Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (28,466)

Search Parameters:
Keywords = use of waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4659 KB  
Article
Thermally Triggered Interfacial Debonding for Lid-to-Frame Disassembly in Electric Vehicle Battery Packs
by Vasco C. M. B. Rodrigues, Mohammad Mehdi Kasaei, Eduardo A. S. Marques, Ricardo J. C. Carbas, Robin Szymanski, Maxime Olive and Lucas F. M. da Silva
World Electr. Veh. J. 2026, 17(2), 59; https://doi.org/10.3390/wevj17020059 (registering DOI) - 25 Jan 2026
Abstract
The rise in electric vehicles (EVs) with lithium-ion batteries supports net-zero goals, but the increasing demand will inevitably generate more battery waste. Current pack designs often rely on permanent joining techniques, which hinder disassembly and thereby limit serviceability, reuse and recycling. A critical [...] Read more.
The rise in electric vehicles (EVs) with lithium-ion batteries supports net-zero goals, but the increasing demand will inevitably generate more battery waste. Current pack designs often rely on permanent joining techniques, which hinder disassembly and thereby limit serviceability, reuse and recycling. A critical challenge is the removal of the battery lid, typically bonded to the pack frame with sealant adhesives. In the absence of design for disassembly requirements for OEMs, this study investigates a novel debonding strategy focused on the lid-to-frame bonding. A silane-based adhesive commonly used in battery packs is first characterised under tensile, shear and mode I conditions to establish the baseline performance in the range of flexible adhesive properties. Herein, a heat-activated primer is introduced as a debondable interfacial layer between the adhesive and the substrate. Upon activation at 150 C, the primer significantly reduces adhesion, around 98% of the initial joint strength, enabling room temperature debonding. The primer demonstrates strong compatibility with epoxy and polyurethane adhesives, but its performance with silane-based systems still needs to be improved in terms of the primer’s compatibility with silane-based adhesives. Finally, a small-scale testing apparatus is developed to evaluate primer effectiveness in the disassembly of battery lids. This approach represents a promising step toward more serviceable, recyclable and sustainable battery systems. Full article
(This article belongs to the Section Vehicle and Transportation Systems)
16 pages, 2281 KB  
Article
Pore-Structure Modulation of Macadamia Shell-Derived Hard Carbon for High-Performance Sodium-Ion Battery Anodes
by Xiaoran Wang, Keren Luo, Yanling Zhang and Hao Wu
Processes 2026, 14(3), 419; https://doi.org/10.3390/pr14030419 (registering DOI) - 25 Jan 2026
Abstract
Hard carbon is widely recognized as a viable anode candidate for sodium-ion batteries (SIBs) owing to its electrochemical advantages, yet simultaneously enhancing specific capacity and rate capability, arising from insufficient plateau capacity, remains a long-standing challenge. Herein, we present a strategy for fabricating [...] Read more.
Hard carbon is widely recognized as a viable anode candidate for sodium-ion batteries (SIBs) owing to its electrochemical advantages, yet simultaneously enhancing specific capacity and rate capability, arising from insufficient plateau capacity, remains a long-standing challenge. Herein, we present a strategy for fabricating ZnCl2-modified hard carbon (HCMZ-X) using waste macadamia shells and ZnCl2 as a multifunctional structural modifier through a facile high-temperature carbonization. This approach effectively expands the graphite interlayer spacing to 0.394 nm, reduces microcrystalline size, and induces abundant closed pores, synergistically improving sodium-ion storage kinetics within the hard carbon framework. Mechanistic investigations confirm an “adsorption-intercalation-filling” storage mechanism. Hence, the optimized HCMZ-3 delivers a high reversible capacity of 382.05 mAh g−1 at 0.05 A g−1, with the plateau region contributing approximately 70%, significantly outperforming that of unmodified hard carbon (262.64 mAh g−1). Remarkably, it achieves stable rate performance, delivering 190 mAh g−1 at 1 A g−1, along with excellent cycling stability, retaining over 90% after 500 cycles. By rational pore-structure modulation rather than excessive surface activation, this cost-effective method utilizing agricultural waste and ZnCl2 dual-functional modification partially alleviates the intrinsic energy-density limitation of hard carbon anodes, advancing the development of high-performance, eco-friendly anodes for scalable energy storage systems. Full article
Show Figures

Figure 1

27 pages, 823 KB  
Review
Green Synthesis of Biocatalysts for Sustainable Biofuel Production: Advances, Challenges, and Future Directions
by Ghazala Muteeb, Asmaa Waled Abdelrahman, Mohamed Abdelrahman Mohamed, Youssef Basem, Abanoub Sherif, Mohammad Aatif, Mohd Farhan, Ghazi I. Al Jowf, Anabelle P. Buran-Omar and Doaa S. R. Khafaga
Catalysts 2026, 16(2), 115; https://doi.org/10.3390/catal16020115 (registering DOI) - 25 Jan 2026
Abstract
The accelerating global demand for sustainable energy, driven by population growth, industrialization, and environmental concerns, has intensified the search for renewable alternatives to fossil fuels. Biofuels, including bioethanol, biodiesel, biogas, and biohydrogen, offer a viable and practical pathway to reducing net carbon dioxide [...] Read more.
The accelerating global demand for sustainable energy, driven by population growth, industrialization, and environmental concerns, has intensified the search for renewable alternatives to fossil fuels. Biofuels, including bioethanol, biodiesel, biogas, and biohydrogen, offer a viable and practical pathway to reducing net carbon dioxide (CO2) emissions. Yet, their large-scale production remains constrained by biomass recalcitrance, high pretreatment costs, and the enzyme-intensive nature of conversion processes. Recent advances in enzyme immobilization using magnetic nanoparticles (MNPs), covalent organic frameworks, metal–organic frameworks, and biochar have significantly improved enzyme stability, recyclability, and catalytic efficiency. Complementary strategies such as cross-linked enzyme aggregates, carrier-free immobilization, and site-specific attachment further reduce enzyme leaching and operational costs, particularly in lipase-mediated biodiesel synthesis. In addition to biocatalysis, nanozymes—nanomaterials exhibiting enzyme-like activity—are emerging as robust co-catalysts for biomass degradation and upgrading, although challenges in selectivity and environmental safety persist. Green synthesis approaches employing plant extracts, microbes, and agro-industrial wastes are increasingly adopted to produce eco-friendly nanomaterials and bio-derived supports aligned with circular economy principles. These functionalized materials have demonstrated promising performance in esterification, transesterification, and catalytic routes for biohydrogen generation. Technoeconomic and lifecycle assessments emphasize the need to balance catalyst complexity with environmental and economic sustainability. Multifunctional catalysts, process intensification strategies, and engineered thermostable enzymes are improving productivity. Looking forward, pilot-scale validation of green-synthesized nano- and biomaterials, coupled with appropriate regulatory frameworks, will be critical for real-world deployment. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis, 2nd Edition)
Show Figures

Figure 1

16 pages, 898 KB  
Review
Extremophile Red Algae for Acid Mine Waste Remediation: A Design-Forward Review Focused on Galdieria sulphuraria
by Shaseevarajan Sivanantharajah, Kirusha Sriram, Mathupreetha Sivanesarajah, Sinthuja Nadesananthan and Thinesh Selvaratnam
Processes 2026, 14(3), 417; https://doi.org/10.3390/pr14030417 (registering DOI) - 25 Jan 2026
Abstract
Acid mine drainage (AMD) and acid-generating mine wastes exhibit low pH, high sulfate levels, and complex multi-metal loads that strain conventional treatment. Thermoacidophilic red algae of the order Cyanidiales, particularly Galdieria sulphuraria (G. sulphuraria), have attracted interest as a biological option [...] Read more.
Acid mine drainage (AMD) and acid-generating mine wastes exhibit low pH, high sulfate levels, and complex multi-metal loads that strain conventional treatment. Thermoacidophilic red algae of the order Cyanidiales, particularly Galdieria sulphuraria (G. sulphuraria), have attracted interest as a biological option because they tolerate extreme acidity and elevated temperatures, grow under low light in mixotrophic or heterotrophic modes, and display rapid metal binding at the cell surface. This review synthesizes about two decades of peer-reviewed work to clarify how G. sulphuraria can be deployed as a practical module within mine water treatment trains. We examine the mechanisms of biosorption and bioaccumulation and show how they map onto two distinct configurations. Processed freeze-dried biomass functions as a regenerable sorbent for rare earth elements (REEs) and selected transition metals in packed beds with acid elution for recovery. Living cultures serve as polishing units for divalent metals and, when present, nutrients or dissolved organics under low light. We define realistic operating windows centered on pH 2–5 and temperatures of approximately 25–45 °C, and we identify matrix effects that govern success, including competition from ferric iron and aluminum, turbidity and fouling risks, ionic strength from sulfate, and suppression of REE uptake by phosphate in living systems. Building on laboratory studies, industrial leachate tests, and ecosystem observations, we propose placing G. sulphuraria upstream of bulk neutralization and outline reporting practices that enable cross-site comparison. The goal is an actionable framework that reduces reagent use and sludge generation while enabling metal capture and potential recovery of valuable metals from mine-influenced waters. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

19 pages, 1188 KB  
Review
Advances in Microbial Fuel Cells Using Carbon-Rich Wastes as Substrates
by Kexin Ren, Jianfei Wang, Xurui Hou, Jiaqi Huang and Shijie Liu
Processes 2026, 14(3), 416; https://doi.org/10.3390/pr14030416 (registering DOI) - 25 Jan 2026
Abstract
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to [...] Read more.
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to simultaneously address energy demand and waste management challenges. This review systematically examines the effects of various carbon-rich substrates on MFC performance, including lignocellulosic biomasses, molasses, lipid waste, crude glycerol, and C1 compounds. These substrates, characterized by wide availability, low cost, and high carbon content, have demonstrated considerable potential for efficient bioelectricity generation and resource recovery. Particular emphasis is placed on the roles of microbial community regulation and genetic engineering strategies in enhancing substrate utilization efficiency and power output. Additionally, the application of carbon-rich wastes in electrode fabrication is discussed, highlighting their contributions to improved electrical conductivity, sustainability, and overall system performance. The integration of carbon-rich substrates into MFCs offers promising prospects for alleviating energy shortages, improving wastewater treatment efficiency, and reducing environmental pollution, thereby supporting the development of a circular bioeconomy. Despite existing challenges related to scalability, operational stability, and system cost, MFCs exhibit strong potential for large-scale implementation across diverse industrial sectors. Full article
(This article belongs to the Special Issue Study on Biomass Conversion and Biorefinery)
Show Figures

Figure 1

19 pages, 728 KB  
Article
Effect of Growth Substrate on Yield and Chemical Composition of Pot-Grown Portulaca oleracea
by Nikolaos Polyzos, Antonios Chrysargyris, Nikolaos Tzortzakis and Spyridon A. Petropoulos
Agronomy 2026, 16(3), 297; https://doi.org/10.3390/agronomy16030297 (registering DOI) - 24 Jan 2026
Abstract
The use of manure as a growing medium for horticultural crop cultivation is a sustainable practice that may allow a reduction in the production costs and the environmental burden of bulky waste management. For this purpose, the current study investigated the partial substitution [...] Read more.
The use of manure as a growing medium for horticultural crop cultivation is a sustainable practice that may allow a reduction in the production costs and the environmental burden of bulky waste management. For this purpose, the current study investigated the partial substitution of peat with manure at various rates (0% (GS1), 100% (GS2), 80% (GS3), 60% (GS4), 40% (GS5), and 20% (GS6)) in pot-cultivated purslane. Our results indicate that the substitution of peat with manure may increase crop yield by 60% to 80%. Moreover, the nutritional value was improved for specific manure rates; for example, the ash and carbohydrate contents in leaves increased at 60% and 20%, respectively, while the fat and carbohydrate contents in shoots increased at 80% and 20%, respectively. P content increased in both leaves and shoots when manure was added to the growing medium, while application at low rates (e.g., 20%) resulted in decreased N and K content. Finally, regarding leaf total phenol and flavonoid contents, as well as antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, values increased when manure was added at 40% to 60%; in shoots, increased values were observed for these parameters when manure was applied at 0% or 100%. In conclusion, our results suggest that peat substitution with manure is a viable, sustainable practice in purslane cultivation in pots without compromising the yield and quality parameters of plants. However, more species and different types of manure must be tested to design tailor-made growing media for horticultural crops. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
17 pages, 5262 KB  
Article
Valorisation of Industrial Wastes in Magnesium Potassium Phosphate Cements for Extrusion-Based 3D Printing
by Pilar Padilla-Encinas, Jose Fernando Corani, Jaime Cuevas, Ana Guerrero and Raúl Fernández
Minerals 2026, 16(2), 127; https://doi.org/10.3390/min16020127 (registering DOI) - 24 Jan 2026
Abstract
This study examines magnesium potassium phosphate cements (MKPCs) modified with industrial wastes for extrusion-based 3D concrete printing, evaluating the rheological properties (workability, setting time), mechanical performance and printability of formulations incorporating secondary materials: Mg dross waste (up to 20 wt.%, replacing MgO), calcined [...] Read more.
This study examines magnesium potassium phosphate cements (MKPCs) modified with industrial wastes for extrusion-based 3D concrete printing, evaluating the rheological properties (workability, setting time), mechanical performance and printability of formulations incorporating secondary materials: Mg dross waste (up to 20 wt.%, replacing MgO), calcined sewage sludge (up to 10 wt.%, replacing KH2PO4), alternative fillers such as glass from municipal solid waste glass and from construction and demolition waste and ground blast furnace slag, benchmarked against volcanic ash. The baseline MKPC exhibited initial/final setting times of 34/109 min, good workability and compressive strengths of 29 MPa (1 day)/28 MPa (28 days). Optimal low-waste mixes (e.g., using municipal glass or 20 wt.% Mg dross) shortened the initial setting to 19–25 min (decreasing 24–42%), reduced the slump by 9–18% yet remained printable at laboratory-scale and achieved 1-day strengths > 23 MPa/28-day > 31 MPa (comparable or superior). Glass from municipal waste proved most promising, due to superior workability, lighter aesthetics and strength gains, supporting circular economy goals while substantially reducing material costs; higher waste levels compromised fluidity and buildability. Mineralogical analyses confirmed K-struvite formation alongside residual periclase, validating these formulations for upscaling sustainable 3D printing. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
24 pages, 3394 KB  
Article
Revisiting the Waste Kuznets Curve: A Spatial Panel Analysis of Household Waste Fractions Across Polish Sub-Regions
by Arkadiusz Kijek and Agnieszka Karman
Sustainability 2026, 18(3), 1204; https://doi.org/10.3390/su18031204 (registering DOI) - 24 Jan 2026
Abstract
This study examines the relationship between income and municipal waste generation within the Waste Kuznets Curve (WKC) framework, with a focus on selected disaggregated household waste fractions (paper and cardboard, glass, bulky waste, and biowaste). The aim is to assess whether increases in [...] Read more.
This study examines the relationship between income and municipal waste generation within the Waste Kuznets Curve (WKC) framework, with a focus on selected disaggregated household waste fractions (paper and cardboard, glass, bulky waste, and biowaste). The aim is to assess whether increases in earnings per capita are associated with non-linear waste dynamics once spatial interactions and local socio-demographic characteristics are taken into account. The study employs a spatial panel dataset for 378 Polish counties over the period 2017–2024. Fixed-effects panel models, supplemented with random-effects panel models with Mundlak’s approach, are estimated alongside spatial panel specifications. Control variables include population ageing, urbanisation, and tourism, while spatial effects are decomposed into direct and indirect impacts. The results indicate that, in non-spatial models, an inverted U-shaped relationship between earnings and waste generation is observed for most waste fractions. However, once spatial dependence is explicitly incorporated, income effects weaken. In contrast, demographic structure—the share of retirement-age population—emerges as a robust and spatially persistent determinant of waste generation. Urbanisation and tourism exert only a limited influence across waste fractions. The paper advances WKC research by using spatial econometric methods and disaggregated waste fractions at the county level. The evidence suggests that conclusions about income-driven waste decoupling are sensitive to spatial dependence, emphasising the need for locally tailored waste management strategies. Full article
(This article belongs to the Special Issue Innovation in Circular Economy and Sustainable Development)
Show Figures

Figure 1

19 pages, 1737 KB  
Article
Utilization of Organic Solvents for the Recycling of Waste Wooden Railroad Ties
by Željka M. Nikolić, Miloš S. Tošić, Jelena M. Radivojević, Mihajlo Gigov, Milica P. Marčeta Kaninski, Vladimir M. Nikolić and Dragana Z. Živojinović
Molecules 2026, 31(3), 406; https://doi.org/10.3390/molecules31030406 (registering DOI) - 24 Jan 2026
Abstract
Wooden waste railroad ties preserved with coal tar creosote oil represent a specific source of polluting substances. The aim of this study was to investigate and compare extraction capacity due to solvent extraction of fifteen frequently used organic solvents for the purpose of [...] Read more.
Wooden waste railroad ties preserved with coal tar creosote oil represent a specific source of polluting substances. The aim of this study was to investigate and compare extraction capacity due to solvent extraction of fifteen frequently used organic solvents for the purpose of decontamination treatment of waste wooden railroad ties, while recovering wood for reuse. Pure organic solvents, ethanol 96%, propan-2-ol, deionized water, dichloromethane, acetone, n-hexane, mixture n-hexane/acetone (V/V = 1/1), cyclohexane, methanol, N,N-dimethyl formamide, toluene, ethyl acetate, acetonitrile, amyl acetate, medical gasoline, n-pentane and n-butyl acetate were for leaching pollutants from waste railroad ties. The highest extraction capacity was achieved using dichloromethane, where 7.50 to 7.89 wt.% of total sixteen polycyclic aromatic hydrocarbons were extracted from waste railroad tie chips. The most promising solvents for the treatment exhibited extraction efficiency which decreases in a series dichloromethane > n-hexane/acetone > acetone > methanol > ethanol 96% > propan-2-ol > cyclohexane > toluene > n-hexane. Solvent extraction represents a novel approach for treatment of wooden waste railroad ties. The experiments are based on the search for a management process for the treatment of wood waste railroad ties that is simple, low energy consumption, efficient and could potentially be applied for large scale. Full article
(This article belongs to the Section Materials Chemistry)
22 pages, 1613 KB  
Article
Thermoeconomic and Environmental Impact Analysis of a Binary Geothermal Power Plant
by Ali Şimşek and Aysegul Gungor Celik
Energies 2026, 19(3), 611; https://doi.org/10.3390/en19030611 (registering DOI) - 24 Jan 2026
Abstract
Geothermal energy is recognized as one of the most reliable and environmentally sustainable energy sources. This study presents a comprehensive energy, exergy, economic, and exergoenvironmental assessment of the Mis I binary geothermal power plant (GPP) operating with a low-temperature geothermal resource. This study [...] Read more.
Geothermal energy is recognized as one of the most reliable and environmentally sustainable energy sources. This study presents a comprehensive energy, exergy, economic, and exergoenvironmental assessment of the Mis I binary geothermal power plant (GPP) operating with a low-temperature geothermal resource. This study fills a critical gap in the literature by providing a four-dimensional (4-E) assessment—energy, exergy, economic, and exergoenvironmental—of the Mis I binary geothermal power plant (GPP). Unlike conventional studies that focus on theoretical models, this research utilizes real-time operational data to identify potential improvements at the component level by evaluating exergy-based environmental sustainability and economic performance. The energy efficiency of the n-pentane Rankine cycle was calculated as 39.76%, indicating that a substantial portion of the geothermal heat is rejected as waste. The exergy input to the plant was determined to be 18,580.29 kW, while the net electrical power output was 8990 kW, resulting in an overall exergy efficiency of 48.38%. These results highlight the clear disparity between energy and exergy efficiencies and underline the importance of exergy-based performance evaluation for low-temperature geothermal power systems. Component-level exergy balance analyses were conducted using real operating data, revealing that the cooling towers are the dominant sources of exergy destruction, whereas the turbine units exhibit comparatively high thermodynamic effectiveness. Improvement potential analysis identified cooling towers I–II, evaporator II, and preheater I as key components requiring further optimization. Economic evaluation showed that approximately 64% of the total investment cost is associated with turbine units, with a total plant cost of about USD 6.7 million. The levelized cost of electricity was calculated as 0.0136 USD/kWh, and the payback period was approximately 1.5 years. Exergoenvironmental results indicate that the Mis I GPP achieves the highest sustainability index (1.94) among comparable plants, confirming its superior thermodynamic, economic, and environmental performance. Full article
15 pages, 2616 KB  
Article
Improving the Ecological Status of Surface Waters Through Filtration on Hemp (Cannabis sativa L.) Waste as an Option for Sustainable Surface Water Management
by Barbara Wojtasik
Sustainability 2026, 18(3), 1203; https://doi.org/10.3390/su18031203 (registering DOI) - 24 Jan 2026
Abstract
The progressive degradation of surface waters should become one of the most important problems requiring an urgent solution. One of the methods developed is filtering water through loose, degraded sediments, blooms of cyanobacteria or algae, or a bed of hemp (Cannabis sativa [...] Read more.
The progressive degradation of surface waters should become one of the most important problems requiring an urgent solution. One of the methods developed is filtering water through loose, degraded sediments, blooms of cyanobacteria or algae, or a bed of hemp (Cannabis sativa L.) waste or hemp fibers. The conducted tests on the percolation of water samples and/or water with sediment from surface waters at sites with different ecological statuses indicate the possibility of using hemp waste for the reclamation of water reservoirs and rivers. The effect of filtration is a rapid improvement in water quality and, consequently, an improvement in the ecological status. The best result was achieved for a small freshwater reservoir with a large number of algae and loose degraded sediment. The initial turbidity value was at the limit of the device’s measurement capability, reaching 9991 NTU. After filtration through the hemp waste bed, the turbidity dropped to 42.52 NTU, a 99.57% decrease. The remaining parameters, C, TDS, and pH, were not subject to significant variability as a result of filtering. Excessive amounts of organic matter, which create a problem for surface waters, are removed. Due to the carrier (hemp waste), which is organic waste, any possible release of small amounts into the aquatic environment will not pose a threat. After applying filtration, a decision can be made on further actions regarding the water reservoir or river: Self-renewal of the reservoir or further percolation using, for example, mill gauze or cleaning the reservoir with other, non-invasive methods. After the filtering procedure, the hemp waste, enriched with organic matter and water remaining in the waste, can be used for composting or directly for soil mulching (preliminary tests have yielded positive results). A hemp waste filter effectively removes Chronomus aprilinus larvae (Chrinomidae) from water. This result indicates the possibility of removing mosquito larvae in malaria-affected areas. The use of hemp filters would reduce the amount of toxic chemicals used to reduce mosquito larvae. Improving the ecological status of surface waters by filtering contaminants with hemp waste filters can reduce the need for chemical treatment. The use of natural, biological filters enables sustainable surface water management. This is crucial in today’s rapidly increasing chemical pollution of surface waters. Full article
Show Figures

Figure 1

18 pages, 4755 KB  
Article
Sustainable Manufacturing of a Modular Tire with Removable Tread: Prototype Realization of the ECOTIRE System
by Farshad Afshari and Daniel García-Pozuelo Ramos
Sustainability 2026, 18(3), 1198; https://doi.org/10.3390/su18031198 (registering DOI) - 24 Jan 2026
Abstract
This study presents the development and first manufacturing realization of the ECOTIRE concept, a modular and sustainable tire system featuring a removable tread mechanically interlocked with a reusable casing. The concept aims to reduce rubber waste and improve recyclability by eliminating adhesive bonding [...] Read more.
This study presents the development and first manufacturing realization of the ECOTIRE concept, a modular and sustainable tire system featuring a removable tread mechanically interlocked with a reusable casing. The concept aims to reduce rubber waste and improve recyclability by eliminating adhesive bonding and enabling tread replacement. Building on previous experimental and numerical studies that validated the interlocking performance, this work focuses on producing a scaled prototype using a low-cost molding process, which can serve as the basis for accessible and sustainable manufacturing. VMQ silicone rubber was selected as an eco-friendly material due to its durability, thermal stability, and processing versatility. A custom two-part aluminum mold was designed to replicate the optimized interlocking geometry, enabling accurate casting, curing, and assembly. The resulting prototype achieved precise fit, dimensional uniformity, and easy disassembly, confirming the manufacturing feasibility of the ECOTIRE concept and demonstrating its potential to support circular economy strategies through reduced material waste and extended tire component lifetimes. Full article
Show Figures

Figure 1

23 pages, 5049 KB  
Article
Assessing the Suitability of Digestate and Compost as Organic Fertilizers: A Comparison of Different Biological Stability Indices for Sustainable Development in Agriculture
by Isabella Pecorini, Francesco Pasciucco, Roberta Palmieri and Antonio Panico
Sustainability 2026, 18(3), 1196; https://doi.org/10.3390/su18031196 (registering DOI) - 24 Jan 2026
Abstract
Nowadays, biowaste valorization is a key point in the circular economy. Digestate and compost from organic waste treatment can be used as nutrient-rich fertilizers. In Europe, the use of biowaste-derived fertilizers is promoted by the European Fertilizer Regulation (EU) 2019/1009, which requires verification [...] Read more.
Nowadays, biowaste valorization is a key point in the circular economy. Digestate and compost from organic waste treatment can be used as nutrient-rich fertilizers. In Europe, the use of biowaste-derived fertilizers is promoted by the European Fertilizer Regulation (EU) 2019/1009, which requires verification of their biological stability through regulated indices; however, it is not clear whether the proposed indices and threshold values indicate the same level of stability and what correlations there are between them. This study compared four biological stability indices, namely Oxygen Uptake Rate (OUR), Self-Heating (SH), Residual Biogas Potential (RBP), and Dynamic Respirometric Index (DRI), which were tested on 50 samples of compost and digestate. Overall, the results revealed that most of the compost and digestate samples were quite far from European standards. On the contrary, the RBP test seemed to be less stringent than the other indices, since a much larger number of samples was closer to or in compliance with the established threshold. Data analysis using Pearson’s coefficients showed a strong linear correlation between the indices. Nevertheless, the linear regression predictive model based on experimental data demonstrated that the indices could not represent the same level of stability, providing poor consistency and variability in the predicted values and established threshold. In particular, the DRI test appeared to be more severe than the other aerobic indices. This work could provide valuable support in improving evaluation criteria and promoting a sustainable use of compost and digestate as organic fertilizers from a circular economy perspective. Full article
(This article belongs to the Special Issue Research on Resource Utilization of Solid Waste)
Show Figures

Figure 1

34 pages, 4308 KB  
Article
Low-CO2 Concrete from Oil Shale Ash and Construction Demolition Waste for 3D Printing
by Alise Sapata, Ella Spurina, Mohammed H. Alzard, Peteris Slosbergs, Hilal El-Hassan and Maris Sinka
J. Compos. Sci. 2026, 10(2), 62; https://doi.org/10.3390/jcs10020062 (registering DOI) - 24 Jan 2026
Abstract
To meet 2050 climate targets, the construction sector must reduce CO2 emissions and transition toward circular material flows. Recycled aggregates (RA) derived from construction and demolition waste (CDW) and industrial byproducts such as oil shale ash (OSA) show potential for use in [...] Read more.
To meet 2050 climate targets, the construction sector must reduce CO2 emissions and transition toward circular material flows. Recycled aggregates (RA) derived from construction and demolition waste (CDW) and industrial byproducts such as oil shale ash (OSA) show potential for use in concrete, although their application remains limited by standardisation and performance limitations, particularly in structural uses. This study aims to develop and evaluate low-strength, resource-efficient concrete mixtures with full replacement of natural aggregates (NA) by CDW-derived aggregates, and partial or full replacement of cement CEM II by OSA–metakaolin (MK) binder, targeting non-structural 3D-printing applications. Mechanical performance, printability, cradle-to-gate life cycle assessment, eco-intensity index, and transport-distance sensitivity for RA were assessed to quantify the trade-offs between structural performance and global warming potential (GWP) reduction. Replacing NA with RA reduced compressive strength by ~11–13% in cement-based mixes, while the aggregate type had a negligible effect in cement-free mixtures. In contrast, full cement replacement by OSA-MK binder nearly halved compressive strength. Despite the strength reductions associated with the use of waste-derived materials, RA-based cement-free 3D-printed specimens achieved ~30 MPa in compression and ~5 MPa in flexure. Replacing CEM II with OSA-MK and NA with RA lowered GWP by up to 48%, with trade-offs in the air-emission, toxicity, water and resource categories driven by the OSA supply chain. The cement-free RA mix achieved the lowest GWP and best eco-intensity, whereas the CEM II mix with RA offered the most balanced multi-impact profile. The results show that regionally available OSA and RA can enable eco-efficient, structurally adequate 3D-printed concrete for construction applications. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites, 2nd Edition)
Show Figures

Figure 1

22 pages, 659 KB  
Article
Young Adults’ Perceptions of Sustainable Diets: A Comparison Across Five High- and Middle-Income Countries
by Jess Haines, Kate Parizeau, Katherine F. Eckert, Fumi Hayashi, Yukari Takemi, Siti Helmyati, Widjaja Lukito, Ludovica Principato, Martina Toni, Nimbe Torres, Diana De Jesús-Jacintos and Wendelin Slusser
Challenges 2026, 17(1), 5; https://doi.org/10.3390/challe17010005 (registering DOI) - 24 Jan 2026
Abstract
Sustainable diet transitions are required to protect human and planetary health, and consumers are important food systems actors who can foster positive changes. However, little is known about how consumers perceive the concept of sustainable diets. This study explored perceptions of sustainable diets [...] Read more.
Sustainable diet transitions are required to protect human and planetary health, and consumers are important food systems actors who can foster positive changes. However, little is known about how consumers perceive the concept of sustainable diets. This study explored perceptions of sustainable diets across five high- and middle-income countries: Japan, Indonesia, Italy, Canada, and Mexico. Semi-structured interviews were conducted with 184 young adults (30–45 per country), and transcripts were analyzed using values coding to understand the values, attitudes, and beliefs that shape behaviours related to sustainable diets. Results revealed that defining “sustainable eating” was challenging for participants across all countries. While participants’ values regarding sustainable diets were often context-specific with marked differences across countries, common themes across countries included concern about food waste and packaging and the belief that sustainability should be the responsibility of all actors across the food system, not just the individual. These findings indicate that food policy should address both individual and systemic dimensions of food sustainability, specifically prioritizing strategies for waste and packaging infrastructure. Furthermore, public health strategies must be values-oriented and culturally tailored to ensure they resonate with local consumer priorities. Full article
Show Figures

Figure 1

Back to TopTop