics analysis [...] Read more.
Penicillium expansum is an acidogenic fungal species that belongs to the phylum Ascomycota. During the infection and colonization of host fruits, P. expansum can efficiently express glucose oxidase (GOX) and oxidize β-D-glucose to generate gluconic acid (GLA). In this study, the bioinformatics analysis method was employed to predict and analyze the function of the GOX protein. In addition, a comprehensive assessment was conducted on the P. expansum GOX coding gene GOX2, and the expression response rules of GOX2 under different external stress environments were explored. The results show that GOX is an unstable hydrophilic protein. It is either an integrated membrane protein (such as a receptor or channel) that is directly anchored to the membrane through a transmembrane structure or a non-classical secreted protein that is secreted extracellularly. RNA-seq data analysis shows that the GOX2 gene is regulated by multiple environmental factors, including pH, temperature, carbon base, and chemical fungicides. The expression level of GOX2 reaches its maximum value under alkaline conditions (pH 8–10) and at approximately 10 °C. Using starch as the carbon source and adding sodium propionate or potassium sorbate has the effect of inhibiting the expression of the GOX2 gene. The analysis of the function of the GOX protein and the characteristics of the GOX2 gene in P. expansum provides new insights into the glucose oxidase-encoding gene GOX2. The research results provide significant value for the subsequent development of new disease resistance strategies by targeting the GOX2 gene and reducing post-harvest disease losses in fruits. Full article
Show Figures

Figure 1

15 pages, 1280 KiB  
Article
The Fermentative and Nutritional Effects of Limonene and a Cinnamaldehyde–Carvacrol Blend on Total Mixed Ration Silages
by Isabele Paola de Oliveira Amaral, Marco Antonio Previdelli Orrico Junior, Marciana Retore, Tatiane Fernandes, Yara América da Silva, Mariany Felex de Oliveira, Ana Carolina Amorim Orrico, Ronnie Coêlho de Andrade and Giuliano Reis Pereira Muglia
Fermentation 2025, 11(7), 415; https://doi.org/10.3390/fermentation11070415 - 18 Jul 2025
Viewed by 471
Abstract
This study evaluated the effects of different doses of limonene essential oil (LEO) and a blend of cinnamaldehyde and carvacrol (BCC) on the fermentative quality and chemical–bromatological composition of total mixed ration (TMR) silages. Two independent trials were conducted, each focused on one [...] Read more.
This study evaluated the effects of different doses of limonene essential oil (LEO) and a blend of cinnamaldehyde and carvacrol (BCC) on the fermentative quality and chemical–bromatological composition of total mixed ration (TMR) silages. Two independent trials were conducted, each focused on one additive, using a completely randomized design with four treatments (0, 200, 400, and 600 mg/kg of dry matter), replicated across two seasons (summer and autumn), with five replicates per treatment per season. The silages were assessed for their chemical composition, fermentation profile, aerobic stability (AS), and storage losses. In the LEO trial, the dry matter (DM) content increased significantly by 0.047% for each mg/kg added. Dry matter recovery (DMR) peaked at 97.9% at 473 mg/kg (p < 0.01), while lactic acid (LA) production reached 5.87% DM at 456 mg/kg. Ethanol concentrations decreased to 0.13% DM at 392 mg/kg (p = 0.04). The highest AS value (114 h) was observed at 203.7 mg/kg, but AS declined slightly at the highest LEO dose (600 mg/kg). No significant effects were observed for the pH, neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), or non-fiber carbohydrates (NFCs). In the BCC trial, DMR reached 98.2% at 548 mg/kg (p < 0.001), and effluent losses decreased by approximately 20 kg/ton DM. LA production peaked at 6.41% DM at 412 mg/kg (p < 0.001), and AS reached 131 h at 359 mg/kg. BCC increased NDF (from 23.27% to 27.73%) and ADF (from 35.13% to 41.20%) linearly, while NFCs and the total digestible nutrients (TDN) decreased by 0.0007% and 0.039% per mg of BCC, respectively. In conclusion, both additives improved the fermentation efficiency by increasing LA and reducing losses. LEO was more effective for DM retention and ethanol reduction, while BCC improved DMR and AS, with distinct effects on fiber and energy fractions. Full article
Show Figures

Figure 1

16 pages, 8045 KiB  
Article
Modification of G-C3N4 by the Surface Alkalinization Method and Its Photocatalytic Depolymerization of Lignin
by Zhongmin Ma, Ling Zhang, Lihua Zang and Fei Yu
Materials 2025, 18(14), 3350; https://doi.org/10.3390/ma18143350 - 17 Jul 2025
Viewed by 315
Abstract
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, [...] Read more.
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, such as a wide band gap and rapid carrier recombination, severely limit its catalytic performance. In this paper, a g-C3N4 modification strategy of K⁺ doping and surface alkalinization is proposed, which is firstly applied to the photocatalytic depolymerization of the lignin β-O-4 model compound (2-phenoxy-1-phenylethanol). K⁺ doping is achieved by introducing KCl in the precursor thermal polymerization stage to weaken the edge structure strength of g-C3N4, and post-treatment with KOH solution is combined to optimize the surface basic groups. The structural/compositional evolution of the materials was analyzed by XRD, FTIR, and XPS. The morphology/element distribution was visualized by SEM-EDS, and the optoelectronic properties were evaluated by UV–vis DRS, PL, EIS, and transient photocurrent (TPC). K⁺ doping and surface alkalinization synergistically regulate the layered structure of the material, significantly increase the specific surface area, introduce nitrogen vacancies and hydroxyl functional groups, effectively narrow the band gap (optimized to 2.35 eV), and inhibit the recombination of photogenerated carriers by forming electron capture centers. Photocatalytic experiments show that the alkalinized g-C3N4 can completely depolymerize 2-phenoxy-1-phenylethanol with tunable product selectivity. By adjusting reaction time and catalyst dosage, the dominant product can be shifted from benzaldehyde (up to 77.28% selectivity) to benzoic acid, demonstrating precise control over oxidation degree. Mechanistic analysis shows that the surface alkaline sites synergistically optimize the Cβ-O bond breakage path by enhancing substrate adsorption and promoting the generation of active oxygen species (·OH, ·O2). This study provides a new idea for the efficient photocatalytic depolymerization of lignin and lays an experimental foundation for the interface engineering and band regulation strategies of g-C3N4-based catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

17 pages, 1609 KiB  
Article
Green Macroalgae Biomass Upcycling as a Sustainable Resource for Value-Added Applications
by Ana Terra de Medeiros Felipe, Alliny Samara Lopes de Lima, Emanuelle Maria de Oliveira Paiva, Roberto Bruno Lucena da Cunha, Addison Ribeiro de Almeida, Francisco Ayrton Senna Domingos Pinheiro, Leandro De Santis Ferreira, Marcia Regina da Silva Pedrini, Katia Nicolau Matsui and Roberta Targino Hoskin
Appl. Sci. 2025, 15(14), 7927; https://doi.org/10.3390/app15147927 - 16 Jul 2025
Viewed by 337
Abstract
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of [...] Read more.
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of shrimp and oyster farming, were investigated regarding their bioactivity, chemical composition, and antioxidant properties. The use of aquaculture by-products as raw materials not only reduces waste accumulation but also makes better use of natural resources and adds value to underutilized biomass, contributing to sustainable production systems. For this, a comprehensive approach including the evaluation of its composition and environmentally friendly extraction of bioactive compounds was conducted and discussed. Green macroalgae exhibited high fiber (37.63% dry weight, DW) and mineral (30.45% DW) contents. Among the identified compounds, palmitic acid and linoleic acid (ω-6) were identified in the highest concentrations. Pigment analysis revealed a high concentration of chlorophylls (73.95 mg/g) and carotenoids (17.75 mg/g). To evaluate the bioactivity of Ulva flexuosa, ultrasound-assisted solid–liquid extraction was performed using water, ethanol, and methanol. Methanolic extracts showed the highest flavonoid content (59.33 mg QE/100 g), while aqueous extracts had the highest total phenolic content (41.50 mg GAE/100 g). Ethanolic and methanolic extracts had the most potent DPPH scavenging activity, whereas aqueous and ethanolic extracts performed best at the ABTS assay. Overall, we show the upcycling of Ulva flexuosa, an underexplored aquaculture by-product, as a sustainable and sensible strategy for multiple value-added applications. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Approaches)
Show Figures

Figure 1

19 pages, 6665 KiB  
Article
Enhanced Flame Retardancy of Silica Fume-Based Geopolymer Composite Coatings Through In Situ-Formed Boron Phosphate from Doped Zinc Phytate and Boric Acid
by Yachao Wang, Yufei Qu, Chuanzhen Wang and Juan Dou
Minerals 2025, 15(7), 735; https://doi.org/10.3390/min15070735 - 14 Jul 2025
Viewed by 182
Abstract
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping [...] Read more.
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping boric acid (BA), zinc phytate (ZnPA), and melamine (MEL). The results of a cone calorimeter demonstrated that appropriate ZnPA and BA significantly enhanced its flame retardancy, evidenced by the peak heat release rate (p-HRR) decreasing from 268.78 to 118.72 kW·m−2, the fire performance index (FPI) increasing from 0.59 to 2.83 s·m2·kW−1, and the flame retardancy index increasing from 1.00 to 8.48, respectively. Meanwhile, the in situ-formed boron phosphate (BPO4) facilitated the residual resilience of the fire-barrier layer. Furthermore, the pyrolysis kinetics indicated that the three-level chemical reactions governed the pyrolysis of the coatings. BPO4 made the pyrolysis Eα climb from 94.28 (P5) to 127.08 (B3) kJ·mol−1 with temperatures of 731–940 °C, corresponding to improved thermal stability. Consequently, this study explored the synergistic flame-retardant mechanism of silica fume-based geopolymer coatings doped with ZnPA, BA, and MEL, providing an efficient strategy for the high-value-added recycling utilization of silica fume. Full article
(This article belongs to the Topic Innovative Strategies to Mitigate the Impact of Mining)
Show Figures

Figure 1

12 pages, 2558 KiB  
Article
Multi-Walled Carbon Nanotube (MWCNT)-Reinforced Polystyrene (PS) Composites: Preparation, Structural Analysis, and Mechanical and Thermal Properties
by Kadir Gündoğan and Damla Karaağaç
Polymers 2025, 17(14), 1917; https://doi.org/10.3390/polym17141917 - 11 Jul 2025
Viewed by 349
Abstract
Polystyrene (PS), a thermoplastic polymer, is used in many applications due to its mechanical performance, good chemical inertness, and excellent processability. However, it is doped with different nanomaterials for reasons such as improving its electrical conductivity and mechanical properties. In this study, carbon [...] Read more.
Polystyrene (PS), a thermoplastic polymer, is used in many applications due to its mechanical performance, good chemical inertness, and excellent processability. However, it is doped with different nanomaterials for reasons such as improving its electrical conductivity and mechanical properties. In this study, carbon nanotube (CNT)-added PS composites were produced with the aim of combining the properties of CNTs, such as their low weight and high tensile strength and Young’s modulus, with the versatility, processability, and mechanical properties of PS. In this study, multi-walled carbon nanotube (MWCNT)-reinforced polystyrene (PS) composites with different percentage ratios (0.1, 0.2, and 0.3 wt%) were prepared by a plastic injection molding method. The mechanical, microstructural, and thermal properties of the fabricated PS/MWCNT composites were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) Spectroscopy, Atomic Force Microscopy (AFM) and Thermogravimetric Analysis (TGA) techniques. AFM analyses were carried out to investigate the surface properties of MWCNT-reinforced composite materials by evaluating the root mean square (RMS) values. These analyses show that the RMS value for MWCNT-reinforced composite materials decreases as the weight percentage of MWCNTs increases. The TGA results show that there is no change in the degradation temperature of the 0.1%- and 0.2%-doped MWCNT composites compared to pure polystyrene, but the degradation of the 0.3%-doped MWCNT composite is almost complete at a temperature of 539 °C. Among the PS/MWCNT composites, the 0.3%-doped MWCNT composite exhibits more thermal stability than pure PS and other composites. Similarly, the values of the percentage elongation and tensile strength of 0.3% MWCNT-doped composites was obtained as 1.91% and 12.174% mm2, respectively. These values are higher than the values of 0.1% and 0.2% MWCNT-doped composite materials. In conclusion, the mechanical and thermal properties of MWCNT-reinforced PS polymers provide promising results for researchers working in this field. Full article
Show Figures

Figure 1

16 pages, 2052 KiB  
Article
Exploring the Potential of Granite Sawing Sludge from Cuasso Al Monte (Italy) for the Development of Aluminosilicate Gel for a Sustainable Industry
by Sabrina Elettra Zafarana, Alessandro Achilli, Germana Barone, Danilo Bersani, Claudio Finocchiaro, Laura Fornasini, Silvia Portale and Paolo Mazzoleni
Minerals 2025, 15(7), 718; https://doi.org/10.3390/min15070718 - 9 Jul 2025
Viewed by 215
Abstract
This study explores the feasibility of utilizing granite sawing sludge (FC) as a precursor to produce alkali-activated materials (AAMs). To enhance the reactivity of the system, metakaolin (MK) was added and binary mixtures were synthetized. A multidisciplinary approach, including mineralogical, chemical and mechanical [...] Read more.
This study explores the feasibility of utilizing granite sawing sludge (FC) as a precursor to produce alkali-activated materials (AAMs). To enhance the reactivity of the system, metakaolin (MK) was added and binary mixtures were synthetized. A multidisciplinary approach, including mineralogical, chemical and mechanical analysis, was employed to assess the suitability of these precursors to produce AAMs. X-Ray diffraction (XRD) and Fourier-Transform Infrared spectroscopy (FT-IR) confirmed the occurred activation reaction with the consequent increase in the amorphous content. Raman spectroscopy was used to further explore the mineralogical composition of the consolidated specimens, helping in the detection of salts, whose formation is ascribed to secondary carbonatation processes. Morphological analysis (SEM-EDS) displayed relatively uniform microstructures for all specimens. Compressive strength tests revealed that MK rich samples achieved best values compared to FC rich formulations, which exhibited reduced strength resistance. This study highlights, for the first time, the benefits of incorporating Cuasso al Monte granite sawing sludges into alkali-activated binders. Results suggested that the incorporation of FC is recommended for both environmental and economic advantages. Full article
Show Figures

Figure 1

17 pages, 2200 KiB  
Article
Phosphogypsum Processing into Innovative Products of High Added Value
by Daniil I. Monastyrsky, Marina A. Kulikova, Marina A. Egorova, Nina P. Shabelskaya, Oleg A. Medennikov, Asatullo M. Radzhabov, Yuliya A. Gaidukova and Vera A. Baranova
Sustainability 2025, 17(13), 6228; https://doi.org/10.3390/su17136228 - 7 Jul 2025
Viewed by 319
Abstract
The paper presents a comprehensive study of the processing possibilities for phosphogypsum, a large-tonnage chemical industry waste, into highly sought-after products, such as ultraviolet pigments, and alkalizing reagents for the preparation of organomineral fertilizers. The materials obtained were characterized by X-ray diffraction (XRD), [...] Read more.
The paper presents a comprehensive study of the processing possibilities for phosphogypsum, a large-tonnage chemical industry waste, into highly sought-after products, such as ultraviolet pigments, and alkalizing reagents for the preparation of organomineral fertilizers. The materials obtained were characterized by X-ray diffraction (XRD), transmission electron microscopy, and thermogravimetric analysis (TGA). It was found that the phosphogypsum thermal treatment process in the presence of a reducing agent (charcoal, sunflower husk) allowed us to obtain new products with a high added value. For the first time, the possibility of obtaining various products by varying process conditions was established. The process of thermal reduction of phosphogypsum in the presence of charcoal at temperatures of 800–900 °C and an isothermal holding time of 60 min resulted in us obtaining samples capable of glowing when irradiated with ultraviolet light. This effect is due to the formation of a composite material based on calcium sulfide and calcium sulfate in the system. The process of the regenerative heat treatment of phosphogypsum at temperatures of 1000–1200 °C resulted in us obtaining a composite material consisting of calcium oxide and sulfate, which can be used for fractionating liquid waste from livestock farming and to obtain organomineral fertilizer. The technological methods developed allow the usage of chemical industrial waste and agricultural waste in secondary processing to produce highly innovative products that will contribute to the achievement of the sustainable development goals, in particular, “Ensuring rational consumption and production patterns”. Full article
Show Figures

Figure 1

26 pages, 7085 KiB  
Review
Advances in Electrolytic Manganese Residue: Harmless Treatment and Comprehensive Utilization
by Weijian Yu, Xiaoya Li, Wenting Xu, Qingjun Guan, Fujia Zhou, Jiani Zhang, Li Wang, Yanxiu Wang and Honghu Tang
Separations 2025, 12(7), 180; https://doi.org/10.3390/separations12070180 - 7 Jul 2025
Viewed by 355
Abstract
Electrolytic manganese residue (EMR) is a byproduct of electrolytic manganese production, rich in soluble pollutants such as manganese and ammonia nitrogen. Traditional stockpiling methods result in contaminant leaching and water pollution, threatening ecosystems. Meanwhile, EMR has significant resource-recovery potential. This paper systematically reviews [...] Read more.
Electrolytic manganese residue (EMR) is a byproduct of electrolytic manganese production, rich in soluble pollutants such as manganese and ammonia nitrogen. Traditional stockpiling methods result in contaminant leaching and water pollution, threatening ecosystems. Meanwhile, EMR has significant resource-recovery potential. This paper systematically reviews the harmless process and resource technology of EMR, efficiency bottlenecks, and the current status of industrial applications. The mechanisms of chemical leaching, precipitation, solidification, roasting, electrochemistry, and microorganisms were analyzed. Among these, electrochemical purification stands out for its efficiency and environmental benefits, positioning it as a promising option for broad industrial use. The mechanisms of chemical leaching, precipitation, solidification, roasting, electrochemistry, and microorganisms were analyzed, revealing the complementarity between building materials and chemical materials (microcrystalline glass) in scale and high-value-added production. But the lack of impurity separation accuracy and market standards restricts its promotion. Finally, it proposes future directions for EMR resource utilization based on practical and economic considerations. Full article
(This article belongs to the Special Issue Solid Waste Recycling and Strategic Metal Extraction)
Show Figures

Figure 1

12 pages, 23410 KiB  
Article
Recycling and Separation of Valuable Metals from Spent Cathode Sheets by Single-Step Electrochemical Strategy
by Neng Wei, Yaqun He, Guangwen Zhang, Jiahao Li and Fengbin Zhang
Separations 2025, 12(7), 178; https://doi.org/10.3390/separations12070178 - 5 Jul 2025
Viewed by 284
Abstract
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An [...] Read more.
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An innovatively designed sandwich-structured electrochemical reactor achieved efficient reductive dissolution of cathode materials (CMs) while maintaining the structural integrity of aluminum (Al) foils in a dilute sulfuric acid system. Optimized current enabled leaching efficiencies exceeding 93% for lithium (Li), cobalt (Co), manganese (Mn), and nickel (Ni), with 88% metallic Al foil recovery via cathodic protection. Multi-scale characterization systematically elucidated metal valence evolution and interfacial reaction mechanisms, validating the technology’s tripartite innovation: simultaneous high metal extraction efficiency, high value-added Al foil recovery, and organic removal through single-step electrochemical treatment. The process synergized the dissolution of CM particles and hydrogen bubble-induced physical liberation to achieve clean separation of polyvinylidene difluoride (PVDF) and carbon black (CB) layers from Al foil substrates. This method eliminates crushing pretreatment, high-temperature reduction, and any other reductant consumption, establishing an environmentally friendly and efficient method of comprehensive recycling of battery materials. Full article
Show Figures

Figure 1

17 pages, 4351 KiB  
Article
Soybean Fermentation Broth Value-Added Phosphorus Fertilizer Boosts Crop Growth via Improved Soil Phosphorus Availability and Rhizosphere Microbial Activity
by Xinyi Zhang, Danyi He, Wuzhihui Huang, Tingyi Wang and Lansheng Deng
Agriculture 2025, 15(13), 1440; https://doi.org/10.3390/agriculture15131440 - 4 Jul 2025
Viewed by 323
Abstract
Excessive application of phosphate fertilizers exacerbates water pollution, while the low phosphorus availability in acidic soils results in diminished phosphorus utilization efficiency of crops. This study conducted a maize pot experiment to investigate the effects of soybean fermentation broth value-added phosphorus fertilizer (SFB-VAPF) [...] Read more.
Excessive application of phosphate fertilizers exacerbates water pollution, while the low phosphorus availability in acidic soils results in diminished phosphorus utilization efficiency of crops. This study conducted a maize pot experiment to investigate the effects of soybean fermentation broth value-added phosphorus fertilizer (SFB-VAPF) on soil phosphorus availability and microbial communities in acidic lateritic red soils during the 31-day seedling stage to determine its growth promotion efficacy. Conducted in Guangzhou, China, under greenhouse conditions, the experimental design comprised 11 treatments: CK (no fertilizer), treatments with P alone at two levels (0.05 and 0.15 g·kg−1), and eight SFB-VAPF treatments combining each P level with four dilutions of soybean fermentation broth (SFB; 100-, 300-, 500-, and 700-fold dilutions). Each treatment had five replications. Application of SFB-VAPF significantly improved the soil chemical attributes, enzyme activities, and promoted maize growth and nutrient accumulation. Compared to the high-P treatments (0.15 g·kg−1 P), low-P SFB-VAPF demonstrated superior enhancement of the soil organic matter (SOM), available nutrients, maize biomass, and nutrient accumulation. The treatment combining 0.05 g·kg−1 P and 100-fold diluted SFB significantly increased the acid phosphatase activity (ACP) by 28.01% and the AP content by 69.63%, while achieving the highest maize biomass. Although SFB-VAPF application reduced the microbial species richness, the combinations of low P with high SFB and high P with low SFB enhanced both the community structural diversity and distribution evenness. SFB-VAPF application reduced the abundance of Alphaproteobacteria, while the Gammaproteobacteria abundance significantly increased in the low-P SFB-VAPF groups. The microbial beta diversity analysis demonstrated that combining 0.05 g·kg−1 P with SFB significantly altered the microbial community structure. The key driving factors included soil EC and SOM, AP, Al-P, and Fe-P contents, with AP content exerting an extremely significant influence on the bacterial community composition and structure (p ≤ 0.001). This study demonstrates that SFB-VAPF enhances soil phosphorus availability, and improves the structural diversity and distribution evenness of microbial communities, thereby promoting crop growth. Critically, SFB synergistically enhances the efficiency of low-concentration phosphorus fertilizers. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

23 pages, 2646 KiB  
Article
Simultaneous Liquid Digestate Treatment and High-Value Microalgal Biomass Production: Influence of Post-Harvest Storage on Biochemical Profiles
by Ewelina Sobolewska, Michał Komar, Sebastian Borowski, Paulina Nowicka-Krawczyk, António Portugal, Nuno Mesquita, Mariana F. G. Assunção, Berk Aksoy, João Cotas and Leonel Pereira
Molecules 2025, 30(13), 2778; https://doi.org/10.3390/molecules30132778 - 27 Jun 2025
Viewed by 764
Abstract
This study investigated the treatment of unsterilized, undiluted, and unfiltered liquid digestate in a large-scale photobioreactor over a period of 33 weeks using a consortium of microalgae and bacteria. The generated biomass was analyzed for a wide spectrum of value-added compounds. The impact [...] Read more.
This study investigated the treatment of unsterilized, undiluted, and unfiltered liquid digestate in a large-scale photobioreactor over a period of 33 weeks using a consortium of microalgae and bacteria. The generated biomass was analyzed for a wide spectrum of value-added compounds. The impact of organic loading rates (OLR) on the microbial culture was determined, and the influence of the biomass storage method on its qualitative composition was also analyzed. The experiment showed optimal growth of microalgae at OLR = 0.1 gCOD/L/day (where COD is Chemical Oxygen Demand), while a higher OLR value led to culture destabilization. Microglena sp., an algae not commonly applied for digestate treatment, showed low tolerance to changes in process conditions (OLR increase) but high readaptation potential when the OLR was lowered to its initial value. Significant changes in the microbial community were observed during the treatment. In Phases 1 and 2, Desmodesmus subspicatus and Actinomycetota phylum dominated in the community, while in Phase 3, Microglena sp. and Firmicutes were the most abundant. Total nitrogen, orthophosphates, and soluble COD were reduced by 89–99%. The biomass storage method had a notable impact on the content of lipids, fatty acids, and pigments. The protein amount was 32.75–33.59% of total solids (TS), while total lipid content was 15.76–19.00% TS, with stearic and palmitic acid being dominant. The effect of the storage regime on the potential biomass valorization was also discussed. Full article
Show Figures

Figure 1

20 pages, 1233 KiB  
Review
Microalgal Valorization of CO2: A Sustainable Pathway to Biofuels and High-Value Chemicals
by Shutong Wu, Kaiyin Ye, Xiaochuan Zheng and Lei Zhao
Fermentation 2025, 11(7), 371; https://doi.org/10.3390/fermentation11070371 - 27 Jun 2025
Viewed by 509
Abstract
The escalating climate crisis and the imperative to transition from a fossil fuel-dependent economy demand transformative solutions for sustainable energy and carbon management. Biological CO2 capture and utilization (CCU) using microalgae represents a particularly compelling approach, capitalizing on microalgae’s high photosynthetic efficiency [...] Read more.
The escalating climate crisis and the imperative to transition from a fossil fuel-dependent economy demand transformative solutions for sustainable energy and carbon management. Biological CO2 capture and utilization (CCU) using microalgae represents a particularly compelling approach, capitalizing on microalgae’s high photosynthetic efficiency and remarkable product versatility. This review critically examines the principles and recent breakthroughs in microalgal CO2 bioconversion, spanning strain selection, advanced photobioreactor (PBR) design, and key factors influencing carbon sequestration efficiency. We explore diverse valorization strategies, including next-generation biofuel production, integrated wastewater bioremediation, and the synthesis of value-added chemicals, underscoring their collective potential for mitigating CO2 emissions and achieving comprehensive resource valorization. Persistent challenges, such as economically viable biomass harvesting, cost-effective scale-up, and enhancing strain robustness, are rigorously examined. Furthermore, we delineate promising future prospects centered on cutting-edge genetic engineering, integrated biorefinery concepts, and synergistic coupling with waste treatment to maximize sustainability. By effectively bridging carbon neutrality with renewable resource production, microalgae-based technologies hold considerable potential to spearhead the circular bioeconomy, accelerate the renewable energy transition, and contribute significantly to achieving global climate objectives. Full article
(This article belongs to the Special Issue Algae—The Medium of Bioenergy Conversion: 2nd Edition)
Show Figures

Figure 1

17 pages, 3640 KiB  
Article
Sustainable Development of PLA-Based Biocomposites Reinforced with Pineapple Core Powder: Extrusion and 3D Printing for Thermal and Mechanical Performance
by Kawita Chattrakul, Anothai Pholsuwan, Athapon Simpraditpan, Ekkachai Martwong and Wichain Chailad
Polymers 2025, 17(13), 1792; https://doi.org/10.3390/polym17131792 - 27 Jun 2025
Viewed by 449
Abstract
This study developed sustainable biocomposites composed of polylactic acid (PLA) and surface-treated pineapple core powder (PACP), fabricated via extrusion and fused deposition modelling (FDM). PACP loadings of 1–3 vol% were combined after chemical modification with NaOH and silane to improve interfacial bonding. Particle [...] Read more.
This study developed sustainable biocomposites composed of polylactic acid (PLA) and surface-treated pineapple core powder (PACP), fabricated via extrusion and fused deposition modelling (FDM). PACP loadings of 1–3 vol% were combined after chemical modification with NaOH and silane to improve interfacial bonding. Particle morphology showed increased porosity and surface roughness following treatment. The melt flow index (MFI) increased from 31.56 to 35.59 g/10 min at 2 vol% PACP, showing improved flowability. Differential scanning calorimetry (DSC) showed the emergence of cold crystallization (Tcc ~121 °C) and an increase in crystallinity from 35.7% (neat PLA) to 47.3% (2 vol% PACP). Thermogravimetric analysis showed only slight decreases in T5 and Tmax, showing the thermal stability. The mechanical testing of extruded filaments showed increased modulus (1463 to 1518 MPa) but a decrease in tensile strength and elongation. For the 3D-printed samples, elongation at break increased slightly at 1–2 vol% PACP, likely because of the improvement in interlayer fusion. Though, at 3 vol% PACP, the mechanical properties declined, consistent with filler agglomeration observed in SEM. Overall, 2 vol% PACP offered the optimal balance between printability, crystallinity, and mechanical performance. These results reveal the possibility of PACP as a value-added biowaste filler for eco-friendly PLA composites suitable for extrusion and 3D printing applications. Full article
(This article belongs to the Special Issue Sustainable Biopolymers and Bioproducts from Bioresources)
Show Figures

Figure 1

Back to TopTop