Advances in Contraceptive Vaccine Development: A Comprehensive Review
Abstract
1. Global Demand for Contraception and Public Health
2. The Development of Contraceptive Vaccines
2.1. Early Exploration Phase (1900s–1980s): Concept Validation from Animal Models to Human Trials
2.2. Technological Bottleneck Phase (1990s–2010s): Antigen Design Optimization
2.3. New Era (2020s–Present): Delivery System Innovation and Precision Design
3. The Targets and Mechanisms of Contraceptive Vaccines
3.1. Contraceptive Vaccines Targeting Hormones
3.1.1. Gonadotropin-Releasing Hormone (GnRH)
3.1.2. Follicle-Stimulating Hormone (FSH) and Follicle-Stimulating Hormone Receptor (FSHR)
3.1.3. Luteotropic Hormone (LH) and Luteinizing Hormone-Releasing Hormone (LHRH)
3.2. Contraceptive Vaccines Targeting Sperm Antigens
3.3. Contraceptive Vaccines Targeting the Zona Pellucida of Oocytes
3.4. Contraceptive Vaccines Targeting Gamete Outcomes
3.4.1. Human Chorionic Gonadotropin (hCG)
3.4.2. Leukemia Inhibitory Factor (LIF)
4. Advantages of Contraceptive Vaccines
4.1. High Efficiency and Long-Lasting Effect
4.2. Non-Invasiveness and Convenience
4.3. Reversibility and Safety
4.4. Promoting Gender Equality
5. Limitations of Contraceptive Vaccines
5.1. Individual Variation in Immune Response
5.2. Potential Autoimmune Risks and Controversies Regarding Safety and Reversibility
5.3. Population Restrictions for Contraceptive Vaccine Use
5.3.1. Individuals with Multiple Sexual Partners
5.3.2. Individuals Planning Pregnancy in the near Term
5.3.3. Patients with Immunodeficiency or Autoimmune Diseases
Advantages | ||
---|---|---|
Item | Key Point | Additional Details |
Specificity | Triggering protective immunity via precisely designed epitopes | Antigen-specific immune response |
Long-lasting Effect | Single-administration protection for months to years | Immunological memory effect |
High Efficiency | Enhanced immunogenicity through multi-epitope combinatorial vaccines | Epitope diversity/B cell receptor diversity |
Non-invasiveness | Injection delivery eliminating surgical trauma | Postoperative sequelae of IUD/sterilization |
Adherence | Streamlined protocols with low implementation costs | No daily dosing/pre-coital preparation required |
Convenience | Reduced failure risk from operational errors | |
Reversibility | Fertility recovery upon discontinuation | Uncertainty in vasectomy reversal efficacy |
Safety | Minimal hormonal interference preventing depression/suicide risks | Distinct from oral contraceptives |
Safety | Transient local reactions (redness/pain) without long-term sequelae | Post-procedural complications of IUD/sterilization |
Gender Equality | Proactive male vaccination engagement | Societal implication: Shared responsibility |
Alleviated socioeconomic burdens from unintended pregnancies on women | Gender equality: Burden redistribution | |
Limitations | ||
Item | Key Point | Additional Details |
Individual Variation in Immune Response | HLA genotype variations impair antibody titers | Genetic background |
Age-related immunosenescence compromises immune memory | Immunosenescence and reducing memory B cell generation | |
Chronic diseases/immunosuppressants diminish vaccine efficacy | Diabetic states/glucocorticoids suppress Tfh cell differentiation | |
Potential Autoimmune Risks | Reproductive-specific targets risk triggering autoimmunity | FSHR antibodies target Sertoli cells |
Intrinsic T cell epitopes in antigens | ZP antigens harbor dominant Th1 epitopes risking oophoritis | |
Cascade interference of hormonal axes | LH vaccines cross-inhibit TSH/ACTH secretion | |
Unpredictability of Reversibility | Longevity of memory B cell pools | Bone marrow-resident plasma cells sustain antibody production > 2 years |
Irreversible gonadal suppression | Early GnRH vaccine trials demonstrated castration-like effects | |
Population Restrictions for Contraceptive Vaccine Use | Individuals with multiple sexual partners | No protection against STIs |
Individuals planning pregnancy in the near term | Individual variability in antibody decay and immune memory waning | |
Patients with immunodeficiency or autoimmune diseases | Immune hyporesponsiveness or autoimmune induction |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
hCG | Human chorionic gonadotropin |
GnRH | Gonadotropin-releasing hormone |
LH | Luteinizing hormone |
FSH | Follicle-stimulating hormone |
OVA | Ovalbumin |
PMA | Polymethacrylic acid |
FSHR | Follicle-stimulating hormone receptor |
TSH | Thyroid-stimulating hormone |
SPAM-1 | Sperm adhesion molecule 1 |
SP-10 | Sperm protein-10 |
FA-1 | Fertilization antigen-1 |
LDH-C4 | Lactate dehydrogenase-C4 |
SAGA-1 | Sperm agglutination antigen 1 |
SP-17 | Sperm protein-17 |
Eppin | Epididymal protease inhibitor |
GPCRs | G-protein-coupled receptors |
SPAG6 | Sperm-associated antigen 6 |
ASA | Anti-sperm antibody |
STIs | Sexually transmitted infections |
IUD | Intrauterine device |
MPTs | Multipurpose prevention technologies |
SEMG-1 | Semen coagulum protein semenogelin-1 |
ZP | Zona pellucida |
pZP | Porcine zona pellucida |
LIF | Leukemia inhibitory factor |
IVF | In vitro fertilization |
COCs | Combined oral contraceptives |
POP | Progesterone-only pill |
LHRH | Luteinizing hormone-releasing hormone |
POF | Primary ovarian failure |
RIF | Recurrent implantation failure |
tNASP | Testicular nuclear autoantigenic sperm protein |
SP-56 | Sperm protein-56 |
CV | Contraceptive vaccine |
References
- Kantorová, V.; Wheldon, M.C.; Ueffing, P.; Dasgupta, A.N.Z. Estimating progress towards meeting women’s contraceptive needs in 185 countries: A Bayesian hierarchical modelling study. PLoS Med. 2020, 17, e1003026. [Google Scholar] [CrossRef] [PubMed]
- Umutesi, V.; Ogendi, J. Family Planning Uptake and Associated Factors among Women of Reproductive Age in Rusizi District, Rwanda. J. Med. Nurs. Public Health 2023, 6, 23–39. [Google Scholar] [CrossRef]
- Bearak, J.; Popinchalk, A.; Ganatra, B.; Moller, A.B.; Tunçalp, Ö.; Beavin, C.; Kwok, L.; Alkema, L. Unintended pregnancy and abortion by income, region, and the legal status of abortion: Estimates from a comprehensive model for 1990–2019. Lancet Glob. Health 2020, 8, e1152–e1161. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Trends in Maternal Mortality 2000 to 2020: Estimates by WHO, UNICEF, UNFPA, World Bank Group and UNDESA/Population Division; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Benson, J.; Okoh, M.; KrennHrubec, K.; Lazzarino, M.A.; Johnston, H.B. Public hospital costs of treatment of abortion complications in Nigeria. Int. J. Gynecol. Obstet. 2012, 118 (Suppl. 2), S134–S140. [Google Scholar] [CrossRef]
- Samuel, O.; Zewotir, T.; North, D. Decomposing the urban-rural inequalities in the utilisation of maternal health care services: Evidence from 27 selected countries in Sub-Saharan Africa. Reprod. Health 2021, 18, 216. [Google Scholar] [CrossRef]
- Bearak, J.M.; Popinchalk, A.; Burke, K.L.; Anjur-Dietrich, S. Does the Impact of Motherhood on Women’s Employment and Wages Differ for Women Who Plan Their Transition Into Motherhood? Demography 2021, 58, 1301–1325. [Google Scholar] [CrossRef]
- Festin, M.P.R. Overview of modern contraception. Best Pract. Res. Clin. Obstet. Gynaecol. 2020, 66, 4–14. [Google Scholar] [CrossRef]
- Anderson, D.J.; Johnston, D.S. A brief history and future prospects of contraception. Science 2023, 380, 154–158. [Google Scholar] [CrossRef]
- Yang, F.; Li, J.; Dong, L.; Tan, K.; Huang, X.; Zhang, P.; Liu, X.; Chang, D.; Yu, X. Review of Vasectomy Complications and Safety Concerns. World J. Men’s Health 2021, 39, 406–418. [Google Scholar] [CrossRef]
- Roth, M.Y.; Amory, J.K. Beyond the Condom: Frontiers in Male Contraception. Semin. Reprod. Med. 2016, 34, 183–190. [Google Scholar] [CrossRef]
- Meriggiola, M.C.; Bremner, W.J.; Costantino, A.; Di Cintio, G.; Flamigni, C. Low dose of cyproterone acetate and testosterone enanthate for contraception in men. Hum. Reprod. 1998, 13, 1225–1229. [Google Scholar] [CrossRef] [PubMed]
- Nieschlag, E.; Behre, H.M. The essential role of testosterone in hormonal male contraception. In Testosterone: Action, Deficiency, Substitution; Cambridge University Press: Cambridge, UK, 2012; pp. 470–539. [Google Scholar]
- Curci, L.; Carvajal, G.; Sulzyk, V.; Gonzalez, S.N.; Cuasnicú, P.S. Pharmacological Inactivation of CatSper Blocks Sperm Fertilizing Ability Independently of the Capacitation Status of the Cells: Implications for Non-hormonal Contraception. Front. Cell Dev. Biol. 2021, 9, 686461. [Google Scholar] [CrossRef] [PubMed]
- Mannowetz, N.; Chung, S.S.W.; Maitra, S.; Noman, M.A.A.; Wong, H.L.; Cheryala, N.; Bakshi, A.; Wolgemuth, D.J.; Georg, G.I. Targeting the retinoid signaling pathway with YCT-529 for effective and reversible oral contraception in mice and primates. Commun. Med. 2025, 5, 68. [Google Scholar] [CrossRef] [PubMed]
- Handayani, L. A male contraceptive pill consist of gandarusa (Justicia gendarussa Burm. F). J. Indones. Med. Assoc. 2011, 57, 279–284. [Google Scholar]
- Herr, J.C. Appendix C: Immunocontraceptive Approaches. In Contraceptive Research and Development: Looking to the Future; Polly Harrison, F., Rosenfield, A., Eds.; The National Academies Press: Washington, DC, USA, 1996; pp. 401–429. [Google Scholar] [CrossRef]
- Kumar, T.C. Development of immunocontraceptives: An introduction. Hum. Reprod. Update 1997, 3, 299–300. [Google Scholar] [CrossRef]
- Chatterjee, J.; Chattopadhyay, S. Immunogenicity of human spermatozoa. Nat. Preced. 2008. [Google Scholar] [CrossRef]
- Lekhwani, S.; Vaswani, N.; Ghalaut, V.S.; Shanker, V.; Singh, R. Immunocontraceptives: How far from reality? Adv. Biomed. Res. 2014, 3, 247. [Google Scholar] [CrossRef]
- Talwar, G.P.; Raghupathy, R. Anti-fertility vaccines. Vaccine 1989, 7, 97–101. [Google Scholar] [CrossRef]
- Paterson, M.; Wilson, M.R.; Jennings, Z.A.; van Duin, M.; Aitken, R.J. Design and evaluation of a ZP3 peptide vaccine in a homologous primate model. Mol. Hum. Reprod. 1999, 5, 342–352. [Google Scholar] [CrossRef]
- Xiang, R.; Zhou, F.; Yang, Y.; Peng, J. Construction of the plasmid pCMV4-rZPC’ DNA vaccine and analysis of its contraceptive potential. Biol. Reprod. 2003, 68, 1518–1524. [Google Scholar] [CrossRef]
- Thurman, A.R.; Moench, T.R.; Hoke, M.; Politch, J.A.; Cabral, H.; Mausser, E.; Nador, E.; Morton, J.; Hamorsky, K.; Swope, K.; et al. ZB-06, a vaginal film containing an engineered human contraceptive antibody (HC4-N), demonstrates safety and efficacy in a phase 1 postcoital test and safety study. Am. J. Obstet. Gynecol. 2023, 228, 716.e1–716.e12. [Google Scholar] [CrossRef] [PubMed]
- Baldeon-Vaca, G.; Marathe, J.G.; Politch, J.A.; Mausser, E.; Pudney, J.; Doud, J.; Nador, E.; Zeitlin, L.; Pauly, M.; Moench, T.R.; et al. Production and characterization of a human antisperm monoclonal antibody against CD52g for topical contraception in women. EBioMedicine 2021, 69, 103478. [Google Scholar] [CrossRef] [PubMed]
- Aydin, H.; Sultana, A.; Li, S.; Thavalingam, A.; Lee, J.E. Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex. Nature 2016, 534, 562–565. [Google Scholar] [CrossRef]
- Nishimura, K.; Han, L.; Bianchi, E.; Wright, G.J.; de Sanctis, D.; Jovine, L. The structure of sperm Izumo1 reveals unexpected similarities with Plasmodium invasion proteins. Curr. Biol. 2016, 26, R661–R662. [Google Scholar] [CrossRef]
- Deneke, V.E.; Blaha, A.; Lu, Y.; Suwita, J.P.; Draper, J.M.; Phan, C.S.; Panser, K.; Schleiffer, A.; Jacob, L.; Humer, T.; et al. A conserved fertilization complex bridges sperm and egg in vertebrates. Cell 2024, 187, 7066–7078. [Google Scholar] [CrossRef]
- D’Occhio, M.J.; Aspden, W.J.; Trigg, T.E. Sustained testicular atrophy in bulls actively immunized against GnRH: Potential to control carcase characteristics. Anim. Reprod. Sci. 2001, 66, 47–58. [Google Scholar] [CrossRef]
- Bishop, D.K.; Wettemann, R.P.; Yelich, J.V.; Spicer, L.J. Ovarian response after gonadotropin treatment of heifers immunized against gonadotropin-releasing hormone. J. Anim. Sci. 1996, 74, 1092–1097. [Google Scholar] [CrossRef]
- Talwar, G.P.; Vyas, H.K.; Purswani, S.; Gupta, J.C. Gonadotropin-releasing hormone/human chorionic gonadotropin beta based recombinant antibodies and vaccines. J. Reprod. Immunol. 2009, 83, 158–163. [Google Scholar] [CrossRef]
- Han, X.; Li, J.; Zhou, Y.; Ren, X.; Liu, G.; Cao, X.; Du, X.; Zeng, X. Active immunization with GnRH-tandem-dimer peptide in young male rats reduces serum reproductive hormone concentrations, testicular development and spermatogenesis. Asian J. Androl. 2016, 18, 485–491. [Google Scholar] [CrossRef]
- Fuentes, F.; Junco, J.; Calzada, L.; Lopez, Y.; Pimentel, E.; Basulto Baker, R. Effect of a GnRH vaccine formulation on testosterone concentrations and reproduction in adult male rats. Biotecnol. Apl. 2014, 31, 222–227. [Google Scholar] [CrossRef]
- Faruck, M.O.; Koirala, P.; Yang, J.; D’Occhio, M.J.; Skwarczynski, M.; Toth, I. Polyacrylate-GnRH Peptide Conjugate as an Oral Contraceptive Vaccine Candidate. Pharmaceutics 2021, 13, 1081. [Google Scholar] [CrossRef] [PubMed]
- Junco, J.A.; Fuentes, F.; Millar, R.P. A dual kisspeptin-GnRH immunogen for reproductive immunosterilization. Vaccine 2021, 39, 6437–6448. [Google Scholar] [CrossRef] [PubMed]
- Schrater, A.F. Immunization to regulate fertility: Biological and cultural frameworks. Soc. Sci. Med. 1995, 41, 657–671. [Google Scholar] [CrossRef]
- Naz, R.K.; Gupta, S.K.; Gupta, J.C.; Vyas, H.K.; Talwar, G.P. Recent advances in contraceptive vaccine development: A mini-review. Hum. Reprod. 2005, 20, 3271–3283. [Google Scholar] [CrossRef]
- Tan, O.; Carr, B.R.; Beshay, V.E.; Bukulmez, O. The extrapituitary effects of GnRH antagonists and their potential clinical implications: A narrated review. Reprod. Sci. 2013, 20, 16–25. [Google Scholar] [CrossRef]
- Gupta, S.K.; Shrestha, A.; Minhas, V. Milestones in contraceptive vaccines development and hurdles in their application. Hum. Vaccines Immunother. 2014, 10, 911–925. [Google Scholar] [CrossRef]
- Kumar, T.R.; Wang, Y.; Lu, N.; Matzuk, M.M. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet. 1997, 15, 201–204. [Google Scholar] [CrossRef]
- Tapanainen, J.S.; Vaskivuo, T.; Aittomäki, K.; Huhtaniemi, I.T. Inactivating FSH receptor mutations and gonadal dysfunction. Mol. Cell Endocrinol. 1998, 145, 129–135. [Google Scholar] [CrossRef]
- Zariñán, T.; Mayorga, J.; Jardón-Valadez, E.; Gutiérrez-Sagal, R.; Maravillas-Montero, J.L.; Mejía-Domínguez, N.R.; Martínez-Luis, I.; Yacini-Torres, O.G.; Cravioto, M.D.; Reiter, E.; et al. A Novel Mutation in the FSH Receptor (I423T) Affecting Receptor Activation and Leading to Primary Ovarian Failure. J. Clin. Endocrinol. Metab. 2021, 106, e534–e550. [Google Scholar] [CrossRef]
- Ko, E.J.; Shin, J.E.; Lee, J.Y.; Ryu, C.S.; Hwang, J.Y.; Kim, Y.R.; Ahn, E.H.; Kim, J.H.; Kim, N.K. Association of Polymorphisms in FSHR, INHA, ESR1, and BMP15 with Recurrent Implantation Failure. Biomedicines 2023, 11, 1374. [Google Scholar] [CrossRef]
- Meng, F.; Yao, H.; Li, J.; Zhuo, Y.; Yu, G.; Bu, G.; Cao, X.; Du, X.; Liang, Q.; Zeng, X.; et al. Effects of active immunization against a 13-amino acid receptor-binding epitope of FSHβ on fertility regulation in female mice. Reprod. Biol. 2022, 22, 100669. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; He, W.; Liang, Z.; Chen, Z.; Shang, X.; He, H.; Tang, Y.; Ni, B.; Zhang, J.; Shen, Z. A novel dominant B-cell epitope of FSHR identified by molecular docking induced specific immune response and suppressed fertility. Gynecol. Endocrinol. 2009, 25, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, Y.-C.; Yang, H.; Long, Y.; Chen, M.-J.; Qin, Y.-F.; Xia, Y.-K.; Song, L.; Gu, A.-H.; Wang, X.-R. The preparation and application of N-terminal 57 amino acid protein of the follicle-stimulating hormone receptor as a candidate male contraceptive vaccine. Asian J. Androl. 2014, 16, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, J.; Yan, P.; Liu, H.; Zeng, S.; Wu, Y.; Liang, Z.; He, W. Follicle-stimulating hormone receptor (FSHR)-derived peptide vaccine induced infertility in mice without pathological effect on reproductive organs. Reprod. Fertil. Dev. 2011, 23, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Suresh, R.; Medhamurthy, R.; Moudgal, N. Comparative studies on the effects of specific immunoneutralization of endogenous FSH or LH on testicular germ cell transformations in the adult bonnet monkey (Macaca radiata). Am. J. Reprod. Immunol. 1995, 34, 35–43. [Google Scholar] [CrossRef]
- Thau, R. Anti-LHRH and anti-pituitary gonadotropin vaccines: Their development and clinical applications. Scand. J. Immunol. Suppl. 1992, 11, 127–130. [Google Scholar] [CrossRef]
- Stevens, J.D.; Sosa, J.M.; deAvila, D.M.; Oatley, J.M.; Bertrand, K.P.; Gaskins, C.T.; Reeves, J.J. Luteinizing hormone-releasing hormone fusion protein vaccines block estrous cycle activity in beef heifers. J. Anim. Sci. 2005, 83, 152–159. [Google Scholar] [CrossRef]
- Ferro, V.A.; Garside, D.A. Reproductive component vaccine developments for contraceptive and non-contraceptive uses. Expert Opin. Ther. Pat. 2011, 21, 1473–1482. [Google Scholar] [CrossRef]
- Rosengren, S.; Souratha, J.; Conway, D.; Muchmore, D.B.; Sugarman, B.J. Recombinant Human PH20: Baseline Analysis of the Reactive Antibody Prevalence in the General Population Using Healthy Subjects. BioDrugs 2018, 32, 83–89. [Google Scholar] [CrossRef]
- Kurth, B.E.; Weston, C.; Reddi, P.P.; Bryant, D.; Bhattacharya, R.; Flickinger, C.J.; Herr, J.C. Oviductal antibody response to a defined recombinant sperm antigen in macques. Biol. Reprod. 1997, 57, 981–989. [Google Scholar] [CrossRef]
- Suri, A. Sperm specific proteins-potential candidate molecules for fertility control. Reprod. Biol. Endocrinol. 2004, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Chiriva-Internati, M.; Gagliano, N.; Donetti, E.; Costa, F.; Grizzi, F.; Franceschini, B.; Albani, E.; Levi-Setti, P.E.; Gioia, M.; Jenkins, M.; et al. Sperm protein 17 is expressed in the sperm fibrous sheath. J. Transl. Med. 2009, 7, 61. [Google Scholar] [CrossRef]
- Goldberg, E.; Herr, J.C. LDH-C4 as a Contraceptive Vaccine. In Reproductive Immunology; Gupta, S.K., Ed.; Springer: Dordrecht, The Netherlands, 1999; pp. 309–315. [Google Scholar] [CrossRef]
- Diekman, A.B.; Norton, E.J.; Westbrook, V.A.; Klotz, K.L.; Naaby-Hansen, S.; Herr, J.C. Anti-sperm antibodies from infertile patients and their cognate sperm antigens: A review. Identity between SAGA-1, the H6-3C4 antigen, and CD52. Am. J. Reprod. Immunol. 2000, 43, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Naz, R.K.; Chauhan, S.C. Human sperm-specific peptide vaccine that causes long-term reversible contraception. Biol. Reprod. 2002, 67, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Naz, R.K. Vaccine for human contraception targeting sperm Izumo protein and YLP12 dodecamer peptide. Protein Sci. 2014, 23, 857–868. [Google Scholar] [CrossRef]
- O’rand, M.; Widgren, E.; Sivashanmugam, P.; Richardson, R.; Hall, S.; French, F.; VandeVoort, C.; Ramachandra, S.; Ramesh, V.; Jagannadha Rao, A. Reversible immunocontraception in male monkeys immunized with eppin. Science 2004, 306, 1189–1190. [Google Scholar] [CrossRef]
- O’Rand, M.G.; Widgren, E.E.; Hamil, K.G.; Silva, E.J.; Richardson, R.T. Functional studies of eppin. Biochem. Soc. Trans. 2011, 39, 1447–1449. [Google Scholar] [CrossRef]
- Cheng, A.; Le, T.; Palacios, M.; Bookbinder, L.H.; Wassarman, P.M.; Suzuki, F.; Bleil, J.D. Sperm-egg recognition in the mouse: Characterization of sp56, a sperm protein having specific affinity for ZP3. J. Cell Biol. 1994, 125, 867–878. [Google Scholar] [CrossRef]
- Buffone, M.G.; Zhuang, T.; Ord, T.S.; Hui, L.; Moss, S.B.; Gerton, G.L. Recombinant mouse sperm ZP3-binding protein (ZP3R/sp56) forms a high order oligomer that binds eggs and inhibits mouse fertilization in vitro. J. Biol. Chem. 2008, 283, 12438–12445. [Google Scholar] [CrossRef]
- Hardy, C.M.; Mobbs, K.J. Expression of recombinant mouse sperm protein sp56 and assessment of its potential for use as an antigen in an immunocontraceptive vaccine. Mol. Reprod. Dev. 1999, 52, 216–224. [Google Scholar] [CrossRef]
- Muro, Y.; Buffone, M.G.; Okabe, M.; Gerton, G.L. Function of the acrosomal matrix: Zona pellucida 3 receptor (ZP3R/sp56) is not essential for mouse fertilization. Biol. Reprod. 2012, 86, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Ikawa, M.; Isotani, A.; Okabe, M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 2005, 434, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Hamada, D.; Kamikubo, H.; Hirata, K.; Kataoka, M.; Yamamoto, M.; Ikawa, M.; Okabe, M.; Hagihara, Y. Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. Development 2013, 140, 3221–3229. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.; Naz, R.K. Presence and incidence of izumo antibodies in sera of immunoinfertile women and men. Am. J. Reprod. Immunol. 2013, 69, 256–263. [Google Scholar] [CrossRef]
- Xue, F.; Wang, L.; Liu, Y.; Tang, H.; Xu, W.; Xu, C. Vaccination with an Epitope Peptide of IZUMO1 to Induce Contraception in Female Mice. Am. J. Reprod. Immunol. 2016, 75, 474–485. [Google Scholar] [CrossRef]
- O’Rand, M.G.; Richardson, R.T.; Zimmerman, L.J.; Widgren, E.E. Sequence and localization of human NASP: Conservation of a Xenopus histone-binding protein. Dev. Biol. 1992, 154, 37–44. [Google Scholar] [CrossRef]
- Batova, I.N.; Richardson, R.T.; Widgren, E.E.; O’Rand, M.G. Analysis of the autoimmune epitopes on human testicular NASP using recombinant and synthetic peptides. Clin. Exp. Immunol. 2000, 121, 201–209. [Google Scholar] [CrossRef]
- Alexander, N.J.; Anderson, D.J. Vasectomy: Consequences of autoimmunity to sperm antigens. Fertil. Steril. 1979, 32, 253–260. [Google Scholar] [CrossRef]
- Wang, M.; Shi, J.L.; Cheng, G.Y.; Hu, Y.Q.; Xu, C. The antibody against a nuclear autoantigenic sperm protein can result in reproductive failure. Asian J. Androl. 2009, 11, 183–192. [Google Scholar] [CrossRef]
- Primakoff, P.; Lathrop, W.; Woolman, L.; Cowan, A.; Myles, D. Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20. Nature 1988, 335, 543–546. [Google Scholar] [CrossRef]
- Nand, K.N.; Jordan, T.B.; Yuan, X.; Basore, D.A.; Zagorevski, D.; Clarke, C.; Werner, G.; Hwang, J.Y.; Wang, H.; Chung, J.J.; et al. Bacterial production of recombinant contraceptive vaccine antigen from CatSper displayed on a human papilloma virus-like particle. Vaccine 2023, 41, 6791–6801. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Singh, N.K. An Insight into Novel Sperm Cell Proteins as Bio-markers for Male Infertility: A Review. Curr. Mol. Med. 2021, 21, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Corda, P.O.; Santiago, J.; Fardilha, M. G-protein coupled receptors in human sperm: An in silico approach to identify potential modulatory targets. Molecules 2022, 27, 6503. [Google Scholar] [CrossRef]
- Siliņa, K.; Zayakin, P.; Kalniņa, Z.; Ivanova, L.; Meistere, I.; Endzeliņš, E.; Abols, A.; Stengrēvics, A.; Leja, M.; Ducena, K.; et al. Sperm-associated antigens as targets for cancer immunotherapy: Expression pattern and humoral immune response in cancer patients. J. Immunother. 2011, 34, 28–44. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Li, W.; Huang, Q.; Yuan, S.; Li, Y.; Liu, J.; Zhang, S.; Pin, G.; Song, S.; et al. The sperm-associated antigen 6 interactome and its role in spermatogenesis. Reproduction 2019, 158, 181–197. [Google Scholar] [CrossRef]
- Chiriva-Internati, M. Sperm protein 17: Clinical relevance of a cancer/testis antigen, from contraception to cancer immunotherapy, and beyond. Int. Rev. Immunol. 2011, 30, 138–149. [Google Scholar] [CrossRef]
- A. S., V.; Dhama, K.; Chakraborty, S.; Samad, H.A.; Latheef, S.K.; Sharun, K.; Khurana, S.K.; K., A.; Tiwari, R.; Bhatt, P.; et al. Role of Antisperm Antibodies in Infertility, Pregnancy, and Potential forContraceptive and Antifertility Vaccine Designs: Research Progress and Pioneering Vision. Vaccines 2019, 7, 116. [Google Scholar] [CrossRef]
- Silva, A.F.; Ramalho-Santos, J.; Amaral, S. The impact of antisperm antibodies on human male reproductive function: An update. Reproduction 2021, 162, R55–R71. [Google Scholar] [CrossRef]
- Shetty, J.; Naaby-Hansen, S.; Shibahara, H.; Bronson, R.; Flickinger, C.J.; Herr, J.C. Human sperm proteome: Immunodominant sperm surface antigens identified with sera from infertile men and women. Biol. Reprod. 1999, 61, 61–69. [Google Scholar] [CrossRef]
- Nowicka-Bauer, K.; Kamieniczna, M.; Cibulka, J.; Ulcova-Gallova, Z.; Kurpisz, M. Proteomic identification of sperm antigens using serum samples from individuals with and without antisperm antibodies. Andrologia 2016, 48, 693–701. [Google Scholar] [CrossRef]
- Shrestha, B.; Schaefer, A.; Zhu, Y.; Saada, J.; Jacobs, T.M.; Chavez, E.C.; Olmsted, S.S.; Cruz-Teran, C.A.; Vaca, G.B.; Vincent, K. Engineering sperm-binding IgG antibodies for the development of an effective nonhormonal female contraception. Sci. Transl. Med. 2021, 13, eabd5219. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hasegawa, A.; Wakimoto, Y.; Shibahara, H. Update on the research on the antigens of anti-sperm antibodies over the last decade. J. Reprod. Immunol. 2024, 164, 104292. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.A.S.; Santos, N.C.M.; Rosa, L.R.; Borges, R.J.; Fontes, M.R.M.; Hamil, K.G.; O’Rand, M.G.; Silva, E.J.R. Interactions of the male contraceptive target EPPIN with semenogelin-1 and small organic ligands. Sci. Rep. 2023, 13, 14382. [Google Scholar] [CrossRef]
- Gupta, S.K.; Bhandari, B.; Shrestha, A.; Biswal, B.K.; Palaniappan, C.; Malhotra, S.S.; Gupta, N. Mammalian zona pellucida glycoproteins: Structure and function during fertilization. Cell Tissue Res. 2012, 349, 665–678. [Google Scholar] [CrossRef]
- Epifano, O.; Dean, J. Biology and structure of the zona pellucida: A target for immunocontraception. Reprod. Fertil. Dev. 1994, 6, 319–330. [Google Scholar] [CrossRef]
- Kirkpatrick, J.F.; Rowan, A.; Lamberski, N.; Wallace, R.; Frank, K.; Lyda, R. The practical side of immunocontraception: Zona proteins and wildlife. J. Reprod. Immunol. 2009, 83, 151–157. [Google Scholar] [CrossRef]
- Gupta, S.K.; Srinivasan, V.A.; Suman, P.; Rajan, S.; Nagendrakumar, S.B.; Gupta, N.; Shrestha, A.; Joshi, P.; Panda, A.K. Contraceptive vaccines based on the zona pellucida glycoproteins for dogs and other wildlife population management. Am. J. Reprod. Immunol. 2011, 66, 51–62. [Google Scholar] [CrossRef]
- Ma, X.; Li, J.; Zhang, F. Intranasal co-delivery with the mouse zona pellucida 3 and GM-CSF expressing constructs enhances humoral immune responses and contraception in mice. Scand. J. Immunol. 2012, 76, 521–527. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhang, B.; Zhang, F. The preclinical evaluation of immunocontraceptive vaccines based on canine zona pellucida 3 (cZP3) in a mouse model. Reprod. Biol. Endocrinol. 2018, 16, 47. [Google Scholar] [CrossRef]
- Nuñez, C.M.; Adelman, J.S.; Rubenstein, D.I. Immunocontraception in wild horses (Equus caballus) extends reproductive cycling beyond the normal breeding season. PLoS ONE 2010, 5, e13635. [Google Scholar] [CrossRef]
- Sacco, A.G.; Yurewicz, E.C.; Subramanian, M.G.; Lian, Y.; Dukelow, W.R. Immunological response and ovarian histology of squirrel monkeys (Saimiri sciureus) immunized with porcine zona pellucida ZP3 (M(r) = 55,000) macromolecules. Am. J. Primatol. 1991, 24, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, K.; Broer, I.; Schön, J.; Kolp, N.; Killisch, R.; Huckauf, J. Plant-Produced Mouse-Specific Zona Pellucida 3 Peptide Induces Immune Responses in Mice. Vaccines 2023, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, K.; Broer, I.; Schön, J.; Kolp, N.; Killisch, R.; Mikkat, S.; Huckauf, J. Immunogenicity and contraceptive efficacy of plant-produced putative mouse-specific contraceptive peptides. Front. Plant Sci. 2023, 14, 1191640. [Google Scholar] [CrossRef] [PubMed]
- Kuninaga, N.; Asano, M.; Matsuyama, R.; Minemoto, T.; Mori, T.; Suzuki, M. Serological and histological evaluation of species-specific immunocontraceptive vaccine antigens based on zona pellucida 3 in the small Indian mongoose (Herpestes auropunctatus). J. Vet. Med. Sci. 2019, 81, 328–337. [Google Scholar] [CrossRef]
- Sun, W.; Lou, Y.H.; Dean, J.; Tung, K.S. A contraceptive peptide vaccine targeting sulfated glycoprotein ZP2 of the mouse zona pellucida. Biol. Reprod. 1999, 60, 900–907. [Google Scholar] [CrossRef]
- Millar, S.E.; Chamow, S.M.; Baur, A.W.; Oliver, C.; Robey, F.; Dean, J. Vaccination with a synthetic zona pellucida peptide produces long-term contraception in female mice. Science 1989, 246, 935–938. [Google Scholar] [CrossRef]
- Xu, W.; Bhandari, B.; He, Y.; Tang, H.; Chaudhary, S.; Talwar, P.; Gupta, S.K.; Wang, J. Mapping of epitopes relevant for induction of acrosome reaction on human zona pellucida glycoprotein-4 using monoclonal antibodies. Am. J. Reprod. Immunol. 2012, 68, 465–475. [Google Scholar] [CrossRef]
- Gupta, S.K. Zona pellucida glycoproteins: Relevance in fertility and development of contraceptive vaccines. Am. J. Reprod. Immunol. 2023, 89, e13535. [Google Scholar] [CrossRef]
- Choi, J.; Smitz, J. Luteinizing hormone and human chorionic gonadotropin: Distinguishing unique physiologic roles. Gynecol. Endocrinol. 2014, 30, 174–181. [Google Scholar] [CrossRef]
- Schug, S.; Baunacke, A.; Goeckenjan, M.; Horn, L.C.; Pretzsch, G.; Zimmermann, G.; Alexander, H. Endometrial human chorionic gonadotropin (hCG) expression is a marker for adequate secretory transformation of the endometrium. Arch. Gynecol. Obstet. 2019, 299, 1727–1736. [Google Scholar] [CrossRef]
- Talwar, G.P.; Singh, O.; Pal, R.; Chatterjee, N.; Sahai, P.; Dhall, K.; Kaur, J.; Das, S.K.; Suri, S.; Buckshee, K.; et al. A vaccine that prevents pregnancy in women. Proc. Natl. Acad. Sci. USA 1994, 91, 8532–8536. [Google Scholar] [CrossRef] [PubMed]
- Talwar, G.P.; Singh, O.M.; Gupta, S.K.; Hasnain, S.E.; Pal, R.; Majumbar, S.S.; Vrati, S.; Mukhopadhay, A.; Srinivasan, J.; Deshmukh, U.; et al. The HSD-hCG vaccine prevents pregnancy in women: Feasibility study of a reversible safe contraceptive vaccine. Am. J. Reprod. Immunol. 1997, 37, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Prabha, V. Immunocontraceptives: New approaches to fertility control. Biomed Res. Int. 2014, 2014, 868196. [Google Scholar] [CrossRef] [PubMed]
- Makrigiannakis, A.; Vrekoussis, T.; Zoumakis, E.; Kalantaridou, S.N.; Jeschke, U. The Role of HCG in Implantation: A Mini-Review of Molecular and Clinical Evidence. Int. J. Mol. Sci. 2017, 18, 1305. [Google Scholar] [CrossRef]
- Paiva, P.; Menkhorst, E.; Salamonsen, L.; Dimitriadis, E. Leukemia inhibitory factor and interleukin-11: Critical regulators in the establishment of pregnancy. Cytokine Growth Factor Rev. 2009, 20, 319–328. [Google Scholar] [CrossRef]
- Cullinan, E.B.; Abbondanzo, S.J.; Anderson, P.S.; Pollard, J.W.; Lessey, B.A.; Stewart, C.L. Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation. Proc. Natl. Acad. Sci. USA 1996, 93, 3115–3120. [Google Scholar] [CrossRef]
- Bhatt, H.; Brunet, L.J.; Stewart, C.L. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc. Natl. Acad. Sci. USA 1991, 88, 11408–11412. [Google Scholar] [CrossRef]
- Hambartsoumian, E. Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am. J. Reprod. Immunol. 1998, 39, 137–143. [Google Scholar] [CrossRef]
- Tsai, H.D.; Chang, C.C.; Hsieh, Y.Y.; Lo, H.Y. Leukemia inhibitory factor expression in different endometrial locations between fertile and infertile women throughout different menstrual phases. J. Assist. Reprod. Genet. 2000, 17, 415–418. [Google Scholar] [CrossRef]
- Novotný, Z.; Krízan, J.; Síma, R.; Síma, P.; Uher, P.; Zech, N.; Hütelová, R.; Baborová, P.; Ulcová-Gallová, Z.; Subrt, I.; et al. Leukaemia inhibitory factor (LIF) gene mutations in women diagnosed with unexplained infertility and endometriosis have a negative impact on the IVF outcome. A pilot study. Folia. Biol. 2009, 55, 92–97. [Google Scholar] [CrossRef]
- Dimitriadis, E.; Menkhorst, E. New generation contraceptives: Interleukin 11 family cytokines as non-steroidal contraceptive targets. J. Reprod. Immunol. 2011, 88, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Menkhorst, E.; Zhang, J.G.; Sims, N.A.; Morgan, P.O.; Soo, P.; Poulton, I.J.; Metcalf, D.; Alexandrou, E.; Gresle, M.; Salamonsen, L.A.; et al. Vaginally administered PEGylated LIF antagonist blocked embryo implantation and eliminated non-target effects on bone in mice. PLoS ONE 2011, 6, e19665. [Google Scholar] [CrossRef] [PubMed]
- Lemons, A.R.; Naz, R.K. Birth control vaccine targeting leukemia inhibitory factor. Mol. Reprod. Dev. 2012, 79, 97–106. [Google Scholar] [CrossRef]
- Lemons, A.R.; Naz, R.K. Contraceptive vaccines targeting factors involved in establishment of pregnancy. Am. J. Reprod. Immunol. 2011, 66, 13–25. [Google Scholar] [CrossRef]
- Mortazavi, B.; Fard, N.A.; Karkhane, A.A.; Shokrpoor, S.; Heidari, F. Evaluation of multi-epitope recombinant protein as a candidate for a contraceptive vaccine. J. Reprod. Immunol. 2021, 145, 103325. [Google Scholar] [CrossRef]
- Vickram, A.; Dhama, K.; Thanigaivel, S.; Chakraborty, S.; Anbarasu, K.; Dey, N.; Karunakaran, R. Strategies for successful designing of immunocontraceptive vaccines and recent updates in vaccine development against sexually transmitted infections-A review. Saudi J. Biol. Sci. 2022, 29, 2033–2046. [Google Scholar] [CrossRef]
- Hugon-Rodin, J.; Chabbert-Buffet, N.; Bouchard, P. The future of women’s contraception: Stakes and modalities. Ann. New York Acad. Sci. 2010, 1205, 230–239. [Google Scholar] [CrossRef]
- Haddad, L.B.; Townsend, J.W.; Sitruk-Ware, R. Contraceptive technologies: Looking ahead to new approaches to increase options for family planning. Clin. Obstet. Gynecol. 2021, 64, 435–448. [Google Scholar] [CrossRef]
- Swerdloff, R.S.; Bremner, W.J. Why it is timely to bring a new hormonal male contraceptive to the public–A 35-year perspective of the authors. Andrology 2024, 12, 1547–1550. [Google Scholar] [CrossRef]
- Ditch, S.; Roberts, T.A.; Hansen, S. The influence of health care utilization on the association between hormonal contraception initiation and subsequent depression diagnosis and antidepressant use. Contraception 2020, 101, 237–243. [Google Scholar] [CrossRef]
- Skovlund, C.W.; Mørch, L.S.; Kessing, L.V.; Lidegaard, Ø. Association of hormonal contraception with depression. JAMA Psychiatry 2016, 73, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.C.; Lönn, S.L.; Crump, C.; Mościcki, E.K.; Sundquist, J.; Kendler, K.S.; Sundquist, K. Oral contraceptive use and risk of suicidal behavior among young women. Psychol. Med. 2022, 52, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Malik, A.; Arukha, A.P. Ovarian and oocyte targets for development of female contraceptives. Expert Opin. Ther. Targets 2015, 19, 1433–1446. [Google Scholar] [CrossRef]
- Haakenstad, A.; Angelino, O.; Irvine, C.M.; Bhutta, Z.A.; Bienhoff, K.; Bintz, C.; Causey, K.; Dirac, M.A.; Fullman, N.; Gakidou, E. Measuring contraceptive method mix, prevalence, and demand satisfied by age and marital status in 204 countries and territories, 1970–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 295–327. [Google Scholar] [CrossRef]
- Long, J.E.; Lee, M.S.; Blithe, D.L. Update on novel hormonal and nonhormonal male contraceptive development. J. Clin. Endocrinol. Metab. 2021, 106, e2381–e2392. [Google Scholar] [CrossRef]
- Yuen, F.; Thirumalai, A.; Pham, C.; Swerdloff, R.S.; Anawalt, B.D.; Liu, P.Y.; Amory, J.K.; Bremner, W.J.; Dart, C.; Wu, H. Daily oral administration of the novel androgen 11β-MNTDC markedly suppresses serum gonadotropins in healthy men. J. Clin. Endocrinol. Metab. 2020, 105, e835–e847. [Google Scholar] [CrossRef]
- Thirumalai, A.; Amory, J.K. Emerging approaches to male contraception. Fertil. Steril. 2021, 115, 1369–1376. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Jacobsohn, T.L. Men’s willingness to use novel male contraception is linked to gender-equitable attitudes: Results from an exploratory online survey. Contraception 2023, 123, 110001. [Google Scholar] [CrossRef]
- Bitzer, J. Male contraception–Part of gender medicine and reproductive right of men. Contraception 2024, 30, 110734. [Google Scholar] [CrossRef]
- Callahan, R.L.; Mehta, N.J.; Nanda, K.; Kopf, G.S. The new contraceptive revolution: Developing innovative products outside of industry. Biol. Reprod. 2020, 103, 157–166. [Google Scholar] [CrossRef]
- Wolday, D.; Fung, C.Y.J.; Morgan, G.; Casalino, S.; Frangione, E.; Taher, J.; Lerner-Ellis, J.P. HLA Variation and SARS-CoV-2 Specific Antibody Response. Viruses 2023, 15, 906. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.; Haddad, E.K.; Petrovas, C. Aging alters immune responses to vaccines. Aging 2021, 13, 1568–1570. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Feng, Q.; Luo, O.J.; Chen, G.; Leng, X.S. Human T cell development and aging: Remodeling throughout the lifespan. Aging Res. 2024, 2, 9340021. [Google Scholar] [CrossRef]
- O’Meara, T.R.; Nanishi, E.; McGrath, M.E.; Barman, S.; Dong, D.; Dillen, C.; Menon, M.; Seo, H.S.; Dhe-Paganon, S.; Ernst, R.K.; et al. Reduced SARS-CoV-2 mRNA vaccine immunogenicity and protection in mice with diet-induced obesity and insulin resistance. J. Allergy Clin. Immunol. 2023, 152, 1107–1120.e1106. [Google Scholar] [CrossRef]
- Glück, T.; Müller-Ladner, U. Vaccination in patients with chronic rheumatic or autoimmune diseases. Clin. Infect. Dis. 2008, 46, 1459–1465. [Google Scholar] [CrossRef]
- Naz, R.K.; Mehta, K. Cell-mediated immune responses to sperm antigens: Effects on mouse sperm and embryos. Biol. Reprod. 1989, 41, 533–542. [Google Scholar] [CrossRef]
- Jinshu, X.; Jingjing, L.; Duan, P.; Zheng, Z.; Ding, M.; Jie, W.; Rongyue, C.; Zhuoyi, H.; Roque, R.S. A synthetic gonadotropin-releasing hormone (GnRH) vaccine for control of fertility and hormone dependent diseases without any adjuvant. Vaccine 2005, 23, 4834–4843. [Google Scholar] [CrossRef]
- Pan, F.; Du, H.; Tian, W.; Xie, H.; Zhang, B.; Fu, W.; Li, Y.; Ling, Y.; Zhang, Y.; Fang, F.; et al. Effect of GnRH immunocastration on immune function in male rats. Front. Immunol. 2022, 13, 1023104. [Google Scholar] [CrossRef]
- Zhang, X.; Song, T.; Liu, G.; Wu, J.; Zhaxi, Y.; Mustafa, S.B.; Shahzad, K.; Chen, X.; Zhao, W.; Jiang, X. GnRH Immunocastration in Male Xizang Sheep: Impacts on Rumen Microbiome and Metabolite Profiles for Enhanced Health and Productivity. Animals 2024, 14, 2942. [Google Scholar] [CrossRef]
- Mustafa, S.B.; Long, H.; Song, T.; Zhang, X.; Zhaxi, Y.; Wu, J.; Chen, X.; Shahzad, K.; Jiang, X.; Liu, G.; et al. The impact of GnRH immunocastration on colonic microbiota and metabolites in male sheep. Reprod. Fertil. Dev. 2025, 37, RD24191. [Google Scholar] [CrossRef]
- Gao, H.; Liu, K.; Zhang, L.; Wang, Y.; Fu, X.; Guo, Y.; Bai, M.; Shen, Y.; Wang, M. Palmitic acid-modified GnRH-Th epitope peptide immunocastration vaccine (W/O/W adjuvant) can effectively ensure the castration and reduce the smelly smell in boars. Front. Vet. Sci. 2023, 10, 1174770. [Google Scholar] [CrossRef] [PubMed]
- Simultaneous prevention of unintended pregnancy and STIs: A challenging compromise. Hum. Reprod. Update 2014, 20, 952–963. [CrossRef] [PubMed]
- Schulz, A.R.; Fiebig, L.; Hirseland, H.; Diekmann, L.M.; Reinke, S.; Hardt, S.; Niedobitek, A.; Mei, H.E. SARS-CoV-2 specific plasma cells acquire long-lived phenotypes in human bone marrow. EBioMedicine 2023, 95, 104735. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Shen, X.; Li, P.; Xiao, C.; Wang, Y. Advances in Contraceptive Vaccine Development: A Comprehensive Review. Vaccines 2025, 13, 692. https://doi.org/10.3390/vaccines13070692
Gao W, Shen X, Li P, Xiao C, Wang Y. Advances in Contraceptive Vaccine Development: A Comprehensive Review. Vaccines. 2025; 13(7):692. https://doi.org/10.3390/vaccines13070692
Chicago/Turabian StyleGao, Wen, Xiaoting Shen, Peipei Li, Chanchan Xiao, and Yongxia Wang. 2025. "Advances in Contraceptive Vaccine Development: A Comprehensive Review" Vaccines 13, no. 7: 692. https://doi.org/10.3390/vaccines13070692
APA StyleGao, W., Shen, X., Li, P., Xiao, C., & Wang, Y. (2025). Advances in Contraceptive Vaccine Development: A Comprehensive Review. Vaccines, 13(7), 692. https://doi.org/10.3390/vaccines13070692