hMPV Outbreaks: Worldwide Implications of a Re-Emerging Respiratory Pathogen
Abstract
1. Introduction
2. Pathophysiology
2.1. Structure and Genotypes
2.2. Immunopathology
3. Epidemiological Data
3.1. United States
3.2. Argentina and Mexico
3.3. Europe
3.4. China and Other Asian Regions
3.5. China
3.6. hMPV Trends in Other Asian Countries
3.7. Australia
4. Transmission and Clinical Manifestations
5. Diagnostic Methods
6. hMPV and Comorbidities
7. hMPV in the Perinatal Period
8. Treatment and Prevention Strategies—Recent Data
8.1. Putative Antiviral Agents
8.2. Research on Immunization Strategies
8.3. Challenges in Outbreak Control in Institutional Settings
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van den Hoogen, B.G.; de Jong, J.C.; Groen, J.; Kuiken, T.; de Groot, R.; Fouchier, R.A.; Osterhaus, A.D. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 2001, 7, 719–724. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, B.G.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Analysis of the Genomic Sequence of a Human Metapneumovirus. Virology 2002, 295, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Ruigrok, R.W.H.; Crépin, T.; Kolakofsky, D. Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr. Opin. Microbiol. 2011, 14, 504–510. [Google Scholar] [CrossRef]
- Porwal, S.; Malviya, R.; Sridhar, S.B.; Shareef, J.; Wadhwa, T. Global impact of hMPV virus: Transmission, pathogenesis, diagnostic and treatment. Diagn. Microbiol. Infect. Dis. 2025, 112, 116809. [Google Scholar] [CrossRef]
- Jobe, N.; Rose, E.; Winn, A.; Goldstein, L.; Schneider, Z.; Silk, B. Human Metapneumovirus Seasonality and Co-Circulation with Respiratory Syncytial Virus—United States, 2014-2024. MMWR. Morb. Mortal. Wkly. Rep. 2025, 74, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Shakya, M.; Chu, H.Y.; Englund, J.A.; Briggs-Hagen, M.; Carone, M.; Kuntz, J.L.; Lockwood, T.; Midgley, C.M.; Schmidt, M.A.; Starita, L.; et al. Epidemiology of Symptomatic Human Metapneumovirus Infection in the CASCADIA Community-Based Cohort—Oregon and Washington, 2022-2024. MMWR Morb Mortal Wkly. Rep. 2025, 74, 188–193. [Google Scholar] [CrossRef]
- Kulkarni, D.; Cong, B.; Ranjini, M.J.K.; Balchandani, G.; Chen, S.; Liang, J.; González Gordon, L.; Sobanjo-ter Meulen, A.; Wang, X.; Li, Y.; et al. The global burden of human metapneumovirus-associated acute respiratory infections in older adults: A systematic review and meta-analysis. Lancet Healthy Longev. 2025, 6, 100679. [Google Scholar] [CrossRef]
- Debnath, A.; Halder, P.; Achary, T.; Bir, R.; Mondal, A.; Ish, P. Prevalence of human metapneumovirus infection among children suffering from acute respiratory illness in India: A systematic review and meta-analysis. Monaldi Arch. Chest Dis. = Arch. Monaldi Per Le Mal. Del Torace 2025. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Memish, Z.A. The surge of human metapneumovirus (hMPV) cases in China and global implications. New Microbes New Infect. 2025, 63, 101563. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, L.; Wang, X.; Wu, R.; Zhang, A.; Zhao, B.; Ye, C. Epidemiological and Clinical Characteristics of Human Metapneumovirus-Associated Acute Respiratory Tract Infection Cases in the Pudong New Area, Shanghai, from 2014 to 2023. J. Epidemiol. Glob. Health 2025, 15, 38. [Google Scholar] [CrossRef]
- Sinnathamby, M.A.; Savagar, B.; Rawlinson, C.; Rome, M.; Allen, A.; Watson, C. Human metapneumovirus (hMPV) test-positivity sentinel laboratory trends in England, 2012 to 2025. medRxiv 2025, 2025.2003.2004.25322918. [Google Scholar] [CrossRef]
- Mishra, B.; Mohapatra, D.; Tripathy, M.; Mamidi, P.; Mohapatra, P.R. A Re-emerging Respiratory Virus: Human Metapneumovirus (hMPV). Cureus 2025, 17, e78354. [Google Scholar] [CrossRef]
- Mastrolia, M.V.; Esposito, S. Metapneumovirus Infections and Respiratory Complications. Semin. Respir. Crit. Care Med. 2016, 37, 512–521. [Google Scholar] [CrossRef]
- Babawale, P.I.; Guerrero-Plata, A. Respiratory Viral Coinfections: Insights into Epidemiology, Immune Response, Pathology, and Clinical Outcomes. Pathogens 2024, 13, 316. [Google Scholar] [CrossRef]
- Troncoso-Bravo, T.; Ramírez, M.A.; Loaiza, R.A.; Román-Cárdenas, C.; Papazisis, G.; Garrido, D.; González, P.A.; Bueno, S.M.; Kalergis, A.M. Advancement in the development of mRNA-based vaccines for respiratory viruses. Immunology 2024, 173, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Thomas, M. Human Metapneumovirus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Krüger, N.; Laufer, S.A.; Pillaiyar, T. An overview of progress in human metapneumovirus (hMPV) research: Structure, function, and therapeutic opportunities. Drug Discov. Today 2025, 30, 104364. [Google Scholar] [CrossRef] [PubMed]
- Renner, M.; Bertinelli, M.; Leyrat, C.; Paesen, G.C.; Saraiva de Oliveira, L.F.; Huiskonen, J.T.; Grimes, J.M. Nucleocapsid assembly in pneumoviruses is regulated by conformational switching of the N protein. eLife 2016, 5, e12627. [Google Scholar] [CrossRef]
- Renner, M.; Paesen, G.C.; Grison, C.M.; Granier, S.; Grimes, J.M.; Leyrat, C. Structural dissection of human metapneumovirus phosphoprotein using small angle x-ray scattering. Sci. Rep. 2017, 7, 14865. [Google Scholar] [CrossRef] [PubMed]
- Derdowski, A.; Peters, T.R.; Glover, N.; Qian, R.; Utley, T.J.; Burnett, A.; Williams, J.V.; Spearman, P.; Crowe, J.E. Human metapneumovirus nucleoprotein and phosphoprotein interact and provide the minimal requirements for inclusion body formation. J. Gen. Virol. 2008, 89, 2698–2708. [Google Scholar] [CrossRef]
- Leyrat, C.; Renner, M.; Harlos, K.; Grimes, J.M. Solution and crystallographic structures of the central region of the phosphoprotein from human metapneumovirus. PLoS ONE 2013, 8, e80371. [Google Scholar] [CrossRef]
- El Najjar, F.; Cifuentes-Muñoz, N.; Chen, J.; Zhu, H.; Buchholz, U.J.; Moncman, C.L.; Dutch, R.E. Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread. PLoS Pathog. 2016, 12, e1005922. [Google Scholar] [CrossRef] [PubMed]
- Leyrat, C.; Renner, M.; Harlos, K.; Huiskonen, J.T.; Grimes, J.M. Structure and Self-Assembly of the Calcium Binding Matrix Protein of Human Metapneumovirus. Structure 2014, 22, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Schowalter Rachel, M.; Smith Stacy, E.; Dutch Rebecca, E. Characterization of Human Metapneumovirus F Protein-Promoted Membrane Fusion: Critical Roles for Proteolytic Processing and Low pH. J. Virol. 2006, 80, 10931–10941. [Google Scholar] [CrossRef] [PubMed]
- Leyrat, C.; Renner, M.; Harlos, K.; Huiskonen, J.T.; Grimes, J.M.J.E. Drastic changes in conformational dynamics of the antiterminator M2-1 regulate transcription efficiency in Pneumovirinae. eLife 2014, 3, e02674. [Google Scholar] [CrossRef]
- Masante, C.; Najjar, F.E.; Chang, A.; Jones, A.; Moncman, C.L.; Dutch, R.E. The Human Metapneumovirus Small Hydrophobic Protein Has Properties Consistent with Those of a Viroporin and Can Modulate Viral Fusogenic Activity. J. Virol. 2014, 88, 6423–6433. [Google Scholar] [CrossRef]
- Cheemarla, N.R.; Guerrero-Plata, A. Human Metapneumovirus Attachment Protein Contributes to Neutrophil Recruitment into the Airways of Infected Mice. Viruses 2017, 9, 310. [Google Scholar] [CrossRef]
- Panda, S.; Mohakud, N.K.; Pena, L.; Kumar, S. Human metapneumovirus: Review of an important respiratory pathogen. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2014, 25, 45–52. [Google Scholar] [CrossRef]
- Thompson, A.; de Vries, R.; Paulson, J. Virus recognition of glycan receptors. Curr. Opin. Virol. 2019, 34, 117–129. [Google Scholar] [CrossRef]
- Van Den Bergh, A.; Bailly, B.; Guillon, P.; von Itzstein, M.; Dirr, L. Novel insights into the host cell glycan binding profile of human metapneumovirus. J. Virol. 2024, 98, e0164123. [Google Scholar] [CrossRef]
- Haas, L.E.M.; de Rijk, N.X.; Thijsen, S.F.T. Human metapneumovirus infections on the ICU: A report of three cases. Ann. Intensive Care 2012, 2, 30. [Google Scholar] [CrossRef]
- Galvez, N.; Andrade Parra, C.; Pacheco, G.; Soto, J.; Stranger, V.; Rivera, T.; Vasquez, A.; Kalergis, A. Host Components That Modulate the Disease Caused by hMPV. Viruses 2021, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- Kolli, D.; Velayutham, T.S.; Casola, A. Host-Viral Interactions: Role of Pattern Recognition Receptors (PRRs) in Human Pneumovirus Infections. Pathogens 2013, 2, 232–263. [Google Scholar] [CrossRef]
- Uche, I.K.; Guerrero-Plata, A. Interferon-Mediated Response to Human Metapneumovirus Infection. Viruses 2018, 10, 505. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.A.; Pacheco, G.A.; Gálvez, N.M.; Soto, J.A.; Bueno, S.M.; Kalergis, A.M.J.V. Innate immune components that regulate the pathogenesis and resolution of hRSV and hMPV infections. Viruses 2020, 12, 637. [Google Scholar] [CrossRef] [PubMed]
- Babawale, P.I.; Guerrero-Plata, A.J.V. Differential Responses of Pediatric and Adult Primary Epithelial Cells to Human Metapneumovirus and Respiratory Syncytial Virus Infection. Viruses 2025, 17, 380. [Google Scholar] [CrossRef]
- Velayutham, T.S.; Ivanciuc, T.; Garofalo, R.P.; Casola, A. Role of human metapneumovirus glycoprotein G in modulation of immune responses. Front. Immunol. 2022, 13, 962925. [Google Scholar] [CrossRef]
- Ni, W.; Wei, X.; Wu, R.J.J.o.P.I.D. Innate Immune Response-Mediated Inflammation in Viral Pneumonia. J. Pediatr. Infect. Dis. 2024, 17, 140–153. [Google Scholar] [CrossRef]
- Sepúlveda-Alfaro, J.; Catalán, E.A.; Vallejos, O.P.; Ramos-Tapia, I.; Madrid-Muñoz, C.; Mendoza-León, M.J.; Suazo, I.D.; Rivera-Asin, E.; Silva, P.H.; Alvarez-Mardones, O.; et al. Human metapneumovirus respiratory infection affects both innate and adaptive intestinal immunity. Front. Immunol. 2024, 15, 1330209. [Google Scholar] [CrossRef]
- Murdaca, G.; Paladin, F.; Tonacci, A.; Borro, M.; Greco, M.; Gerosa, A.; Isola, S.; Allegra, A.; Gangemi, S.J.B. Involvement of Il-33 in the pathogenesis and prognosis of major respiratory viral infections: Future perspectives for personalized therapy. Biomedicines 2022, 10, 715. [Google Scholar] [CrossRef]
- Xiang, W.-q.; Li, L.; Wang, B.-h.; Ali, A.F.; Li, W. Profiles and predictive value of cytokines in children with human metapneumovirus pneumonia. Virol. J. 2022, 19, 214. [Google Scholar] [CrossRef]
- Saravia, J.; You, D.; Shrestha, B.; Jaligama, S.; Siefker, D.; Lee, G.I.; Harding, J.N.; Jones, T.L.; Rovnaghi, C.; Bagga, B.; et al. Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33. PLoS Pathog. 2015, 11, e1005217. [Google Scholar] [CrossRef] [PubMed]
- Lau-Kilby, A.W.; Turfkruyer, M.; Kehl, M.; Yang, L.; Buchholz, U.J.; Hickey, K.; Malloy, A.M.W. Type I IFN ineffectively activates neonatal dendritic cells limiting respiratory antiviral T-cell responses. Mucosal Immunol. 2020, 13, 371–380. [Google Scholar] [CrossRef]
- Eddens, T.; Parks, O.B.; Zhang, Y.; Manni, M.L.; Casanova, J.L.; Ogishi, M.; Williams, J.V. PD-1 signaling in neonates restrains CD8(+) T cell function and protects against respiratory viral immunopathology. Mucosal Immunol. 2024, 17, 476–490. [Google Scholar] [CrossRef]
- Eddens, T.; Parks, O.B.; Williams, J.V. Neonatal Immune Responses to Respiratory Viruses. Front. Immunol. 2022, 13, 863149. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Rajput, C.; Hong, J.Y.; Lei, J.; Hinde, J.L.; Wu, Q.; Bentley, J.K.; Hershenson, M.B. The Innate Cytokines IL-25, IL-33, and TSLP Cooperate in the Induction of Type 2 Innate Lymphoid Cell Expansion and Mucous Metaplasia in Rhinovirus-Infected Immature Mice. J. Immunol. Baltim. Md. 1950 2017, 199, 1308–1318. [Google Scholar] [CrossRef]
- Melendi, G.A.; Laham, F.R.; Monsalvo, A.C.; Casellas, J.M.; Israele, V.; Polack, N.R.; Kleeberger, S.R.; Polack, F.P. Cytokine profiles in the respiratory tract during primary infection with human metapneumovirus, respiratory syncytial virus, or influenza virus in infants. Pediatrics 2007, 120, e410–e415. [Google Scholar] [CrossRef] [PubMed]
- Pancham, K.; Perez, G.F.; Huseni, S.; Jain, A.; Kurdi, B.; Rodriguez-Martinez, C.E.; Preciado, D.; Rose, M.C.; Nino, G. Premature infants have impaired airway antiviral IFNγ responses to human metapneumovirus compared to respiratory syncytial virus. Pediatr. Res. 2015, 78, 389–394. [Google Scholar] [CrossRef]
- Miyakawa, R.; Zhang, H.; Brooks, W.A.; Prosperi, C.; Baggett, H.C.; Feikin, D.R.; Hammitt, L.L.; Howie, S.R.C.; Kotloff, K.L.; Levine, O.S.; et al. Epidemiology of human metapneumovirus among children with severe or very severe pneumonia in high pneumonia burden settings: The Pneumonia Etiology Research for Child Health (PERCH) study experience. Clin. Microbiol. Infect. 2025, 31, 441–450. [Google Scholar] [CrossRef]
- The National Respiratory and Enteric Virus Surveillance System (NREVSS). Available online: https://www.cdc.gov/nrevss/php/dashboard/index.html (accessed on 16 April 2025).
- Zhu, J.; Wu, S.; Chen, Y.; Zheng, L. Prevalence and distribution of respiratory pathogens in pediatric acute respiratory infections in Putian, China. BMC Infect. Dis. 2025, 25, 278. [Google Scholar] [CrossRef]
- Ofman, G.; Pradarelli, B.; Caballero, M.T.; Bianchi, A.; Grimaldi, L.A.; Sancilio, A.; Duenas, K.; Rodriguez, A.; Ferrero, F.; Ferretti, A.; et al. Respiratory Failure and Death in Vulnerable Premature Children With Lower Respiratory Tract Illness. J. Infect. Dis. 2020, 222, 1129–1137. [Google Scholar] [CrossRef]
- Leija-Martínez, J.J.; Cadena-Mota, S.; González-Ortiz, A.M.; Muñoz-Escalante, J.C.; Mata-Moreno, G.; Hernández-Sánchez, P.G.; Vega-Morúa, M.; Noyola, D.E. Respiratory Syncytial Virus and Other Respiratory Viruses in Hospitalized Infants During the 2023-2024 Winter Season in Mexico. Viruses 2024, 16, 1917. [Google Scholar] [CrossRef]
- Deval, H.; Kumar, N.; Srivastava, M.; Potdar, V.; Mehta, A.; Verma, A.; Singh, R.; Kavathekar, A.; Kant, R.; Murhekar, M. Human metapneumovirus (hMPV): An associated etiology of severe acute respiratory infection in children of Eastern Uttar Pradesh, India. Access Microbiol. 2024, 6, 000829.v4. [Google Scholar] [CrossRef] [PubMed]
- Illan Montero, J.; Berger, A.; Levy, J.; Busson, L.; Hainaut, M.; Goetghebuer, T. Retrospective comparison of respiratory syncytial virus and metapneumovirus clinical presentation in hospitalized children. Pediatr. Pulmonol. 2023, 58, 222–229. [Google Scholar] [CrossRef]
- Libster, R.; Esteban, I.; Bianchi, A.; Grimaldi, L.A.; Dueñas, K.; Sancillo, A.; Rodriguez, A.; Ferrero, F.; Stein, K.; Acosta, P.L.; et al. Role for Maternal Asthma in Severe Human Metapneumovirus Lung Disease Susceptibility in Children. J. Infect. Dis. 2021, 223, 2072–2079. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lund, C.; Nervik, I.; Loevenich, S.; Døllner, H.; Anthonsen, M.W.; Johnsen, I.B. Characterization of signaling pathways regulating the expression of pro-inflammatory long form thymic stromal lymphopoietin upon human metapneumovirus infection. Sci. Rep. 2018, 8, 883. [Google Scholar] [CrossRef] [PubMed]
- Ballegeer, M.; Saelens, X. Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020, 12, 542. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, T.; Zhao, X.; Dong, S.; Zhu, J.; Peng, D.; Zhong, J.; Li, T.; Chen, X. Skewed balance of regulatory T cell and inflammatory T cell in IL-17 defect with human metapneumovirus infection. Cell. Immunol. 2018, 331, 161–167. [Google Scholar] [CrossRef]
- Khan, A.; Khanna, V.; Majumdar, K. Demographics, Clinical Presentation and Outcome of Metapneumovirus Infection in Adults: A Case Series Analysis at Scarborough General Hospital, United Kingdom. Cureus 2024, 16, e73292. [Google Scholar] [CrossRef]
- Pierangeli, A.; Piralla, A.; Uceda Renteria, S.; Giacomel, G.; Lunghi, G.; Pagani, E.; Giacobazzi, E.; Vian, E.; Biscaro, V.; Piccirilli, G.; et al. Multicenter epidemiological investigation and genetic characterization of respiratory syncytial virus and metapneumovirus infections in the pre-pandemic 2018-2019 season in northern and central Italy. Clin. Exp. Med. 2023, 23, 2725–2737. [Google Scholar] [CrossRef]
- Feng, Y.; He, T.; Zhang, B.; Yuan, H.; Zhou, Y. Epidemiology and diagnosis technologies of human metapneumovirus in China: A mini review. Virol. J. 2024, 21, 59. [Google Scholar] [CrossRef]
- Zhibo, X.; Zhen, Z.; Jin, X.; Naiying, M.; Aili, C.; Wenhui, W.; Yage, W.; Zhibo, Z.; Baicheng, X.; Haoran, W.; et al. Seasonal and Genetic Characteristics of Human Metapneumovirus Circulating—Henan Province, China, 2017–2023. China CDC Wkly. 2024, 6, 450–456. [Google Scholar] [CrossRef]
- Han, T.; Wang, Y.; Zhang, D.; Li, Y.; Zhang, L.; Yan, J.; Li, C.; Yang, S.; Guo, L.; Yan, H. Changes in infant respiratory pathogens pre-, during, and post-COVID-19 non-pharmacological interventions in Beijing. Ital. J. Pediatr. 2025, 51, 8. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, Y.; Xu, L.; Jiang, W.; Hao, C. Analysis of respiratory pathogen detection in hospitalized children with acute respiratory tract infections after ending the zero COVID policy. Sci. Rep. 2024, 14, 31784. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, S.; Zhang, K.; Li, Y.; Chen, D.; Tan, Y.; Liang, L.; Liu, M.; Liang, J.; An, S.; et al. Epidemiology, genetic characteristics, and association with meteorological factors of human metapneumovirus infection in children in southern China: A 10-year retrospective study. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2023, 137, 40–47. [Google Scholar] [CrossRef]
- Liu, S.; Lei, Y.; Chen, X.; Wen, Z.; Mei, B. Epidemiological characteristics of respiratory pathogens infections among children after the removal of non-pharmaceutical interventions in central China. Virol. J. 2024, 21, 303. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Rhee, J.E.; Kang, D.; Choi, E.H.; Lee, N.J.; Woo, S.; Lee, J.; Lee, S.W.; Kim, E.J.; Yun, K.W. Epidemiology of Respiratory Viruses in Korean Children Before and After the COVID-19 Pandemic: A Prospective Study From National Surveillance System. J. Korean Med. Sci. 2024, 39, e171. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Chiu, T.Y.; Tsai, K.L.; Li, C.H.; Yang, J.Y.; Liu, M.T.; Wu, F.T. Epidemiology of human metapneumovirus in Taiwan from 2013 to 2023. Arch. Virol. 2024, 169, 229. [Google Scholar] [CrossRef]
- Nagasawa, M.; Udagawa, T.; Okada, M.; Nakagawa, R.; Yokoyama, H.; Kato, T.; Furuya, M.; Sakaguchi, H. COVID-19 pandemic-altered epidemiology of respiratory syncytial virus and human metapneumovirus infections in young children. GHM Open 2024, 4, 47–49. [Google Scholar] [CrossRef]
- Nagasawa, M.; Udagawa, T.; Kato, T.; Tanaka, I.; Yamamoto, R.; Sakaguchi, H.; Sekikawa, Y. Observational Study on the Clinical Reality of Community-Acquired Respiratory Virus Infections in Adults and Older Individuals. Pathogens 2024, 13, 983. [Google Scholar] [CrossRef]
- Reller, M.E.; Mehta, K.; McCollum, E.D.; Ahmed, S.; Anderson, J.; Roy, A.D.; Chowdhury, N.H.; Saha, S.; Moulton, L.H.; Santosham, M.; et al. Viral Acute Lower Respiratory Tract Infections (ALRI) in Rural Bangladeshi Children Prior to the COVID-19 Pandemic. Influenza Other Respir. Viruses 2024, 18, e70062. [Google Scholar] [CrossRef]
- Chowdhury, F.; Bin Shahid, A.S.M.S.; Ghosh, P.K.; Rahman, M.; Hassan, M.Z.; Akhtar, Z.; Muneer, S.M.-E.; Shahrin, L.; Ahmed, T.; Chisti, M.J. Viral etiology of pneumonia among severely malnourished under-five children in an urban hospital, Bangladesh. PLoS ONE 2020, 15, e0228329. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, S.; Austin, K.; Avansino, J.R.; Badillo, A.; Calkins, C.M.; Crady, R.C.; Durham, M.M.; Fuller, M.K.; Rana, A.; Reeder, R.W.; et al. Does Delayed Diagnosis of Hirschsprung Disease Impact Post-operative and Functional Outcomes? A Multi-Center Review From the Pediatric Colorectal and Pelvic Learning Consortium. J. Pediatr. Surg. 2024, 59, 1250–1255. [Google Scholar] [CrossRef]
- Nisar, M.I.; Kerai, S.; Shahid, S.; Qazi, M.F.; Rehman, S.; Aziz, F.; Jehan, F. Predictors of Respiratory Syncytial Virus, Influenza Virus, and Human Metapneumovirus Carriage in Children Under 5 Years With WHO-Defined Fast-Breathing Pneumonia in Pakistan. Influenza Other Respir. Viruses 2024, 18, e13285. [Google Scholar] [CrossRef]
- Taye, B.W.; Sarna, M.; Le, H.; Levy, A.; Minney-Smith, C.; Richmond, P.; Menzies, R.; Blyth, C.C.; Moore, H.C. Respiratory Viral Testing Rate Patterns in Young Children Attending Tertiary Care Across Western Australia: A Population-Based Birth Cohort Study. Influenza Other Respir. Viruses 2024, 18, e70005. [Google Scholar] [CrossRef]
- Wang, C.C.; Prather, K.A.; Sznitman, J.; Jimenez, J.L.; Lakdawala, S.S.; Tufekci, Z.; Marr, L.C. Airborne transmission of respiratory viruses. Science 2021, 373, abd9149. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.V.; Tollefson, S.J.; Nair, S.; Chonmaitree, T. Association of human metapneumovirus with acute otitis media. Int. J. Pediatr. Otorhinolaryngol. 2006, 70, 1189–1193. [Google Scholar] [CrossRef]
- Williams, J.V.; Harris, P.A.; Tollefson, S.J.; Halburnt-Rush, L.L.; Pingsterhaus, J.M.; Edwards, K.M.; Wright, P.F.; Crowe, J.E., Jr. Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N. Engl. J. Med. 2004, 350, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Rudd, P.A.; Thomas, B.J.; Zaid, A.; MacDonald, M.; Kan-O, K.; Rolph, M.S.; Soorneedi, A.R.; Bardin, P.G.; Mahalingam, S. Role of human metapneumovirus and respiratory syncytial virus in asthma exacerbations: Where are we now? Clin. Sci. 2017, 131, 1713–1721. [Google Scholar] [CrossRef]
- Furuta, T.; Hasegawa, S.; Mizutani, M.; Iwai, T.; Ohbuchi, N.; Kawano, S.; Tashiro, N.; Uchida, M.; Hasegawa, M.; Motoyama, M.; et al. Burden of Human Metapneumovirus and Respiratory Syncytial Virus Infections in Asthmatic Children. Pediatr. Infect. Dis. J. 2018, 37, 1107–1111. [Google Scholar] [CrossRef]
- Ilvan, A.; Aslan, G.; Serin, M.S.; Calıkoğlu, M.; Yılmaz, F.M.; Tezcan, S.; Taş, D.; Ayrık, C.; Uygungül, E.; Sezer, O.; et al. Investigation of the presence of human metapneumovirus in patients with chronic obstructive pulmonary disease and asthma and its relationship with the attacks. Mikrobiyol Bul. 2013, 47, 636–649. [Google Scholar] [CrossRef]
- Costa-Filho, R.C.; Saddy, F.; Costa, J.L.F.; Tavares, L.R.; Castro Faria Neto, H.C. The Silent Threat of Human Metapneumovirus: Clinical Challenges and Diagnostic Insights from a Severe Pneumonia Case. Microorganisms 2025, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Basta, M.N. Severe Acute Respiratory Distress Syndrome in an Adult Patient with Human Metapneumovirus Infection Successfully Managed With Veno-Venous Extracorporeal Membrane Oxygenation. Semin. Cardiothorac. Vasc. Anesthesia 2024, 29, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Yeşilbaş, O.; Şevketoğlu, E.; Kıhtır, H.S.; Talip Petmezci, M.; Bato, E.; Balkaya, S.; Hatipoğlu, N.; Kuşkucu, M.A.; Palabıyık, F.; Çakır, E. A case of bronchiolitis obliterans secondary to human metapneumovirus bronchiolitis. Mikrobiyol. Bul. 2016, 50, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.; Wang, W.; Jaggi, P.; Dvorchik, I.; Ramilo, O.; Koranyi, K.; Mejias, A. Human metapneumovirus infections are associated with severe morbidity in hospitalized children of all ages. Epidemiol. Infect. 2013, 141, 2213–2223. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Safamanesh, S.; Ghasemzadeh-Moghaddam, H.; Ghafouri, M.; Mohajerzadeh-Heydari, M.S.; Namdar-Ahmadabad, H.; Azimian, A. Report of death in children with SARS-CoV-2 and human metapneumovirus (hMPV) coinfection: Is hMPV the trigger? J. Med. Virol. 2021, 93, 579–581. [Google Scholar] [CrossRef]
- Hennawi, H.A.; Khan, A.; Shpilman, A.; Mazzoni, J.A. Acute myocarditis secondary to human metapneumovirus: A case series and mini-review. Glob. Cardiol. Sci. Pract. 2024, 2024, e202452. [Google Scholar] [CrossRef]
- Mori, A.; Kawano, Y.; Hara, S.; Numoto, S.; Kurahashi, H.; Okumura, A. A nationwide survey of human metapneumovirus-associated encephalitis/encephalopathy in Japan. Brain Dev. 2023, 45, 197–204. [Google Scholar] [CrossRef]
- Vehapoglu, A.; Turel, O.; Sahin, T.U.; Kutlu, N.O.; Iscan, A. Clinical Significance of Human Metapneumovirus in Refractory Status Epilepticus and Encephalitis: Case Report and Review of the Literature. Case Rep. Neurol. Med. 2015, 2015, 131780. [Google Scholar] [CrossRef]
- Shibuya, M.; Togashi, N.; Inui, T.; Okubo, Y.; Endo, W.; Miyabayashi, T.; Sato, R.; Takezawa, Y.; Kodama, K.; Ikeda, M.; et al. Multiple cerebral hemorrhages and white matter lesions developing after severe hMPV pneumonia in a patient with trisomy 13: A case report and review of the literature. Tohoku J. Exp. Med. 2022, 258, 49–54. [Google Scholar] [CrossRef]
- Dhariwal, K. Human Metapneumovirus Associated With Acute Hemorrhagic Oedema of Infancy: A Case Report. Cureus 2024, 16, e73296. [Google Scholar] [CrossRef]
- Chidambaram, A.C.; Bhowmick, R.; Parameswaran, N.; Gunasekaran, D. A rare case of metapneumovirus-induced rhabdomyolysis and multi-organ dysfunction in a 4-year-old child. Paediatr. Int. Child Health 2021, 41, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mao, N.-Y.; Zhang, C.; Yang, M.-J.; Wang, M.; Xu, W.-B.; Ma, X.-J. The development of a GeXP-based multiplex reverse transcription-PCR assay for simultaneous detection of sixteen human respiratory virus types/subtypes. BMC Infect. Dis. 2012, 12, 189. [Google Scholar] [CrossRef] [PubMed]
- Popowitch, E.B.; Kaplan, S.; Wu, Z.; Tang, Y.W.; Miller, M.B. Comparative Performance of the Luminex NxTAG Respiratory Pathogen Panel, GenMark eSensor Respiratory Viral Panel, and BioFire FilmArray Respiratory Panel. Microbiol. Spectr. 2022, 10, e0124822. [Google Scholar] [CrossRef]
- Sugimoto, S.; Kawase, M.; Suwa, R.; Kakizaki, M.; Kume, Y.; Chishiki, M.; Ono, T.; Okabe, H.; Norito, S.; Hosoya, M.; et al. Development of a duplex real-time RT-PCR assay for the detection and identification of two subgroups of human metapneumovirus in a single tube. J. Virol. Methods 2023, 322, 114812. [Google Scholar] [CrossRef]
- Song, Q.; Zhu, R.; Sun, Y.; Zhao, L.; Wang, F.; Deng, J.; Qian, Y. Identification of human metapneumovirus genotypes A and B from clinical specimens by reverse transcription loop-mediated isothermal amplification. J. Virol. Methods 2014, 196, 133–138. [Google Scholar] [CrossRef]
- Jiao, S.-L.; Xie, L.; Mao, Y.; Ni, H.-X.; Li, Y.-D. Establishment of a Reverse Transcriptase-Mediated Isothermal Amplification Fluorescence Assay for Detection of Human Metapneumovirus. 2023. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20231623480 (accessed on 30 April 2025).
- Available online: https://scholar.google.com/scholar_lookup?journal=Chin%20J%20Zoonos&title=Establishment%20of%20a%20reverse%20transcriptase-mediated%20isothermal%20amplication%20fluorescence%20assay%20for%20detection%20of%20Human%20metapneumovirus&author=SL%20Jiao&author=L%20Xie&author=Y%20Mao&author=%20NI%20HX,%20Li%20YD,&volume=39&publication_year=2023&pages=780-783& (accessed on 30 April 2025).
- Du, Y.; Liu, X.; Gao, H.; Liu, X.; Huang, M.; Chai, Q.; Xing, Z.; Zhang, T.; Ma, D. Rapid and one-tube detection of human metapneumovirus using the RT-RPA and CRISPR/Cas12a. J. Virol. Methods 2024, 329, 115001. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Huang, J.; Wang, T.; He, X.; Xu, G.; Li, Y. Visual detection of human metapneumovirus using CRISPR-Cas12a diagnostics. Virus Res. 2021, 305, 198568. [Google Scholar] [CrossRef]
- Xu, Y.; Lewandowski, K.; Jeffery, K.; Downs, L.O.; Foster, D.; Sanderson, N.D.; Kavanagh, J.; Vaughan, A.; Salvagno, C.; Vipond, R.; et al. Nanopore metagenomic sequencing to investigate nosocomial transmission of human metapneumovirus from a unique genetic group among haematology patients in the United Kingdom. J. Infect. 2020, 80, 571–577. [Google Scholar] [CrossRef]
- Rajagopala, S.V.; Bakhoum, N.G.; Pakala, S.B.; Shilts, M.H.; Rosas-Salazar, C.; Mai, A.; Boone, H.H.; McHenry, R.; Yooseph, S.; Halasa, N. Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples. Cell Rep. Methods 2021, 1, 100091. [Google Scholar] [CrossRef]
- Jeong, S.; Park, M.-J.; Song, W.; Kim, H.-S. Advances in laboratory assays for detecting human metapneumovirus. Ann. Transl. Med. 2020, 8, 608. [Google Scholar] [CrossRef]
- Sakshi; Mavi, A.K.; Chowdhury, S.; Kumar, N.; Singh, P.; Kumar, D.; Preethi, L.; Kumar, U. Novel diagnostic methods for emerging respiratory viral infection. In Emerging Human Viral Diseases, Volume I: Respiratory and Haemorrhagic Fever; Springer: Berlin/Heidelberg, Germany, 2023; pp. 565–585. [Google Scholar]
- Brestovac, B.; Lawrence, C.; Speers, D.J.; Sammels, L.M.; Mulrennan, S. Respiratory viral infections in Western Australians with cystic fibrosis. Respir. Med. 2020, 161, 105854. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.F.; Hiatt, P.W.; Jewell, A.; Schoonover, S.L.; Cron, S.G.; Riggs, M.; Grace, S.; Oermann, C.M.; Piedra, P.A. Human metapneumovirus and respiratory syncytial virus infections in older children with cystic fibrosis. Pediatr. Pulmonol. 2007, 42, 66–74. [Google Scholar] [CrossRef]
- Martinez-Rodriguez, C.; Banos-Lara, M.d.R. HMPV in Immunocompromised Patients: Frequency and Severity in Pediatric Oncology Patients. Pathogens 2020, 9, 51. [Google Scholar] [CrossRef]
- Kim, S.; Sung, H.; Im, H.J.; Hong, S.-J.; Kim, M.-N. Molecular epidemiological investigation of a nosocomial outbreak of human metapneumovirus infection in a pediatric hemato-oncology patient population. J. Clin. Microbiol. 2009, 47, 1221–1224. [Google Scholar] [CrossRef]
- Ali, M.; Baker, J.M.; Richardson, S.E.; Weitzman, S.; Allen, U.; Abla, O. Human metapneumovirus (hMPV) infection in children with cancer. J. Pediatr. Hematol. 2013, 35, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Hijano, D.R.; Maron, G.; Hayden, R.T. Respiratory Viral Infections in Patients with Cancer or Undergoing Hematopoietic Cell Transplant. Front. Microbiol. 2018, 9, 3097. [Google Scholar] [CrossRef]
- Dokos, C.; Masjosthusmann, K.; Rellensmann, G.; Werner, C.; Schuler-Lüttmann, S.; Müller, K.-M.; Schiborr, M.; Ehlert, K.; Groll, A.H. Fatal human metapneumovirus infection following allogeneic hematopoietic stem cell transplantation. Transpl. Infect. Dis. 2013, 15, E97–E101. [Google Scholar] [CrossRef]
- Cohen, C.; Moyes, J.; Tempia, S.; Groome, M.; Walaza, S.; Pretorius, M.; Naby, F.; Mekgoe, O.; Kahn, K.; von Gottberg, A.; et al. Epidemiology of Acute Lower Respiratory Tract Infection in HIV-Exposed Uninfected Infants. Pediatrics 2016, 137. [Google Scholar] [CrossRef] [PubMed]
- Lenahan, J.L.; Englund, J.A.; Katz, J.; Kuypers, J.; Wald, A.; Magaret, A.; Tielsch, J.M.; Khatry, S.K.; LeClerq, S.C.; Shrestha, L.; et al. Human Metapneumovirus and Other Respiratory Viral Infections during Pregnancy and Birth, Nepal. Emerg. Infect. Dis. 2017, 23, 1341–1349. [Google Scholar] [CrossRef]
- Fuchs, A.; McLaren, R.J.; Saunders, P.; Karakash, S.; Minkoff, H. Human Metapneumovirus Infection and Acute Respiratory Distress Syndrome During Pregnancy. Obstet. Gynecol. 2017, 130, 630–632. [Google Scholar] [CrossRef]
- Hause, A.M.; Avadhanula, V.; Maccato, M.L.; Pinell, P.M.; Bond, N.; Santarcangelo, P.; Ferlic-Stark, L.; Munoz, F.M.; Piedra, P.A. A Cross-sectional Surveillance Study of the Frequency and Etiology of Acute Respiratory Illness Among Pregnant Women. J. Infect. Dis. 2018, 218, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Murphy, V.E.; Powell, H.; Wark, P.A.B.; Gibson, P.G. A prospective study of respiratory viral infection in pregnant women with and without asthma. Chest 2013, 144, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Emont, J.; Chung, K.; Rouse, D. A Report of Two Cases of Human Metapneumovirus Infection in Pregnancy Involving Superimposed Bacterial Pneumonia and Severe Respiratory Illness. J. Clin. Gynecol. Obstet. 2019, 8, 107–110. [Google Scholar] [CrossRef]
- Shivarame Gowda, S.K.; Abdalla, F.E.; Narasimhaiah, R. A Case of Human Meta-pneumovirus Infection in Pregnancy Involving Superimposed Bacterial Pneumonia and Respiratory Distress. Acta Sci. Med. Sci. 2023, 7, 135–138. [Google Scholar] [CrossRef]
- Dauby, N.; Flamand, V. From maternal breath to infant’s cells: Impact of maternal respiratory infections on infants ‘immune responses. Front. Pediatr. 2022, 10, 1046100. [Google Scholar] [CrossRef]
- Schwartz, D.A.; Dhaliwal, A. Infections in Pregnancy With COVID-19 and Other Respiratory RNA Virus Diseases Are Rarely, If Ever, Transmitted to the Fetus: Experiences With Coronaviruses, Parainfluenza, Metapneumovirus Respiratory Syncytial Virus, and Influenza. Arch. Pathol. Lab. Med. 2020, 144, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Ramocha, L.M.; van den Hoogen, B.G.; Baillie, V.; van Nieuwkoop, S.; Cutland, C.L.; Jones, S.; Moultrie, A.; Izu, A.; Verwey, C.; Madhi, S.A.; et al. Fetal Transfer of Human Metapneumovirus-Neutralizing Antibodies Is Reduced From Mothers Living With HIV-1. J. Pediatr. Infect. Dis. Soc. 2022, 11, 341–344. [Google Scholar] [CrossRef]
- Funes, S.C.; Ríos, M.; Fernández-Fierro, A.; Rivera-Pérez, D.; Soto, J.A.; Valbuena, J.R.; Altamirano-Lagos, M.J.; Gómez-Santander, F.; Jara, E.L.; Zoroquiain, P.; et al. Female offspring gestated in hypothyroxinemia and infected with human Metapneumovirus (hMPV) suffer a more severe infection and have a higher number of activated CD8(+) T lymphocytes. Front. Immunol. 2022, 13, 966917. [Google Scholar] [CrossRef]
- Verma, M.; Panchal, N.S.; Yadav, P.K. Exploring Chemical Space to Identify Partial Binders Against hMPV Nucleocapsid Protein. J. Cell. Biochem. 2025, 126, e30618. [Google Scholar] [CrossRef]
- Martínez-Espinoza, I.; Babawale, P.I.; Miletello, H.; Cheemarla, N.R.; Guerrero-Plata, A. Interferon Epsilon-Mediated Antiviral Activity Against Human Metapneumovirus and Respiratory Syncytial Virus. Vaccines 2024, 12, 1198. [Google Scholar] [CrossRef]
- Sojati, J.; Parks, O.B.; Zhang, Y.; Walters, S.; Lan, J.; Eddens, T.; Lou, D.; Fan, L.; Chen, K.; Oury, T.D.; et al. IFN-λ drives distinct lung immune landscape changes and antiviral responses in human metapneumovirus infection. mBio 2024, 15, e0055024. [Google Scholar] [CrossRef]
- Bergeron, H.C.; Crabtree, J.; Nagy, T.; Martin, D.E.; Tripp, R.A. Probenecid Inhibits Human Metapneumovirus (HMPV) Replication In Vitro and in BALB/c Mice. Viruses 2024, 16, 1087. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Abeywickrema, P.; Bonneux, B.; Behera, I.; Anson, B.; Jacoby, E.; Fung, A.; Adhikary, S.; Bhaumik, A.; Carbajo, R.J.; et al. Structural and mechanistic insights into the inhibition of respiratory syncytial virus polymerase by a non-nucleoside inhibitor. Commun. Biol. 2023, 6, 1074. [Google Scholar] [CrossRef] [PubMed]
- Luck, M.I.; Subillaga, E.J.; Borenstein, R.; Sabo, Y. Ginkgolic acid inhibits orthopneumo- and metapneumo- virus infectivity. Sci. Rep. 2024, 14, 8230. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, Y.M.; Zhao, J.; Bai, Y.M.; Yan, C.Q.; Du, G.H.; Zheng, L.S.; Liu, A.L. Fumarprotocetraric acid and geraniin were identified as novel inhibitors of human respiratory syncytial virus infection in vitro. Front. Cell. Infect. Microbiol. 2024, 14, 1484245. [Google Scholar] [CrossRef]
- Bhuvaneshwari, V.; Amsaveni, R. Exploring quercetin based nano formulation in combating human Metapneumovirus infections. Int. Immunopharmacol. 2025, 153, 114510. [Google Scholar] [CrossRef]
- Hamelin, M.E.; Couture, C.; Sackett, M.; Kiener, P.; Suzich, J.; Ulbrandt, N.; Boivin, G. The prophylactic administration of a monoclonal antibody against human metapneumovirus attenuates viral disease and airways hyperresponsiveness in mice. Antivir. Ther. 2008, 13, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Abu-Shmais, A.A.; Guo, L.; Khalil, A.M.; Miller, R.J.; Janke, A.K.; Vukovich, M.J.; Bass, L.E.; Suresh, Y.P.; Rush, S.A.; Wolters, R.M.; et al. A potently neutralizing and protective human antibody targeting antigenic site V on RSV and hMPV fusion glycoprotein. Biorxiv Prepr. Serv. Biol. 2024. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11565947/ (accessed on 2 April 2025). [CrossRef]
- Guo, L.; Li, L.; Liu, L.; Zhang, T.; Sun, M. Neutralising antibodies against human metapneumovirus. Lancet. Microbe 2023, 4, e732–e744. [Google Scholar] [CrossRef]
- Karron, R.A.; San Mateo, J.; Wanionek, K.; Collins, P.L.; Buchholz, U.J. Evaluation of a Live Attenuated Human Metapneumovirus Vaccine in Adults and Children. J. Pediatr. Infect. Dis. Soc. 2018, 7, 86–89. [Google Scholar] [CrossRef]
- Shapiro, C.; Sánchez-Crespo, N.; Ciarlet, M.; Hourguettes, N.; Wen, J.; Rida, W.; Price, J.; Engram, A.E.; Adams, E.M.; Kanesa-Thasan, N. A Randomized Phase 1 Clinical Trial of a Respiratory Syncytial Virus and Human Metapneumovirus Combination Protein-Based Virus-like Particle Vaccine in Adults 60–75 Years of Age. Open Forum Infect. Dis. 2025, 12, ofaf160. [Google Scholar] [CrossRef]
- Ogonczyk-Makowska, D.; Brun, P.; Vacher, C.; Chupin, C.; Droillard, C.; Carbonneau, J.; Laurent, E.; Dulière, V.; Traversier, A.; Terrier, O.; et al. Mucosal bivalent live attenuated vaccine protects against human metapneumovirus and respiratory syncytial virus in mice. NPJ Vaccines 2024, 9, 111. [Google Scholar] [CrossRef]
- Trinité, B.; Durr, E.; Pons-Grífols, A.; O’Donnell, G.; Aguilar-Gurrieri, C.; Rodriguez, S.; Urrea, V.; Tarrés, F.; Mane, J.; Ortiz, R.; et al. VLPs generated by the fusion of RSV-F or hMPV-F glycoprotein to HIV-Gag show improved immunogenicity and neutralizing response in mice. Vaccine 2024, 42, 3474–3485. [Google Scholar] [CrossRef] [PubMed]
- Swart, M.; Allen, J.; Reed, B.; Izquierdo Gil, A.; Verspuij, J.; Schmit-Tillemans, S.; Chakkumkal, A.; Findeis, M.; Hafner, A.V.; Harjivan, C.; et al. Plant Cell Culture-Derived Saponin Adjuvant Enhances Immune Response Against a Stabilized Human Metapneumovirus Pre-Fusion Vaccine Candidate. Vaccines 2024, 12, 1435. [Google Scholar] [CrossRef]
- August, A.; Shaw, C.A.; Lee, H.; Knightly, C.; Kalidindia, S.; Chu, L.; Essink, B.J.; Seger, W.; Zaks, T.; Smolenov, I.; et al. Safety and Immunogenicity of an mRNA-Based Human Metapneumovirus and Parainfluenza Virus Type 3 Combined Vaccine in Healthy Adults. Open Forum Infect. Dis. 2022, 9, ofac206. [Google Scholar] [CrossRef] [PubMed]
- Pantaleo, G.; Correia, B.; Fenwick, C.; Joo, V.S.; Perez, L. Antibodies to combat viral infections: Development strategies and progress. Nat. reviews. Drug Discov. 2022, 21, 676–696. [Google Scholar] [CrossRef] [PubMed]
- Mazur, N.I.; Terstappen, J.; Baral, R.; Bardají, A.; Beutels, P.; Buchholz, U.J.; Cohen, C.; Crowe, J.E., Jr.; Cutland, C.L.; Eckert, L.; et al. Respiratory syncytial virus prevention within reach: The vaccine and monoclonal antibody landscape. Lancet. Infect. Dis. 2023, 23, e2–e21. [Google Scholar] [CrossRef]
- Stepanova, E.; Matyushenko, V.; Rudenko, L.; Isakova-Sivak, I. Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus. Pathogens 2020, 9, 481. [Google Scholar] [CrossRef]
- Spires, S.S.; Talbot, H.K.; Pope, C.A.; Talbot, T.R. Paramyxovirus Outbreak in a Long-Term Care Facility: The Challenges of Implementing Infection Control Practices in a Congregate Setting. Infect. Control Hosp. Epidemiol. 2017, 38, 399–404. [Google Scholar] [CrossRef]
- Sood, G.; Perl, T.M. Outbreaks in Health Care Settings. Infect. Dis. Clin. North Am. 2016, 30, 661–687. [Google Scholar] [CrossRef]
- Lee, M.H.; Lee, G.A.; Lee, S.H.; Park, Y.H. A systematic review on the causes of the transmission and control measures of outbreaks in long-term care facilities: Back to basics of infection control. PLoS ONE 2020, 15, e0229911. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.T.; Jackson, O.; Cohen, B.; Hutcheon, G.; Saiman, L.; Larson, E.; Neu, N. Impact of Infection Prevention and Control Initiatives on Acute Respiratory Infections in a Pediatric Long-Term Care Facility. Infect. Control. Hosp. Epidemiol. 2016, 37, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.P.; Shane, A.L. Infections Associated with Group Childcare. Princ. Pract. Pediatr. Infect. Dis. 2018, 25–32.e23. [Google Scholar] [CrossRef]
- Brecht, I.; Esther van, K.; Placide, M.; Kostas, D.; Ivalda, M.; Niel, H.; Eveline, C.; Marianne, A.B.v.d.S. Embedding risk monitoring in infectious disease surveillance for timely and effective outbreak prevention and control. BMJ Glob. Health 2025, 10, e016870. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. ECDC Strategic Framework for the Integration of Molecular and Genomic Typing into European Surveillance and Multi-Country Outbreak Investigations—2021–2027. 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/ecdc-strategic-framework-integration-molecular-and-genomic-typing-european (accessed on 22 June 2025).
Condition | Patient Description | Findings | Outcome | References |
---|---|---|---|---|
Severe Pneumonia | 68-year-old man | Bilateral ground-glass opacities, hMPV confirmed via RT-PCR | Recovered with supportive care | [83] |
ARDS | 45-year-old man | Severe ARDS, required ECMO, hMPV confirmed | Recovered and discharged | [84] |
Bronchiolitis Obliterans | 3-month-old girl | Respiratory failure, CT: hyperinflation, atelectasis, hMPV confirmed | Discharged after 76 days with tracheostomy | [85] |
PICU Admission | Pediatric population | 18% PICU admission, 69% needed respiratory support | More severe in those with chronic conditions | [86] |
hMPV + COVID-19 | 3 pediatric cases | Co-infection, ARDS, ground-glass opacities | All cases fatal despite ICU care | [87] |
Myocarditis | 68-year-old man | Heart failure, atrial flutter, hMPV, MRI: myocarditis | Discharged stable after 12 days | [88] |
58-year-old woman | Stress-induced cardiomyopathy, hMPV confirmed | Recovered, discharged after 9 days | ||
CNS—Encephalopathy | 16 children | Various encephalopathy subtypes, hMPV confirmed | 11 good outcomes, 5 poor outcomes | [89] |
CNS—Seizures | 4-month-old infant | Seizures, respiratory failure, hMPV detected | Recovered, seizure-free for 6 months | [90] |
CNS—Status Epilepticus | 15-month-old girl | Status epilepticus, pneumonia, pneumothorax, hMPV | Recovered without lasting effects | [90] |
18-month-old girl | Seizures, ARDS, atelectasis, hMPV confirmed | Recovered fully | ||
CNS—Multiple Cerebral Hemorrhages and White Matter Lesions | 6-year-old girl (trisomy 13) | hMPV pneumonia, ARDS, DIC, MRI: hemorrhagic infarctions and signs of a demyelinating white matter lesion | Recovered with neurological deficits | [91] |
Acute Hemorrhagic Edema of Infancy | 8-year-old boy | Rash, edema, elevated CRP, splenomegaly, hMPV | Improved with NSAIDs and antihistamines | [92] |
Rhabdomyolysis | 4-year-old girl | MODS, ARDS, myoglobinuria, hMPV detected | Died despite intensive care | [93] |
PCR-based techniques used for molecular detection | |||||
RT-PCR | Conventional reverse transcription PCR widely used in early hMPV detection. | F and N genes | ~1000 copies/reaction (GeXP multiplex assay) | Less sensitive than RT-qPCR; declining use in clinical diagnostics; some commercial panels still include it. Process time: 3–5 h. | [94,95] |
RT-qPCR | Real-time quantitative RT-PCR; gold standard for viral RNA detection. | Various including F and N genes | 10–100 copies/reaction | High sensitivity and specificity; allows for multiplexing; widely used in clinical labs. Process time: 1–3 h. | [96] |
Nucleic acid isothermal-based amplification techniques | |||||
LAMP | Isothermal amplification technique. | M and N genes | <10 copies/reaction | Fast, simple, does not require thermocycler; visual detection possible; higher sensitivity than RT-PCR. Process time: ~1.5 h. | [62,97] |
RAA | Isothermal method with rapid results and minimal equipment. | N gene | 100 copies/reaction | Rapid (15 min @ 39 °C); more efficient than some RT-qPCR methods in field settings. | [98] |
Gene-editing and molecular detection methods | |||||
CRISPR-Cas12a (with RT-RPA) | Gene-editing-based detection combined with RT-RPA and lateral flow. | N gene | <700 copies/mL | Results visible to the naked eye; ~30 min total time; 96.4% match with RT-qPCR results. Suitable for point-of-care testing. | [100,101] |
mNGS | High-throughput sequencing for pathogen discovery and genomic analysis. | Whole genome | Not explicitly quantified; 80% detection in clinical samples | Detects novel/unknown viruses; high accuracy but lower sensitivity than RT-qPCR; useful in outbreak and research settings. Process time 5–10 days. | [102,103] |
Classical virological methods | |||||
Virus Isolation | Traditional method using cell lines (e.g., LLC-MK2). | hMPV cultivation and isolation | Not determined | Gold standard for pathogenesis and vaccine research; slow growth and low CPE in hMPV; confirmed via serological/molecular methods. Process time: 3–4 days. | [104,105] |
Molecule/Compound | Mechanism of Action | Key Findings | References |
---|---|---|---|
ZINC85629735 (M1) | Inhibits the N protein of hMPV, which protects viral RNA from degradation. | Strong binding affinity with a docking score of −9.6 kcal/mol. MD simulations indicated favorable stability with an MM-GBSA binding energy of −81.94 kcal/mol. | [124] |
ZINC85569125 (M3) | Inhibits the N protein of hMPV. | Strong binding affinity with a docking score of −10.7 kcal/mol. MD simulations showed favorable stability with an MM-GBSA binding energy of −99.63 kcal/mol. | |
Interferon Epsilon (IFN-ε) | Induces ISGs such as ISG15, reducing hMPV replication. | IFN-ε shows higher sensitivity to hMPV inhibition compared to RSV. It activates a strong antiviral response and reduces viral replication, with minimal involvement of TLR pathways. | [125] |
Interferon Lambda (IFN-λ) | Upregulated during hMPV infection, suppresses viral replication and dissemination. | Reduces viral load without triggering inflammatory pathology, preserves ciliated epithelial cells, and regulates macrophage recruitment. | [126] |
Probenecid | Inhibits OAT3, a host protein required for viral replication, blocking virus-related signaling pathways. | Significantly inhibits hMPV replication in vitro and reduces lung viral titers in vivo without notable lung pathology, suggesting a broad-spectrum antiviral action. | [127] |
JNJ-8003 | Targets the RdRp complex of hMPV, inhibiting early transcriptional events. | Potent inhibition of RSV and moderate inhibition of hMPV replication. Binds to the capping domain of the L protein, preventing de novo RNA synthesis. | [128] |
Lacto-N-neotetraose (LNnT) | Inhibits early-stage viral attachment by binding to the F protein. | Inhibits hMPV binding with 98% inhibition at 10 mM, IC50 = 1.88 mM. Shows promise as a glycan-based antiviral therapy. | [30] |
Heparin | Inhibits early-stage viral attachment by targeting the F protein. | More potent than other glycosaminoglycans, with an IC50 approximately 30-fold lower than heparan sulfate. | |
Ginkgolic Acid (GA) | Inhibits viral entry at the early stages of the viral lifecycle. | Reduces GFP-positive cells in A549 and Vero E6 cells, with IC50 values of 0.44 µM and 0.78 µM, respectively. Primarily targets viral entry mechanisms. | [129] |
Fumarprotocetraric Acid (FUM) | Suppresses hMPV replication and exhibits anti-inflammatory effects. | Inhibits viral replication in LLC-MK2 cells, while also reducing viral RNA levels and mitigating viral cytopathic effects. | [130] |
Geraniin (GE) | Suppresses hMPV replication and exhibits anti-inflammatory effects. | Inhibits hMPV replication in LLC-MK2 cells, reduces viral RNA levels, and protects mitochondrial function. | |
Quercetin | Disrupts viral assembly, reduces oxidative stress, and modulates inflammatory pathways. | Attenuates hMPV-induced oxidative stress and inflammation in cell culture and animal models. Nanoparticles enhance stability and cellular uptake, showing promise in reducing viral load. | [131] |
mAb 338 | Targets the F protein of hMPV to prevent viral entry into host cells | mAb 338 significantly reduced viral replication, lung inflammation, and airway obstruction in hMPV-infected mice. The higher dose also lessened long-term lung hyperresponsiveness, indicating both short- and long-term protective effects. | [132] |
mAb 5-1 | Broad cross-neutralization of RSV and hMPV by binding to a unique epitope on the F protein, preventing viral fusion. | Demonstrated cross-neutralization of RSV and hMPV. Strong prophylactic efficacy in mouse models. Supports dual-virus therapeutic potential. | [133] |
Study (Author, Year) | Vaccine Type | Study Design/Model | Target Population | Key Findings | Conclusion |
---|---|---|---|---|---|
[135] | Live attenuated recombinant (rhMPV-Pa) | Phase I clinical trial | Adults, seropositive and seronegative children | Over-attenuated in children; low infectivity and immunogenicity | Trial discontinued due to insufficient infectivity in pediatric target group |
[136] | Bivalent VLP (IVX-A12) +/– MF59® | Phase I clinical trial | Adults: 60–75 years | Safe and immunogenic, especially with higher doses | Continued development supported for older adults |
[137] | Bivalent LAV (Metavac®-RSV) | Preclinical, BALB/c mice | Preclinical | Induced mucosal and systemic immunity; effective protection | Strong LAV candidate for mucosal immunization against RSV and hMPV |
[137] | Prefusion-closed (UFC) trimers of F proteins | Biophysical studies and mouse models | Preclinical | Stable, potent neutralizing Ab response | Basis for next-gen prefusion F-based vaccines |
[138] | VLP with HIV-1 Gag fusion (hMPV-F VLP) | Mouse models | Preclinical | Stronger immunogenicity in VLP-bound form, especially as prime | Gag-based VLPs are effective platforms for hMPV vaccines |
[139] | Subunit + cpcQS-21 and TLR4 agonist | Mouse model | Preclinical | Comparable to commercial adjuvants, strong cellular/humoral responses | Plant-derived QS-21 is a viable, scalable adjuvant |
[140] | mRNA-1653 (hMPV + PIV3) | Phase 1 clinical trial | Adults: 18–49 years | Good safety, elevated hMPV titers lasting 1 year | mRNA platform promising for hMPV vaccines |
[141] | Stabilized Pre-F protein (dual-cleaved) | Structural studies + cotton rat challenge | Preclinical | High stability, expression, and strong neutralizing Ab | Strong candidate for next-gen subunit hMPV vaccine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lianou, A.; Tsantes, A.G.; Ioannou, P.; Bikouli, E.-D.; Batsiou, A.; Kokkinou, A.; Tsante, K.A.; Tsilidis, D.; Lampridou, M.; Iacovidou, N.; et al. hMPV Outbreaks: Worldwide Implications of a Re-Emerging Respiratory Pathogen. Microorganisms 2025, 13, 1508. https://doi.org/10.3390/microorganisms13071508
Lianou A, Tsantes AG, Ioannou P, Bikouli E-D, Batsiou A, Kokkinou A, Tsante KA, Tsilidis D, Lampridou M, Iacovidou N, et al. hMPV Outbreaks: Worldwide Implications of a Re-Emerging Respiratory Pathogen. Microorganisms. 2025; 13(7):1508. https://doi.org/10.3390/microorganisms13071508
Chicago/Turabian StyleLianou, Alexandra, Andreas G. Tsantes, Petros Ioannou, Efstathia-Danai Bikouli, Anastasia Batsiou, Aggeliki Kokkinou, Kostantina A. Tsante, Dionysios Tsilidis, Maria Lampridou, Nicoletta Iacovidou, and et al. 2025. "hMPV Outbreaks: Worldwide Implications of a Re-Emerging Respiratory Pathogen" Microorganisms 13, no. 7: 1508. https://doi.org/10.3390/microorganisms13071508
APA StyleLianou, A., Tsantes, A. G., Ioannou, P., Bikouli, E.-D., Batsiou, A., Kokkinou, A., Tsante, K. A., Tsilidis, D., Lampridou, M., Iacovidou, N., & Sokou, R. (2025). hMPV Outbreaks: Worldwide Implications of a Re-Emerging Respiratory Pathogen. Microorganisms, 13(7), 1508. https://doi.org/10.3390/microorganisms13071508