Unveiling Immune Response Mechanisms in Mpox Infection Through Machine Learning Analysis of Time Series Gene Expression Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Data on Mpox Infection in Rhesus Macaques
2.2. Feature Ranking Methods Used to Rank Features in Order of Importance
2.3. Incremental Feature Selection
2.4. Synthetic Minority Oversampling Technique
2.5. Classification Algorithms
2.6. Performance Evaluation
2.7. Construction of the PPI Network
2.8. Biological Function Enrichment
3. Results
3.1. Feature Ranking Results of Features in Order of Importance
3.2. IFS Results and Feature Intersections for Finding Key Features
3.3. Classification Rules Yielded by Decision Tree
3.4. PPI Network Construction for Genes Identified in the Optimal Feature Sets
3.5. Biological Functions of Key Genes Associated with MPox Challenge
4. Discussion
4.1. Integrative Analysis of Ranked Gene Features
4.2. Analysis of Features Within Classification Rules
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Mpox | Monkeypox virus |
IFS | Incremental feature selection |
CATBoost | Categorical Boosting |
LASSO | Least Absolute Shrinkage and Selection Operator |
ExtraTrees | Extremely Randomized Trees |
LightGBM | Light Gradient Boosting Machine |
MCFS | Monte Carlo Feature Selection |
RF | Random Forest |
SKB | SelectKBest |
XGBoost | eXtreme Gradient Boosting |
SMOTE | Synthetic Minority Oversampling Technique |
Ncentroid | Nearest Centroid Classifier |
SGD | Stochastic Gradient Descent |
DT | Decision Tree |
SVM | Support Vector Machine |
Bayes | Naïve Bayes Classifier |
AdaBoost | Adaptive Boosting |
KNN | K-Nearest Neighbors |
ML | Machine learning |
ACC | Accuracy |
MCC | Matthews correlation coefficient |
PPI | Protein–protein interaction |
GO | Gene ontology |
BP | Biological process |
MF | Molecular function |
CC | Cellular component |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
TLR | Toll-like receptor |
HS3ST1 | Heparan sulfate-glucosamine 3-sulfotransferase 1 |
SPAG16 | Sperm-associated antigen 16 |
MTARC2 | Mitochondrial amidoxime reducing component 2 |
References
- Prompetchara, E.; Ketloy, C.; Khawsang, C.; Ruxrungtham, K.; Palaga, T. Mpox global health emergency: Insights into the virus, immune responses, and advancements in vaccines part i: Insights into the virus and immune responses. Asian Pac. J. Allergy Immunol. 2024, 42, 181–190. [Google Scholar]
- Alakunle, E.; Kolawole, D.; Diaz-Canova, D.; Alele, F.; Adegboye, O.; Moens, U.; Okeke, M.I. A comprehensive review of monkeypox virus and mpox characteristics. Front. Cell. Infect. Microbiol. 2024, 14, 1360586. [Google Scholar] [CrossRef]
- Nuzzo, J.B.; Borio, L.L.; Gostin, L.O. The who declaration of monkeypox as a global public health emergency. JAMA 2022, 328, 615–617. [Google Scholar] [CrossRef]
- Reynolds, M.G.; Yorita, K.L.; Kuehnert, M.J.; Davidson, W.B.; Huhn, G.D.; Holman, R.C.; Damon, I.K. Clinical manifestations of human monkeypox influenced by route of infection. J. Infect. Dis. 2006, 194, 773–780. [Google Scholar] [CrossRef]
- Soheili, M.; Nasseri, S.; Afraie, M.; Khateri, S.; Moradi, Y.; Mortazavi, S.M.M.; Gilzad-Kohan, H. Monkeypox: Virology, pathophysiology, clinical characteristics, epidemiology, vaccines, diagnosis, and treatments. J. Pharm. Pharm. Sci. 2022, 25, 297–322. [Google Scholar] [CrossRef]
- Petersen, E.; Kantele, A.; Koopmans, M.; Asogun, D.; Yinka-Ogunleye, A.; Ihekweazu, C.; Zumla, A. Human monkeypox: Epidemiologic and clinical characteristics, diagnosis, and prevention. Infect. Dis. Clin. 2019, 33, 1027–1043. [Google Scholar]
- Bayer-Garner, I. Monkeypox virus: Histologic, immunohistochemical and electron-microscopic findings. J. Cutan. Pathol. 2005, 32, 28–34. [Google Scholar] [CrossRef]
- Johnston, S.C.; Johnson, J.C.; Stonier, S.W.; Lin, K.L.; Kisalu, N.K.; Hensley, L.E.; Rimoin, A.W. Cytokine modulation correlates with severity of monkeypox disease in humans. J. Clin. Virol. 2015, 63, 42–45. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Ding, K.; Wang, X.-H.; Sun, G.-Y.; Liu, Z.-X.; Luo, Y. The evolving epidemiology of monkeypox virus. Cytokine Growth Factor Rev. 2022, 68, 1–12. [Google Scholar] [CrossRef]
- Xuan, D.T.M.; Yeh, I.-J.; Wu, C.-C.; Su, C.-Y.; Liu, H.-L.; Chiao, C.-C.; Ku, S.-C.; Jiang, J.-Z.; Sun, Z.; Ta, H.D.K. Comparison of transcriptomic signatures between monkeypox-infected monkey and human cell lines. J. Immunol. Res. 2022, 2022, 3883822. [Google Scholar] [CrossRef]
- Dyall, J.; Johnson, R.F.; Chefer, S.; Leyson, C.; Thomasson, D.; Seidel, J.; Ragland, D.R.; Byrum, R.; Jett, C.; Cann, J.A. [18f]-fluorodeoxyglucose uptake in lymphoid tissue serves as a predictor of disease outcome in the nonhuman primate model of monkeypox virus infection. J. Virol. 2017, 91, e00897-17. [Google Scholar] [CrossRef]
- Saghazadeh, A.; Rezaei, N. Insights on mpox virus infection immunopathogenesis. Rev. Med. Virol. 2023, 33, e2426. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Janosko, K.; Johnson, R.F.; Qin, J.; Josleyn, N.; Jett, C.; Byrum, R.; Claire, M.S.; Dyall, J.; Blaney, J.E. Poxvirus antigen staining of immune cells as a biomarker to predict disease outcome in monkeypox and cowpox virus infection in non-human primates. PLoS ONE 2013, 8, e60533. [Google Scholar] [CrossRef]
- Karagoz, A.; Tombuloglu, H.; Alsaeed, M.; Tombuloglu, G.; AlRubaish, A.A.; Mahmoud, A.; Smajlović, S.; Ćordić, S.; Rabaan, A.A.; Alsuhaimi, E. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. J. Infect. Public Health 2023, 16, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef] [PubMed]
- Agrati, C.; Cossarizza, A.; Mazzotta, V.; Grassi, G.; Casetti, R.; De Biasi, S.; Pinnetti, C.; Gili, S.; Mondi, A.; Cristofanelli, F. Immunological signature in human cases of monkeypox infection in 2022 outbreak: An observational study. Lancet Infect. Dis. 2023, 23, 320–330. [Google Scholar] [CrossRef]
- Karem, K.L.; Reynolds, M.; Hughes, C.; Braden, Z.; Nigam, P.; Crotty, S.; Glidewell, J.; Ahmed, R.; Amara, R.; Damon, I.K. Monkeypox-induced immunity and failure of childhood smallpox vaccination to provide complete protection. Clin. Vaccine Immunol. 2007, 14, 1318–1327. [Google Scholar] [CrossRef]
- Shao, L.; Huang, D.; Wei, H.; Wang, R.C.; Chen, C.Y.; Shen, L.; Zhang, W.; Jin, J.; Chen, Z.W. Expansion, reexpansion, and recall-like expansion of vγ2vδ2 t cells in smallpox vaccination and monkeypox virus infection. J. Virol. 2009, 83, 11959–11965. [Google Scholar] [CrossRef]
- Gardner, M.B.; Luciw, P.A. Macaque models of human infectious disease. ILAR J. 2008, 49, 220–255. [Google Scholar] [CrossRef]
- Goff, A.J.; Chapman, J.; Foster, C.; Wlazlowski, C.; Shamblin, J.; Lin, K.; Kreiselmeier, N.; Mucker, E.; Paragas, J.; Lawler, J. A novel respiratory model of infection with monkeypox virus in cynomolgus macaques. J. Virol. 2011, 85, 4898–4909. [Google Scholar] [CrossRef]
- Chapman, J.; Nichols, D.; Martinez, M.; Raymond, J. Animal models of orthopoxvirus infection. Vet. Pathol. 2010, 47, 852–870. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Meyer, A.; Zverinski, D.; Pfahringer, B.; Kempfert, J.; Kuehne, T.; Sündermann, S.H.; Stamm, C.; Hofmann, T.; Falk, V.; Eickhoff, C. Machine learning for real-time prediction of complications in critical care: A retrospective study. Lancet Respir. Med. 2018, 6, 905–914. [Google Scholar] [CrossRef]
- Elste, J.; Saini, A.; Mejia-Alvarez, R.; Mejía, A.; Millán-Pacheco, C.; Swanson-Mungerson, M.; Tiwari, V. Significance of artificial intelligence in the study of virus–host cell interactions. Biomolecules 2024, 14, 911. [Google Scholar] [CrossRef]
- Thieme, A.H.; Zheng, Y.; Machiraju, G.; Sadee, C.; Mittermaier, M.; Gertler, M.; Salinas, J.L.; Srinivasan, K.; Gyawali, P.; Carrillo-Perez, F. A deep-learning algorithm to classify skin lesions from mpox virus infection. Nat. Med. 2023, 29, 738–747. [Google Scholar] [CrossRef]
- Stern, D.; Surtees, R.; Treindl, F.; Akhmedova, S.; Beslic, D.; Bayram, F.; Sesver, A.; Thi, M.L.N.; Rinner, T.; Grossegesse, M. Differentiation between mpox infection and mva immunization by a novel machine learning-supported serological multiplex assay. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Asif, S.; Zhao, M.; Li, Y.; Tang, F.; Ur Rehman Khan, S.; Zhu, Y. Ai-based approaches for the diagnosis of mpox: Challenges and future prospects. Arch. Comput. Methods Eng. 2024, 31, 3585–3617. [Google Scholar] [CrossRef]
- Liu, H.; Setiono, R. Incremental feature selection. Appl. Intell. 1998, 9, 217–230. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. Smote: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Aid, M.; Sciacca, M.; McMahan, K.; Hope, D.; Liu, J.; Jacob-Dolan, C.; Powers, O.; Barrett, J.; Wu, C.; Mutoni, A. Mpox infection protects against re-challenge in rhesus macaques. Cell 2023, 186, 4652–4661.e13. [Google Scholar] [CrossRef]
- Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef]
- Dorogush, A.V.; Ershov, V.; Gulin, A. Catboost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Draminski, M.; Rada-Iglesias, A.; Enroth, S.; Wadelius, C.; Koronacki, J.; Komorowski, J. Monte carlo feature selection for supervised classification. Bioinformatics 2008, 24, 110–117. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ayyanar, M.; Jeganathan, S.; Parthasarathy, S.; Jayaraman, V.; Lakshminarayanan, A.R. Predicting the cardiac diseases using selectkbest method equipped light gradient boosting machine. In Proceedings of the 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 28–30 April 2022; pp. 117–122. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ren, J.; Chen, L.; Guo, W.; Feng, K.; Huang, T.; Cai, Y.-D. Patterns of gene expression profiles associated with colorectal cancer in colorectal mucosa by using machine learning methods. Comb. Chem. High Throughput Screen. 2024, 27, 2921–2934. [Google Scholar] [CrossRef]
- Ren, J.; Gao, Q.; Zhou, X.; Chen, L.; Guo, W.; Feng, K.; Huang, T.; Cai, Y.-D. Identification of key gene expression associated with quality of life after recovery from COVID-19. Med. Biol. Eng. Comput. 2024, 62, 1031–1048. [Google Scholar] [CrossRef]
- Ren, J.; Zhou, X.; Huang, K.; Chen, L.; Guo, W.; Feng, K.; Huang, T.; Cai, Y.-D. Identification of key genes associated with persistent immune changes and secondary immune activation responses induced by influenza vaccination after COVID-19 recovery by machine learning methods. Comput. Biol. Med. 2024, 169, 107883. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Ma, Q.; Chen, L.; Feng, K.; Guo, W.; Huang, T.; Cai, Y.-D. Recognizing SARS-CoV-2 infection of nasopharyngeal tissue at the single-cell level by machine learning method. Mol. Immunol. 2025, 177, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Zhang, Y.; Chen, L.; Bao, Y.; Guo, W.; Feng, K.; Huang, T.; Cai, Y.-D. Machine learning-driven discovery of essential binding preference in anti-crispr proteins. Proteom.-Clin. Appl. 2025. [Google Scholar] [CrossRef]
- Chen, L.; Gu, J.; Zhou, B. Pmislocmf: Predicting mirna subcellular localizations by incorporating multi-source features of mirnas. Brief. Bioinform. 2024, 25, bbae386. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, J. Pdtdahn: Predicting drug-target-disease associations using a heterogeneous network. Curr. Bioinform. 2025, in press. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, S.; Zhou, B. Herb-disease association prediction model based on network consistency projection. Sci. Rep. 2025, 15, 3328. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Xu, J.; Zhou, B. Prediction of drug’s anatomical therapeutic chemical (atc) code by constructing biological profiles of atc codes. BMC Bioinform. 2025, 26, 86. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, W.; Chen, D. An end-to-end 3d graph neural network for predicting drug-target-disease associations. Curr. Bioinform. 2025. [Google Scholar] [CrossRef]
- Levner, I. Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinform. 2005, 6, 68. [Google Scholar] [CrossRef]
- Osho, O.; Hong, S. An overview: Stochastic gradient descent classifier, linear discriminant analysis, deep learning and naive bayes classifier approaches to network intrusion detection. Int. J. Eng. Tech. Res. 2021, 10, 294–308. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Rish, I. An Empirical Study of the Naive Bayes Classifier. In Proceedings of the IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, Seattle, WA, USA, 4–10 August 2001; pp. 41–46. [Google Scholar]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Liao, H.; Ma, Q.; Chen, L.; Guo, W.; Feng, K.; Bao, Y.; Zhang, Y.; Shen, W.; Huang, T.; Cai, Y.-D. Machine learning analysis of cd4+ t cell gene expression in diverse diseases: Insights from cancer, metabolic, respiratory, and digestive disorders. Cancer Genet. 2025, 290–291, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Matthews, B. Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta (BBA)-Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Gorodkin, J. Comparing two k-category assignments by a k-category correlation coefficient. Comput. Biol. Chem. 2004, 28, 367–374. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L. Clusterprofiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- Carlson, M.; Falcon, S.; Pages, H.; Li, N. Org. Hs. Eg. Db: Genome wide annotation for human. R Package Version 2019, 3, 3. [Google Scholar]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Wang, K.; Wei, G.; Liu, D. Cd19: A biomarker for b cell development, lymphoma diagnosis and therapy. Exp. Hematol. Oncol. 2012, 1, 36. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.-P.; Chu, W.-M.; Tam, A.R.; Wang, K.; Han, Y.; Chen, L.-L.; Zhang, X.; Choi, C.Y.-K.; Cheng, V.C.-C.; Chan, K.-H. Determination of seroprevalence and kinetics of humoral response using mpox virus a29 protein. Commun. Med. 2023, 3, 168. [Google Scholar] [CrossRef]
- Zuccolo, J.; Deng, L.; Unruh, T.L.; Sanyal, R.; Bau, J.A.; Storek, J.; Demetrick, D.J.; Luider, J.M.; Auer-Grzesiak, I.A.; Mansoor, A. Expression of ms4a and tmem176 genes in human b lymphocytes. Front. Immunol. 2013, 4, 195. [Google Scholar] [CrossRef] [PubMed]
- Krzyzak, L.; Seitz, C.; Urbat, A.; Hutzler, S.; Ostalecki, C.; Gläsner, J.; Hiergeist, A.; Gessner, A.; Winkler, T.H.; Steinkasserer, A. Cd83 modulates b cell activation and germinal center responses. J. Immunol. 2016, 196, 3581–3594. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.S. Fcrl regulation in innate-like b cells. Ann. N. Y. Acad. Sci. 2015, 1362, 110–116. [Google Scholar] [CrossRef]
- Kim, C.C.; Baccarella, A.M.; Bayat, A.; Pepper, M.; Fontana, M.F. Fcrl5+ memory b cells exhibit robust recall responses. Cell Rep. 2019, 27, 1446–1460.e1444. [Google Scholar] [CrossRef]
- Tkachenko, A.; Kupcova, K.; Havranek, O. B-cell receptor signaling and beyond: The role of igα (cd79a)/igβ (cd79b) in normal and malignant b cells. Int. J. Mol. Sci. 2023, 25, 10. [Google Scholar] [CrossRef]
- Cohn, H.; Bloom, N.; Cai, G.; Clark, J.; Tarke, A.; Bermúdez-González, M.C.; Altman, D.; Lugo, L.A.; Lobo, F.P.; Marquez, S. Mpox vaccine and infection-driven human immune signatures. medRxiv 2023. [Google Scholar] [CrossRef]
- Hicks, B.; Jones, S.; Callaby, H.; Bailey, D.; Gordon, C.; Rampling, T.; Houlihan, C.; Linley, E.; Tonge, S.; Oeser, C. Evaluation of a multiplexed immunoassay for assessing long-term humoral immunity to monkeypox virus infection and orthopoxvirus vaccination. medRxiv 2024. [Google Scholar] [CrossRef]
- Saghazadeh, A.; Rezaei, N. Introductory chapter: Toll-like receptors. In Toll-Like Receptors; IntechOpen: London, UK, 2020. [Google Scholar]
- Saghazadeh, A.; Rezaei, N. Implications of toll-like receptors in ebola infection. Expert Opin. Ther. Targets 2017, 21, 415–425. [Google Scholar] [CrossRef]
- Parnian, R.; Heydarifard, F.; Mousavi, F.S.; Heydarifard, Z.; Zandi, M. Innate immune response to monkeypox virus infection: Mechanisms and immune escape. J. Innate Immun. 2024, 16, 413–424. [Google Scholar] [PubMed]
- Petrasek, J.; Dolganiuc, A.; Csak, T.; Kurt–Jones, E.A.; Szabo, G. Type i interferons protect from toll-like receptor 9–associated liver injury and regulate il-1 receptor antagonist in mice. Gastroenterology 2011, 140, 697–708.e694. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.J. Diverse antigen presentation by the group 1 cd1 molecule, cd1c. Mol. Immunol. 2013, 55, 182–185. [Google Scholar] [CrossRef]
- Song, H.; Sidney, J.; Wiseman, R.W.; Josleyn, N.; Cohen, M.; Blaney, J.E.; Jahrling, P.B.; Sette, A. Characterizing monkeypox virus specific cd8+ t cell epitopes in rhesus macaques. Virology 2013, 447, 181–186. [Google Scholar] [CrossRef]
- Saghazadeh, A.; Rezaei, N. Poxviruses and the immune system: Implications for monkeypox virus. Int. Immunopharmacol. 2022, 113, 109364. [Google Scholar] [CrossRef]
- Shantier, S.W.; Mustafa, M.I.; Abdelmoneim, A.H.; Fadl, H.A.; Elbager, S.G.; Makhawi, A.M. Novel multi epitope-based vaccine against monkeypox virus: Vaccinomic approach. Sci. Rep. 2022, 12, 15983. [Google Scholar] [CrossRef] [PubMed]
- Debnath, J.P.; Hossen, K.; Sayed, S.B.; Khandaker, M.S.; Dev, P.C.; Sarker, S.; Hossain, T. Identification of potential biomarkers for 2022 mpox virus infection: A transcriptomic network analysis and machine learning approach. Sci. Rep. 2025, 15, 2922. [Google Scholar] [CrossRef]
- Huang, Y.; Bergant, V.; Grass, V.; Emslander, Q.; Hamad, M.S.; Hubel, P.; Mergner, J.; Piras, A.; Krey, K.; Henrici, A. Multi-omics characterization of the monkeypox virus infection. Nat. Commun. 2024, 15, 6778. [Google Scholar] [CrossRef]
- Ishibashi, M.; Morita, R.; Tamura, H. Immune functions of signaling lymphocytic activation molecule family molecules in multiple myeloma. Cancers 2021, 13, 279. [Google Scholar] [CrossRef]
- Oba, T.; Long, M.D.; Ito, K.-i.; Ito, F. Clinical and immunological relevance of slamf6 expression in the tumor microenvironment of breast cancer and melanoma. Sci. Rep. 2024, 14, 2394. [Google Scholar] [CrossRef]
- Chin, S.S.; Guillen, E.; Chorro, L.; Achar, S.; Ng, K.; Oberle, S.; Alfei, F.; Zehn, D.; Altan-Bonnet, G.; Delahaye, F. T cell receptor and il-2 signaling strength control memory cd8+ t cell functional fitness via chromatin remodeling. Nat. Commun. 2022, 13, 2240. [Google Scholar] [CrossRef] [PubMed]
- Floch-Ramondou, L.; Nagashima, K.; Gayvert, K.; Pan, H.; Korgaonkar, C.; Shakil, H.; Ullman, E.; Norton, T.; Perlee, L.; Murphy, A.J. Evaluation of common gamma chain cytokine signaling blockade with regn7257, an interleukin 2 receptor gamma (il2rg) monoclonal antibody, on immune cell populations in monkey and human. Blood 2022, 140, 2924–2925. [Google Scholar] [CrossRef]
- Gulberti, S.; Mao, X.; Bui, C.; Fournel-Gigleux, S. The role of heparan sulfate maturation in cancer: A focus on the 3o-sulfation and the enigmatic 3o-sulfotransferases (hs3sts). Semin. Cancer Biol. 2020, 62, 68–85. [Google Scholar] [CrossRef] [PubMed]
- de Bock, L.; Fraussen, J.; Villar, L.M.; Álvarez-Cermeño, J.C.; Van Wijmeersch, B.; Van Pesch, V.; Stinissen, P.; Somers, V. Anti-spag 16 antibodies in primary progressive multiple sclerosis are associated with an elevated progression index. Eur. J. Neurol. 2016, 23, 722–728. [Google Scholar] [CrossRef]
- Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar] [CrossRef]
- Lisi, F.; Zelikin, A.N.; Chandrawati, R. Nitric oxide to fight viral infections. Adv. Sci. 2021, 8, 2003895. [Google Scholar] [CrossRef]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Morgan Kaufmann Publishers Inc.: Montreal, QC, Canada, 1995; Volume 2, pp. 1137–1143. [Google Scholar]
Feature List | Classification Algorithm | Number of Features | ACC | MCC | Macro F1 | Weighted F1 |
---|---|---|---|---|---|---|
CATBoost feature list | LightGBM $ | 940 | 0.965 | 0.945 | 0.965 | 0.965 |
LightGBM # | 50 | 0.948 | 0.916 | 0.948 | 0.948 | |
LASSO feature list | LightGBM $ | 1045 | 0.931 | 0.890 | 0.920 | 0.932 |
LightGBM # | 25 | 0.900 | 0.842 | 0.884 | 0.902 | |
ExtraTrees feature list | LightGBM $ | 1155 | 0.944 | 0.911 | 0.936 | 0.944 |
LightGBM # | 220 | 0.922 | 0.876 | 0.918 | 0.922 | |
LightGBM feature list | LightGBM $ | 200 | 0.991 | 0.986 | 0.991 | 0.991 |
LightGBM # | 65 | 0.970 | 0.952 | 0.964 | 0.970 | |
MCFS feature list | LightGBM $ | 1900 | 0.952 | 0.925 | 0.947 | 0.953 |
LightGBM # | 65 | 0.931 | 0.889 | 0.923 | 0.931 | |
RF feature list | LightGBM $ | 1230 | 0.944 | 0.911 | 0.941 | 0.944 |
LightGBM # | 90 | 0.900 | 0.841 | 0.891 | 0.901 | |
SKB feature list | LightGBM $ | 1565 | 0.935 | 0.899 | 0.931 | 0.936 |
LightGBM # | 205 | 0.879 | 0.805 | 0.866 | 0.879 | |
Ridge feature list | LightGBM $ | 860 | 0.944 | 0.911 | 0.941 | 0.944 |
LightGBM # | 90 | 0.892 | 0.830 | 0.882 | 0.893 | |
XGBoost feature list | LightGBM $ | 255 | 0.974 | 0.959 | 0.972 | 0.974 |
LightGBM # | 85 | 0.944 | 0.910 | 0.941 | 0.944 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Zhou, X.; Chen, L.; Feng, K.; Bao, Y.; Guo, W.; Huang, T.; Cai, Y.-D. Unveiling Immune Response Mechanisms in Mpox Infection Through Machine Learning Analysis of Time Series Gene Expression Data. Life 2025, 15, 1039. https://doi.org/10.3390/life15071039
Ma Q, Zhou X, Chen L, Feng K, Bao Y, Guo W, Huang T, Cai Y-D. Unveiling Immune Response Mechanisms in Mpox Infection Through Machine Learning Analysis of Time Series Gene Expression Data. Life. 2025; 15(7):1039. https://doi.org/10.3390/life15071039
Chicago/Turabian StyleMa, Qinglan, Xianchao Zhou, Lei Chen, Kaiyan Feng, Yusheng Bao, Wei Guo, Tao Huang, and Yu-Dong Cai. 2025. "Unveiling Immune Response Mechanisms in Mpox Infection Through Machine Learning Analysis of Time Series Gene Expression Data" Life 15, no. 7: 1039. https://doi.org/10.3390/life15071039
APA StyleMa, Q., Zhou, X., Chen, L., Feng, K., Bao, Y., Guo, W., Huang, T., & Cai, Y.-D. (2025). Unveiling Immune Response Mechanisms in Mpox Infection Through Machine Learning Analysis of Time Series Gene Expression Data. Life, 15(7), 1039. https://doi.org/10.3390/life15071039