Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,877)

Search Parameters:
Keywords = vaccine efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 881 KiB  
Article
Evaluating Free PPV23 Vaccination for the Elderly in Nanning, China: A Cost-Effectiveness Analysis
by Zhengqin Su, Linlin Deng, Dan Luo, Jianying Ren, Xiaozhen Shen, Wenjie Liang, Haibin Wei, Xiong Zou, Zhongyou Li and Hai Li
Vaccines 2025, 13(7), 763; https://doi.org/10.3390/vaccines13070763 - 18 Jul 2025
Abstract
Background: This study aims to evaluate the cost-effectiveness of providing the 23-valent pneumococcal polysaccharide vaccine (PPV23) free of charge versus self-paying vaccination among adults aged 60 years and older in Nanning, Guangxi, China. Methods: A decision tree–Markov model was developed to [...] Read more.
Background: This study aims to evaluate the cost-effectiveness of providing the 23-valent pneumococcal polysaccharide vaccine (PPV23) free of charge versus self-paying vaccination among adults aged 60 years and older in Nanning, Guangxi, China. Methods: A decision tree–Markov model was developed to compare three strategies (government-funded free vaccination, self-funded vaccination, and no vaccination) over a 5-year time horizon. The model incorporated local epidemiological data and cost parameters, applying a 3% discount rate. Sensitivity analyses were conducted on key parameters, including vaccine effectiveness against pneumonia and pneumonia treatment costs. Results: The benefit–cost ratios for free and self-funded vaccination were 0.075 and 0.015, respectively, both below the cost-effectiveness threshold of 1. However, the free vaccination strategy resulted in a higher net benefit (USD 399,651.32) compared to the self-funded strategy (USD 222,594.14), along with a lower Incremental Cost-Effectiveness Ratio (ICER) (USD 1.47 per USD 0.14 of avoided disease cost). Although both strategies yielded benefit–cost ratios far below the conventional threshold of 1, the free strategy demonstrated relatively greater economic efficiency. Sensitivity analyses confirmed that vaccine effectiveness against pneumonia and treatment costs were key drivers of economic outcomes. Conclusions: While neither vaccination strategy achieved conventional cost-effectiveness benchmarks in this setting, the free PPV23 vaccination program demonstrated relatively greater economic efficiency compared to the self-funded approach; although neither strategy met the conventional cost-effectiveness thresholds, they should be considered for inclusion in regional health policy for older adults. Full article
(This article belongs to the Section Vaccines and Public Health)
Show Figures

Figure 1

31 pages, 1683 KiB  
Review
Strategic Advances in Targeted Delivery Carriers for Therapeutic Cancer Vaccines
by Junxi Wu, Jinghui Liang, Yuan Zhang, Chunyan Dong, Dejiang Tan, Hongyu Wang, Yiyang Zheng and Qing He
Int. J. Mol. Sci. 2025, 26(14), 6879; https://doi.org/10.3390/ijms26146879 - 17 Jul 2025
Abstract
Cancer is one of the major global health burdens, and more effective treatments are needed. At present, there are surgery, targeted therapy, and immunotherapy for the treatment of tumors, but due to the limitations of diagnostic technology and drug resistance, surgery and targeted [...] Read more.
Cancer is one of the major global health burdens, and more effective treatments are needed. At present, there are surgery, targeted therapy, and immunotherapy for the treatment of tumors, but due to the limitations of diagnostic technology and drug resistance, surgery and targeted therapy have little effect. Active immunization in the field of immunotherapy can mobilize host immunity, trigger tumor-specific T-cell responses, and produce targeted cytotoxicity. Its efficacy largely depends on the targeted delivery efficiency of cancer vaccines. Although immunotherapy is more durable than other approaches, immunosuppression in the tumor microenvironment and immune evasion by malignant cells limit the therapeutic efficacy of cancer vaccines. To overcome these challenges, this review summarizes key strategies for improving vaccine vector targeting, as well as recent advances and trends in delivery systems. Full article
(This article belongs to the Special Issue Molecular Insights in Antivirals and Vaccines)
Show Figures

Figure 1

12 pages, 3211 KiB  
Article
CRISPR/Cas12a-Based One-Tube RT-RAA Assay for PoRV Genotyping
by Mingfang Bi, Zunbao Wang, Kaijie Li, Yuhe Ren, Dan Ma and Xiaobing Mo
Int. J. Mol. Sci. 2025, 26(14), 6846; https://doi.org/10.3390/ijms26146846 - 16 Jul 2025
Viewed by 112
Abstract
Porcine rotavirus (PoRV), a primary etiological agent of viral diarrhea in piglets, frequently co-infects with other enteric pathogens, exacerbating disease severity and causing substantial economic losses. Its genetic recombination capability enables cross-species transmission potential, posing public health risks. Globally, twelve G genotypes and [...] Read more.
Porcine rotavirus (PoRV), a primary etiological agent of viral diarrhea in piglets, frequently co-infects with other enteric pathogens, exacerbating disease severity and causing substantial economic losses. Its genetic recombination capability enables cross-species transmission potential, posing public health risks. Globally, twelve G genotypes and thirteen P genotypes have been identified, with G9, G5, G3, and G4 emerging as predominant circulating strains. The limited cross-protective immunity between genotypes compromises vaccine efficacy, necessitating genotype surveillance to guide vaccine development. While conventional molecular assays demonstrate sensitivity, they lack rapid genotyping capacity and face technical limitations. To address this, we developed a novel diagnostic platform integrating reverse transcription recombinase-aided amplification (RT-RAA) with CRISPR–Cas12a. This system employs universal primers for the simultaneous amplification of G4/G5/G9 genotypes in a single reaction, coupled with sequence-specific CRISPR recognition, achieving genotyping within 50 min at 37 °C with 100 copies/μL sensitivity. Clinical validation showed a high concordance with reverse transcription quantitative polymerase chain reaction (RT-qPCR). This advancement provides an efficient tool for rapid viral genotyping, vaccine compatibility evaluation, and optimized epidemic control strategies. Full article
(This article belongs to the Special Issue Protein Design and Engineering in Biochemistry)
Show Figures

Figure 1

13 pages, 3597 KiB  
Article
Effects of Canine IL-12 on the Immune Response Against the Canine Parvovirus VP2 Protein
by Shiyan Wang, Wenjie Jiao, Dannan Zhao, Yuzhu Gong, Jingying Ni, Huawei Wu, Jige Du, Tuanjie Wang and Chunsheng Yin
Vaccines 2025, 13(7), 758; https://doi.org/10.3390/vaccines13070758 - 16 Jul 2025
Viewed by 57
Abstract
Background: Canine parvovirus (CPV) is a highly pathogenic virus that predominantly affects puppies, with mortality rates exceeding 70%. Although commercial multivalent live attenuated vaccines (MLV) are widely employed, their efficacy is often compromised by maternal antibody interference. Consequently, the development of novel vaccines [...] Read more.
Background: Canine parvovirus (CPV) is a highly pathogenic virus that predominantly affects puppies, with mortality rates exceeding 70%. Although commercial multivalent live attenuated vaccines (MLV) are widely employed, their efficacy is often compromised by maternal antibody interference. Consequently, the development of novel vaccines remains imperative for effective CPV control. Methods: Recombinant CPV VP2 protein (rVP2) and canine interlukine 12 protein (rcIL-12) were expressed using the Bac-to-Bac baculovirus expression system and the biological activity of these proteins was assessed through hemagglutination, Cell Counting Kit-8 (CCK8) and IFN-γ induction assays. The combined immunoenhancement effect of rVP2 and rcIL-12 protein was evaluated in puppies. Results: Both rVP2 and rcIL-12 were successfully expressed and purified, exhibiting confirmed antigenicity, immunogenicity, and bioactivity. Co-administration of rVP2 with rcIL-12 elicited higher neutralizing antibody titer (6–7 times higher), complete challenge protection efficiency (no clinical symptoms and tissue and organ lesions), fewer viral shedding (decreasing significantly 8-day post challenge) and superior viral blockade (lower viral load in the organism) compared to rVP2 alone. Conclusions: Our findings demonstrate that rVP2 co-administered with rcIL-12 induces robust protective immunity in puppies and significantly mitigated the inhibitory effects of maternal antibodies. This represents a promising strategy for enabling earlier vaccination in puppies and rational design of CPV subunit vaccines. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

21 pages, 3801 KiB  
Article
Immunogenicity, Efficacy and Twelve-Month Storage Stability Studies of a Lyophilized Rabies mRNA Vaccine
by Chen Chen, Dandan Ling, Kai Ji, Liang Tang, Xiaojing Zhang, Xishan Lu, Xuemei Leng, Changyao Tan, Hongchao Wu, Wenqiang Pang, Quanren He, Jerry Zhang, Peng Gao, Xiaotao Wang, Linhui Wang and Bo Ying
Vaccines 2025, 13(7), 743; https://doi.org/10.3390/vaccines13070743 - 10 Jul 2025
Viewed by 515
Abstract
Background: Many new mRNA-based vaccine candidates in liquid mRNA-LNP formulations are under development; however, their stability limitations necessitate frozen storage, posing a significant challenge for long-term storage and transportation. Methods: In this study, an mRNA-LNP rabies vaccine, ABO1005, was prepared, freeze-dried and stored [...] Read more.
Background: Many new mRNA-based vaccine candidates in liquid mRNA-LNP formulations are under development; however, their stability limitations necessitate frozen storage, posing a significant challenge for long-term storage and transportation. Methods: In this study, an mRNA-LNP rabies vaccine, ABO1005, was prepared, freeze-dried and stored at 2–8 °C for 12-month storage stability evaluation. The immunogenicity, vaccine potency (the NIH method), and protective efficacy of ABO1005 were assessed in mice or dogs and compared to a commercialized inactivated vaccine. Results: Research conducted in mice indicated that the lyophilized vaccine exhibited comparable immunogenicity to its liquid form counterpart. Furthermore, the vaccine candidate elicited a robust humoral response lasting at least 175 days, and the specific antibody titers were not affected by the pre-administration of hyperimmune serum. In comparison to the commercialized inactivated vaccine (HDCV or PVRV), ABO1005 elicited significantly higher levels of humoral and cellular immunity. Vaccine potency testing (NIH) revealed that the potency of ABO1005 at 15 μg/dose was 8.85 IU/dose, which is substantially higher than the standard required for the lot release of rabies vaccines for current human use. In a post-exposure prophylaxis (PEP) study in Beagle dogs, the lyophilized vaccine provided 100% protection for dogs following a two-dose regimen (D0-D7), whereas commercially approved inactivated vaccine offered 83% protection. After storage at 2–8 °C for 12 months, no notable changes were observed in the particle size, encapsulation efficiency, and integrity of mRNA or in the immunogenicity of the lyophilized vaccine. Conclusions: This study successfully developed a formulation and process of freeze-drying for a rabies mRNA vaccine, paving the way for future lyophilized mRNA vaccine development. Full article
(This article belongs to the Special Issue The Development of mRNA Vaccines)
Show Figures

Figure 1

29 pages, 5028 KiB  
Article
Moloney Murine Leukemia Virus-like Nanoparticles Pseudo-Typed with SARS-CoV-2 RBD for Vaccination Against COVID-19
by Bernhard Kratzer, Pia Gattinger, Peter A. Tauber, Mirjam Schaar, Al Nasar Ahmed Sehgal, Armin Kraus, Doris Trapin, Rudolf Valenta and Winfried F. Pickl
Int. J. Mol. Sci. 2025, 26(13), 6462; https://doi.org/10.3390/ijms26136462 - 4 Jul 2025
Viewed by 451
Abstract
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of [...] Read more.
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of yet. Here, we variably fused the wildtype SARS-CoV-2 spike, its receptor-binding domain (RBD) and nucleocapsid (NC) to the minimal CD16b-GPI anchor acceptor sequence for expression on the surface of VNP. Moreover, a CD16b-GPI-anchored single-chain version of IL-12 was tested for its adjuvanticity. VNPs expressing RBD::CD16b-GPI alone or in combination with IL-12::CD16b-GPI were used to immunize BALB/c mice intramuscularly and subsequently to investigate virus-specific humoral and cellular immune responses. CD16b-GPI-anchored viral molecules and IL-12-GPI were well-expressed on HEK-293T-producer cells and purified VNPs. After the immunization of mice with VNPs, RBD-specific antibodies were only induced with RBD-expressing VNPs, but not with empty control VNPs or VNPs solely expressing IL-12. Mice immunized with RBD VNPs produced RBD-specific IgM, IgG2a and IgG1 after the first immunization, whereas RBD-specific IgA only appeared after a booster immunization. Protein/peptide microarray and ELISA analyses confirmed exclusive IgG reactivity with folded but not unfolded RBD and showed no specific IgG reactivity with linear RBD peptides. Notably, booster injections gradually increased long-term IgG antibody avidity as measured by ELISA. Interestingly, the final immunization with RBD–Omicron VNPs mainly enhanced preexisting RBD Wuhan Hu-1-specific antibodies. Furthermore, the induced antibodies significantly neutralized SARS-CoV-2 and specifically enhanced cellular cytotoxicity (ADCC) against RBD protein-expressing target cells. In summary, VNPs expressing viral proteins, even in the absence of adjuvants, efficiently induce functional SARS-CoV-2-specific antibodies of all three major classes, making this technology very interesting for future vaccine development and boosting strategies with low reactogenicity. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 5007 KiB  
Review
PROTAC-Based Antivirals for Respiratory Viruses: A Novel Approach for Targeted Therapy and Vaccine Development
by Amith Anugu, Pankaj Singh, Dharambir Kashyap, Jillwin Joseph, Sheetal Naik, Subhabrata Sarkar, Kamran Zaman, Manpreet Dhaliwal, Shubham Nagar, Tanishq Gupta and Prasanna Honnavar
Microorganisms 2025, 13(7), 1557; https://doi.org/10.3390/microorganisms13071557 - 2 Jul 2025
Viewed by 365
Abstract
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this [...] Read more.
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this control is limited due to unexpected events, such as mutations and the development of antiviral resistance. The technology of proteolysis-targeting chimeras (PROTACs) has been emerging as a novel technology in viral therapeutics. These are small molecules that can selectively degrade target proteins via the ubiquitin–proteasome pathway. PROTACs as a therapy were initially developed against cancer, but they have recently shown promising results in their antiviral mechanisms by targeting viral and/or host proteins involved in the pathogenesis of viral infections. In this review, we elaborate on the antiviral potential of PROTACs as therapeutic agents and their potential as vaccine components against important respiratory viral pathogens, including influenza viruses, coronaviruses (SARS-CoV-2), and respiratory syncytial virus. Advanced applications of PROTAC antiviral strategies, such as hemagglutinin and neuraminidase degraders for influenza and spike proteins of SARS-CoV-2, are detailed in this review. Additionally, the role of PROTACs in targeting cellular mechanisms within the host, thereby preventing viral pathogenesis and eliciting an antiviral effect, is discussed. The potential of PROTACs as vaccines, utilizing proteasome-based virus attenuation to achieve a robust protective immune response, while ensuring safety and enhancing efficient production, is also presented. With the promises exhibited by PROTACs, this technology faces significant challenges, including the emergence of novel viral strains, tissue-specific expression of E3 ligases, and pharmacokinetic constraints. With advanced computational design in molecular platforms, PROTAC-based antiviral development offers an alternative, transformative path in tackling respiratory viruses. Full article
Show Figures

Figure 1

19 pages, 2810 KiB  
Article
In Vitro Assessment of a Doubly Adjuvanted Self-Emulsified Nanoemulsion as a Delivery Vehicle for Antigenic Proteins
by Evgenia Tsanaktsidou, Maritsa Margaroni, Evdokia Karagouni, Costas Kiparissides and Olga Kammona
Pharmaceutics 2025, 17(7), 870; https://doi.org/10.3390/pharmaceutics17070870 - 2 Jul 2025
Viewed by 338
Abstract
Background/Objectives: Leishmaniasis is a prevailing infectious disease transmitted via infected phlebotomine sandflies. The lack of an efficient vaccine with respect to immunogenic antigens and adjuvanted delivery systems impedes its control. Following the induction of immune responses in mice vaccinated with multi-epitope Leishmania peptides [...] Read more.
Background/Objectives: Leishmaniasis is a prevailing infectious disease transmitted via infected phlebotomine sandflies. The lack of an efficient vaccine with respect to immunogenic antigens and adjuvanted delivery systems impedes its control. Following the induction of immune responses in mice vaccinated with multi-epitope Leishmania peptides (LeishPts) encapsulated in doubly adjuvanted self-nanoemulsifying drug delivery systems (ST-SNEDDSs), this study aims to assess ST-SNEDDS-based nanoemulsions as vehicles for the delivery of antigenic proteins. Methods: Model antigens (e.g., BSA-FITC, OVA) were encapsulated in ST-SNEDDS after being complexed with the cationic phospholipid dimyristoyl phosphatidylglycerol (DMPG) via hydrophobic ion pairing. The nanoemulsions were characterized with respect to droplet diameter, zeta potential, stability, protein loading, protein release from the nanodroplets in different release media and cell uptake. Results: Both model antigens exhibited high encapsulation efficiency (>95%) and their release from the nanodroplets was shown to be strongly affected by the type of release medium (e.g., PBS, FBS 10% v/v) and the ratio of its volume to that of the oily phase, in agreement with predictions of protein release. Protein-loaded nanoemulsion droplets labeled with Cy-5 were found to be efficiently taken up by macrophages (J774A.1) in vitro. However, no colocalization of the labeled nanodroplets and BSA-FITC could be observed. Conclusions: It was revealed that in contrast with LeishPts, whole protein molecules may not be appropriate antigenic cargo for ST-SNEDDS formulations due to the rapid protein release from the nanodroplets in release media simulating in vitro culture and in vivo conditions such as FBS 10% v/v. Full article
Show Figures

Graphical abstract

12 pages, 2246 KiB  
Article
Digital Twin for Upstream and Downstream Integration of Virus-like Particle Manufacturing
by Simon Baukmann, Alina Hengelbrock, Kristina Katsoutas, Jörn Stitz, Axel Schmidt and Jochen Strube
Processes 2025, 13(7), 2101; https://doi.org/10.3390/pr13072101 - 2 Jul 2025
Viewed by 308
Abstract
Virus-like particles (VLPs) have the potential to become a versatile carrier platform for vaccination against multiple diseases. In the light of short process development timelines and the demand for reliable and robust processes, metabolic modeling of cell culture processes offers great advantages when [...] Read more.
Virus-like particles (VLPs) have the potential to become a versatile carrier platform for vaccination against multiple diseases. In the light of short process development timelines and the demand for reliable and robust processes, metabolic modeling of cell culture processes offers great advantages when coupled with a Quality-by-Design (QbD) development approach. A previous work was able to demonstrate the accurate prediction of HEK293F PiggyBac cell concentration as well as VLP titer and metabolite production with a reduced metabolic model. This work presents the reduced metabolic model for a more productive cell line Sleeping Beauty and emphasizes the need for model re-parameterization when the producer cell line changes. The goal of precise prediction for a fed-batch and continuous HEK293 cultivation can, therefore, be achieved. In terms of decision-making for downstream unit operations, a soft sensor for the prediction of main impurities like proteins and DNA was introduced for the first time for the production of lentiviral vectors with several terms describing the release of impurities like DNA and proteins, growth-related protein production, and enzymatic degradation activity associated with cell dissociation in an accurate manner. The additional information can contribute to a more efficient design phase by reducing experimental effort as well as during cultivation with data-based decision-making. With the aid of real-time process data acquisition through process analytical technology (PAT), its predictive power can be enhanced and lead to more reliable processes. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

20 pages, 2236 KiB  
Article
Unveiling Immune Response Mechanisms in Mpox Infection Through Machine Learning Analysis of Time Series Gene Expression Data
by Qinglan Ma, Xianchao Zhou, Lei Chen, Kaiyan Feng, Yusheng Bao, Wei Guo, Tao Huang and Yu-Dong Cai
Life 2025, 15(7), 1039; https://doi.org/10.3390/life15071039 - 30 Jun 2025
Viewed by 363
Abstract
Monkeypox virus (Mpox) has recently drawn global attention due to outbreaks beyond its traditional endemic regions. Understanding the immune response to Mpox infection is essential for improving disease management and guiding vaccine development. In this study, we used several machine learning algorithms to [...] Read more.
Monkeypox virus (Mpox) has recently drawn global attention due to outbreaks beyond its traditional endemic regions. Understanding the immune response to Mpox infection is essential for improving disease management and guiding vaccine development. In this study, we used several machine learning algorithms to analyze time series gene expression data from macaques infected with Mpox, aiming to uncover key immune-related genes involved in different stages of infection. The dataset covered early infection, late infection, and rechallenge phases. We applied nine feature ranking methods to analyze the feature importance, obtaining nine feature lists. Then, the incremental feature selection method was applied to each list to extract key genes and build efficient prediction models and classification rules for each list. This procedure employed twelve classification algorithms and the Synthetic Minority Oversampling Technique. Key genes—such as CD19, MS4A1, and TLR10—were repeatedly identified from multiple feature lists, and are known to play vital roles in B-cell activation, antibody production, and innate immunity. Furthermore, we identified several novel key genes (HS3ST1, SPAG16, and MTARC2) that have not been reported previously. These findings offer valuable insights into the host immune response and highlight potential molecular targets for monitoring and intervention in Mpox infections. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

32 pages, 1959 KiB  
Review
hMPV Outbreaks: Worldwide Implications of a Re-Emerging Respiratory Pathogen
by Alexandra Lianou, Andreas G. Tsantes, Petros Ioannou, Efstathia-Danai Bikouli, Anastasia Batsiou, Aggeliki Kokkinou, Kostantina A. Tsante, Dionysios Tsilidis, Maria Lampridou, Nicoletta Iacovidou and Rozeta Sokou
Microorganisms 2025, 13(7), 1508; https://doi.org/10.3390/microorganisms13071508 - 27 Jun 2025
Viewed by 525
Abstract
Human metapneumovirus (hMPV), a member of the Pneumoviridae subfamily, has emerged as a significant etiological agent of acute respiratory tract infections across diverse age groups, particularly affecting infants, the elderly, and immunocompromised individuals. Since its initial identification in 2001, hMPV has been recognized [...] Read more.
Human metapneumovirus (hMPV), a member of the Pneumoviridae subfamily, has emerged as a significant etiological agent of acute respiratory tract infections across diverse age groups, particularly affecting infants, the elderly, and immunocompromised individuals. Since its initial identification in 2001, hMPV has been recognized globally for its seasonal circulation pattern, predominantly in late winter and spring. hMPV is a leading etiological agent, accounting for approximately 5% to 10% of hospitalizations among pediatric patients with acute respiratory tract infections. hMPV infection can result in severe bronchiolitis and pneumonia, particularly in young children, with clinical manifestations often indistinguishable from those caused by human RSV. Primary hMPV infection typically occurs during early childhood; however, re-infections are frequent and may occur throughout an individual’s lifetime. hMPV is an enveloped, negative-sense RNA virus transmitted through respiratory droplets and aerosols, with a 3–5-day incubation period. The host immune response is marked by elevated pro-inflammatory cytokines, which contribute to disease severity. Advances in molecular diagnostics, particularly reverse transcription–quantitative polymerase chain reaction (RT-qPCR) and metagenomic next-generation sequencing (mNGS), have improved detection accuracy and efficiency. Despite these advancements, treatment remains largely supportive, as no specific antiviral therapy has yet been approved. Promising developments in vaccine research, including mRNA-based candidates, are currently undergoing clinical evaluation. This review synthesizes current knowledge on hMPV, highlighting its virological, epidemiological, and clinical characteristics, along with diagnostic advancements and emerging therapeutic strategies, while underscoring the critical role of continued research and sustained preventive measures—including vaccines, monoclonal antibodies, and non-pharmaceutical interventions—in mitigating the global burden of hMPV-related disease. Full article
(This article belongs to the Special Issue Emerging and Re-Emerging Infections in the Immunocompromised Host)
Show Figures

Figure 1

16 pages, 8302 KiB  
Article
Complex Medium-Chain Triglycerides Mitigate Porcine Epidemic Diarrhea Virus Infection in Piglets by Enhancing Anti-Inflammation, Antioxidation, and Intestinal Barrier Function
by Tingting Hu, Yunhao Liu, Sihui Gao, Xiaonan Zhao, Huangzuo Cheng, Youjun Hu, Huaqiao Tang, Zhiwen Xu and Chunlin Fang
Viruses 2025, 17(7), 920; https://doi.org/10.3390/v17070920 - 27 Jun 2025
Viewed by 297
Abstract
Porcine epidemic diarrhea (PED), a highly contagious enteric disease caused by the porcine epidemic diarrhea virus (PEDV), is characterized by vomiting, diarrhea, and dehydration, leading to high mortality in newborn piglets and significant economic losses in the swine industry. The shortage of effective [...] Read more.
Porcine epidemic diarrhea (PED), a highly contagious enteric disease caused by the porcine epidemic diarrhea virus (PEDV), is characterized by vomiting, diarrhea, and dehydration, leading to high mortality in newborn piglets and significant economic losses in the swine industry. The shortage of effective PED vaccines emphasizes the need to explore potent natural compounds for therapeutic intervention. It has been shown that glycerol monolaurate (GML) effectively inhibits PEDV replication in vivo and in vitro. Further investigation is needed to assess whether complex medium-chain triglycerides (CMCTs), composed of glyceryl tricaprylate/caprate (GTCC) and GML, offer an efficient anti-PEDV activity. In this study, piglets were orally infected with PEDV and exhibited typical clinical signs, including diarrhea and vomiting, accompanied by intestinal inflammation, oxidative stress, and tissue damage. CMCTs were administered orally twice daily for one week. In vivo findings indicate that CMCT treatment alleviated clinical signs and prevented weight loss. It significantly increased serum immunoglobulins (IgG, IgM, and IgA) and intestinal mucosal sIgA and MUC-2 levels, while reducing pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-17) and increasing antiviral interferons (IFN-α and IFN-γ), anti-inflammatory cytokines (IL-4 and IL-10), and IL-22. Antioxidant enzyme activities (T-AOC, SOD, GSH-Px, and CAT) were elevated, whereas oxidative stress markers (iNOS, NO, and MDA) were decreased. Expression of intestinal tight junction proteins claudin-1 and ZO-1 was restored. Moreover, CD4+ and CD8+ T cell populations increased, and the functions of regulatory T cells (Tregs) were restored. Gut microbiota analysis showed increased beneficial genera (Streptococcus and Ligilactobacillus) and decreased pathogenic Escherichia-Shigella. These results demonstrate that CMCTs mitigate PEDV infection by enhancing anti-inflammation, antioxidation, and intestinal barrier function, as well as modulating gut microbiota composition. This study improves the understanding of the pathogenesis of PEDV and highlights CMCTs as a promising therapeutic candidate for PED. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

21 pages, 1578 KiB  
Article
ISG15 as a Potent Immune Adjuvant in MVA-Based Vaccines Against Zika Virus and SARS-CoV-2
by Juan García-Arriaza, Michela Falqui, Patricia Pérez, Rocío Coloma, Beatriz Perdiguero, Enrique Álvarez, Laura Marcos-Villar, David Astorgano, Irene Campaña-Gómez, Carlos Óscar S. Sorzano, Mariano Esteban, Carmen Elena Gómez and Susana Guerra
Vaccines 2025, 13(7), 696; https://doi.org/10.3390/vaccines13070696 - 27 Jun 2025
Viewed by 392
Abstract
Background: Vaccines represent one of the most affordable and efficient tools for controlling infectious diseases; however, the development of efficacious vaccines against complex pathogens remains a major challenge. Adjuvants play a relevant role in enhancing vaccine-induced immune responses. One such molecule is interferon-stimulated [...] Read more.
Background: Vaccines represent one of the most affordable and efficient tools for controlling infectious diseases; however, the development of efficacious vaccines against complex pathogens remains a major challenge. Adjuvants play a relevant role in enhancing vaccine-induced immune responses. One such molecule is interferon-stimulated gene 15 (ISG15), a key modulator of antiviral immunity that acts both through ISGylation-dependent mechanisms and as a cytokine-like molecule. Methods: In this study, we assessed the immunostimulatory potential of ISG15 as an adjuvant in Modified Vaccinia virus Ankara (MVA)-based vaccine candidates targeting Zika virus (ZIKV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Early innate responses and immune cell infiltration were analyzed in immunized mice by flow cytometry and cytokine profiling. To elucidate the underlying mechanism of action of ISG15, in vitro co-infection studies were performed in macrophages. Finally, we evaluated the magnitude and functional quality of the elicited antigen-specific cellular immune responses in vivo. Results: Analysis of early innate responses revealed both platform- and variant-specific effects. ISG15AA preferentially promoted natural killer (NK) cell recruitment at the injection site, whereas ISG15GG enhanced myeloid cell infiltration in draining lymph nodes (DLNs), particularly when delivered via MVA. Moreover, in vitro co-infection of macrophages with MVA-based vaccine vectors and the ISG15AA mutant led to a marked increase in proinflammatory cytokine production, highlighting a dominant role for the extracellular, ISGylation-independent functions of ISG15 in shaping vaccine-induced immunity. Notably, co-infection of ISG15 with MVA-ZIKV and MVA-SARS-CoV-2 vaccine candidates enhanced the magnitude of antigen-specific immune responses in both vaccine models. Conclusions: ISG15, particularly in its ISGylation-deficient form, acts as a promising immunomodulatory adjuvant for viral vaccines, enhancing both innate and adaptive immune responses. Consistent with previous findings in the context of Human Immunodeficiency virus type 1 (HIV-1) vaccines, this study further supports the potential of ISG15 as an effective adjuvant for vaccines targeting viral infections such as ZIKV and SARS-CoV-2. Full article
(This article belongs to the Special Issue Protective Immunity and Adjuvant Vaccines)
Show Figures

Figure 1

20 pages, 3846 KiB  
Article
Early to Late VSV-G Expression in AcMNPV BV Enhances Transduction in Mammalian Cells but Does Not Affect Virion Yield in Insect Cells
by Jorge Alejandro Simonin, Franco Uriel Cuccovia Warlet, María del Rosario Bauzá, María del Pilar Plastine, Victoria Alfonso, Fernanda Daniela Olea, Carolina Susana Cerrudo and Mariano Nicolás Belaich
Vaccines 2025, 13(7), 693; https://doi.org/10.3390/vaccines13070693 - 26 Jun 2025
Viewed by 342
Abstract
Background/Objectives: Baculoviruses represent promising gene delivery vectors for mammalian systems, combining high safety profiles with substantial cargo capacity. While pseudotyping with vesicular stomatitis virus G-protein (VSV-G) enhances transduction efficiency, optimal expression strategies during the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection cycle remain unexplored. [...] Read more.
Background/Objectives: Baculoviruses represent promising gene delivery vectors for mammalian systems, combining high safety profiles with substantial cargo capacity. While pseudotyping with vesicular stomatitis virus G-protein (VSV-G) enhances transduction efficiency, optimal expression strategies during the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection cycle remain unexplored. This study investigates how VSV-G expression timing affects pseudotype incorporation into budded virions (BVs) and subsequent transduction efficacy. Methods: Three recombinant AcMNPV constructs were generated, each expressing VSV-G under distinct baculoviral promoters (ie1, gp64, and p10) and GFP via a CMV promoter. VSV-G incorporation was verified by Western blot, while transduction efficiency was quantified in mammalian cell lines (fluorescence microscopy/flow cytometry) and rat hind limbs. Viral productivity was assessed through production kinetics and plaque assays. Results: All the pseudotyped viruses showed significantly enhanced transduction capacity versus controls, strongly correlating with VSV-G incorporation levels. The p10 promoter drove the highest VSV-G expression and transduction efficiency. Crucially, BV production yields and infectivity remained unaffected by VSV-G expression timing. The in vivo results mirrored the cell culture findings, with p10-driven constructs showing greater GFP expression at low doses (104 virions). Conclusions: Strategic VSV-G expression via very late promoters (particularly p10) maximizes baculoviral transduction without compromising production yields. This study establishes a framework for optimizing pseudotyped BV systems, demonstrating that late-phase glycoprotein expression balances high mammalian transduction with preserved insect-cell productivity—a critical advancement for vaccine vector development. Full article
(This article belongs to the Special Issue Viral Vector-Based Vaccines and Therapeutics)
Show Figures

Graphical abstract

21 pages, 640 KiB  
Review
Advances in Contraceptive Vaccine Development: A Comprehensive Review
by Wen Gao, Xiaoting Shen, Peipei Li, Chanchan Xiao and Yongxia Wang
Vaccines 2025, 13(7), 692; https://doi.org/10.3390/vaccines13070692 - 26 Jun 2025
Viewed by 483
Abstract
The issues of uncontrolled global population growth and unintended pregnancies are severe, and the existing contraceptive methods have numerous limitations, making the development of novel contraceptive technologies urgent. Contraceptive vaccines offer a promising alternative to traditional contraception methods. This article reviews the three [...] Read more.
The issues of uncontrolled global population growth and unintended pregnancies are severe, and the existing contraceptive methods have numerous limitations, making the development of novel contraceptive technologies urgent. Contraceptive vaccines offer a promising alternative to traditional contraception methods. This article reviews the three developmental stages of contraceptive vaccines, including early exploration, technical bottlenecks, and innovative development directions in the new era. This article also summarizes the targets of immunocontraception, covering the current research status of contraceptive vaccines targeting sperm production, sperm antigens, oocyte zona pellucida, and gamete outcomes. Furthermore, this article explores the advantages of contraceptive vaccines in terms of efficiency, non-invasiveness, reversibility, and the promotion of gender equality. Challenges associated with clinical translation and real-world implementation are also critically analyzed. Full article
Show Figures

Figure 1

Back to TopTop