Secondary Metabolites of Bacillus zhangzhouensis from Zygophyllum oxianum and Their Antifungal and Plant Growth-Regulating Properties
Abstract
1. Introduction
2. Material and Methods
2.1. Pathogen and Antagonism Screening
2.2. Molecular Phylogeny
2.3. Separation and Purification of Metabolites
2.4. Thin-Layer Chromatography (TLC)
2.5. Antagonistic Activity Evaluation
2.6. HPLC, Mass Spectrometry and NMR Analysis
2.7. Plant Growth Regulatory Activity of Isolated Compounds
2.8. Statistical Analysis
3. Result
3.1. Identification of Antagonistic Bacteria
3.2. Mass Spectrometry Analysis of Active Fractions
3.3. Determination of Individual Compounds
3.4. Growth Regulatory Activity of the Isolated Compounds
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abduraimov, O.S.; Li, W.; Shomurodov, H.F.; Feng, Y. The Main medicinal plants in arid regions of Uzbekistan and their traditional use in folk medicine. Plants 2023, 12, 2950. [Google Scholar] [CrossRef]
- Shawky, E.M.; Gabr, N.M.; Elgindi, M.R.; Mekky, R.H. A comprehensive review on genus Zygophyllum. J. Adv. Pharm. Res. 2019, 3, 1–16. [Google Scholar] [CrossRef]
- Hammad, I.; Qari, S.H. Genetic diversity among Zygophyllum (Zygophyllaceae) populations based on RAPD analysis. Genet. Mol. Res. 2010, 9, 2412–2420. [Google Scholar] [CrossRef]
- Liu, B.; Bussmann, R.W.; Batsatsashvili, K.; Kikvidze, Z. Zygophyllum oxianum Boriss. Zygophyllum xanthoxylon (Bunge) Maxim. Zygophyllaceae. In Ethnobotany of the Mountain Regions of Central Asia and Altai. Ethnobotany of Mountain Regions; Batsatsashvili, K., Kikvidze, Z., Bussmann, R., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Pollmann, K.; Gagel, S.; Elgamal, M.H.; Shaker, K.H.; Seifert, K. Triterpenoid saponins from the roots of Zygophyllum species. Phytochemistry 1997, 44, 485–489. [Google Scholar] [CrossRef]
- Yuldasheva, N.K.; Sasmakov, S.A.; Khushbaktova, Z.A.; Syrov, V.N. A total triterpene glycosides preparation from Zygophyllum oxianum as a potential hypoglycemic agent. Pharm. Chem. J. 2013, 47, 433–436. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Paulitz, T.C.; Steinberg, C.; Alabouvette, C.; Moënne-Loccoz, Y. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 2009, 321, 341–361. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef]
- Bakker, M.G.; Manter, D.K.; Sheflin, A.M.; Weir, T.L.; Vivanco, J.M. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 2012, 360, 1–13. [Google Scholar] [CrossRef]
- Wei, X.; Xie, B.; Wan, C.; Song, R.; Zhong, W.; Xin, S.; Song, K.D. Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy 2024, 14, 609. [Google Scholar] [CrossRef]
- Chepsergon, J.; Moleleki, L.N. Rhizosphere bacterial interactions and impact on plant health. Curr. Opin. Microbiol. 2023, 73, 102297. [Google Scholar] [CrossRef]
- Wang, C.; Kuzyakov, Y. Mechanisms and implications of bacterial–fungal competition for soil resources. ISME J. 2024, 18, wrae073. [Google Scholar] [CrossRef]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef]
- Nachmias, N.; Dotan, N.; Rocha, M.C.; Fraenkel, R.; Detert, K.; Kluzek, M.; Shalom, M.; Cheskis, S.; Peedikayil-Kurien, S.; Meitav, G.; et al. Systematic discovery of antibacterial and antifungal bacterial toxins. Nat. Microbiol. 2024, 9, 3041–3058. [Google Scholar] [CrossRef]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Sumi, C.D.; Yang, B.W.; Yeo, I.-C.; Hahm, Y.T. Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Can. J. Microbiol. 2015, 61, 93–103. [Google Scholar] [CrossRef]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis Group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Madhushan, A.; Weerasingha, D.B.; Ilyukhin, E.; Taylor, P.W.J.; Ratnayake, A.S.; Liu, J.K.; Maharachchikumbura, S.S.N. From natural hosts to agricultural threats: The evolutionary journey of phytopathogenic fungi. J. Fungi 2025, 11, 25. [Google Scholar] [CrossRef]
- El-Sayed, W.S.; Akhkha, A.; El-Naggar, M.Y.; Elbadry, M. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front. Microbiol. 2014, 5, 651. [Google Scholar] [CrossRef]
- Aytenov, I.S.; Bozorov, T.A.; Zhang, D.; Samadiy, S.A.; Muhammadova, D.A.; Isokulov, M.Z.; Murodova, S.M.; Zakirova, O.R.; Chinikulov, B.K.; Sherimbetov, A.G. Uncovering the antifungal potential of plant-associated cultivable bacteria from the aral sea region against phytopathogenic fungi. Pathogens 2024, 13, 585. [Google Scholar] [CrossRef]
- Bozorov, T.A.; Toshmatov, Z.O.; Kahar, G.; Zhang, D.; Shao, H.; Gafforov, Y. Wild apple-associated fungi and bacteria compete to colonize the larval gut of an invasive wood-borer Agrilus mali in Tianshan forests. Front. Microbiol. 2021, 12, 743831. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Bozorov, T.A.; Ma, R.; Ma, J.; Zhang, Y.; Yang, H.; Li, L.; Zhang, D. Characterization and pathogenicity of six Cytospora strains causing stem canker of wild apple in the Tianshan Forest, China. For. Pathol. 2020, 50, e12587. [Google Scholar] [CrossRef]
- Alenezi, F.N.; Rekik, I.; Belka, M.; Ibrahim, A.F.; Luptakova, L.; Jaspars, M.; Woodward, S.; Belbahri, L. Strain-level diversity of secondary metabolism in the biocontrol species Aneurinibacillus migulanus. Microbiol. Res. 2016, 182, 116–124. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Tajima, F.; Nei, M. Estimation of evolutionary distance between nucleotide sequences. Mol. Biol. Evol. 1984, 1, 269–285. [Google Scholar] [CrossRef]
- Bozorov, T.A.; Toshmatov, Z.O.; Kahar, G.; Muhammad, S.M.; Liu, X.; Zhang, D.; Aytenov, I.S.; Turakulov, K.S. Uncovering the antifungal activities of wild apple-associated bacteria against two canker-causing fungi, Cytospora mali and C. parasitica. Sci. Rep. 2024, 14, 6307. [Google Scholar] [CrossRef]
- Kuchkarova, N.; Lei, L.; Luo, S.; Toshmatov, Z.; Han, C.; Zhou, S.; Zhang, C.; Shao, H. Plant growth regulatory activity of secondary metabolites produced by the invasive Xanthium spinosum’s endophytic Dematiopleospora sp. J. Plant Growth Regul. 2024, 43, 2046–2057. [Google Scholar] [CrossRef]
- Prenner, E.J.; Lewis, R.N.; McElhaney, R.N. The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. Biochim. Biophys. Acta 1999, 1462, 201–221. [Google Scholar] [CrossRef]
- Howells, J.D.; Anderson, L.E.; Coffey, G.L.; Senos, G.D.; Underhill, M.A.; Vogler, D.L.; Ehrlich, J. Butirosin, a new aminoglycosidic antibiotic complex: Bacterial origin and some microbiological studies. Antimicrob. Agents Chemother. 1972, 2, 79–83. [Google Scholar] [CrossRef]
- Fujiwara, T.; Takahashi, Y.; Matsumoto, K.; Kondo, E. Isolation of an intermediate of 2-deoxystreptamine biosynthesis from a mutant of Bacillus circulans. J. Antibiot. 1980, 33, 824–829. [Google Scholar] [CrossRef]
- Mahlstedt, S.A.; Walsh, C.T. Investigation of anticapsin biosynthesis reveals a four-enzyme pathway to tetrahydrotyrosine in Bacillus subtilis. Biochemistry 2010, 49, 912–923. [Google Scholar] [CrossRef]
- Borisova, S.A.; Circello, B.T.; Zhang, J.K.; van der Donk, W.A.; Metcalf, W.W. Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633. Chem. Biol. 2010, 17, 28–37. [Google Scholar] [CrossRef]
- Kakinuma, A.; Hori, M.; Isono, M.; Tamura, G.; Arima, K. Determination of amino acid sequence in surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis. Agric. Biol. Chem. 1969, 33, 971–972. [Google Scholar] [CrossRef]
- Seebacher, W.; Simic, N.; Weis, R.; Saf, R.; Kunert, O. Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn. Reson. Chem. 2003, 41, 636–638. [Google Scholar] [CrossRef]
- Huang, J.; Yang, J.; Xue, Q.; Yu, L.; Zhang, D. Studies on chemical constituents from herbs of Viola yedoensis. Zhongguo Zhong Yao Za Zhi 2009, 34, 1114–1116. [Google Scholar]
- Huang, R.; Yan, T.; Peng, Y.; Zhou, X.; Yang, X.; Liu, Y. Diketopiperazines from the marine sponge Axinella sp. Chem. Nat. Compd. 2014, 50, 191–193. [Google Scholar] [CrossRef]
- Zou, Z.-R.; Yi, Y.H.; Yao, X.S.; Du, L.J.; Zhou, D.Z.; Zhang, S.Y. Studies on chemical constituents of Acaudina molpadioides Semper. Chin. J. Nat. Med. 2004, 2, 348–350. [Google Scholar]
- Cao, Y.; Pi, H.; Chandrangsu, P.; Li, Y.; Wang, Y.; Zhou, H.; Xiong, H.; Helmann, J.D.; Cai, Y. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 2018, 8, 4360. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S.U.; Khan, W.U.; Saleh, T.A.; Khan, M.H.U.; Ullah, S.; Ali, A.; Ikram, M. Antagonist effects of strains of Bacillus spp. against Rhizoctonia solani for their protection against several plant diseases: Alternatives to chemical pesticides. Comptes Rendus Biol. 2019, 342, 124–135. [Google Scholar] [CrossRef]
- Zalila-Kolsi, I.; Ben Mahmoud, A.; Ali, H.; Sellami, S.; Nasfi, Z.; Tounsi, S.; Jamoussi, K. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiol. Res. 2016, 192, 148–158. [Google Scholar] [CrossRef]
- Jeyanthi, V.; Kanimozhi, S. Plant growth promoting rhizobacteria (PGPR)—Prospective and mechanisms: A review. J. Pure Appl. Microbiol. 2018, 12, 733–749. [Google Scholar] [CrossRef]
- Atanasković, I.; Nedeljković, M.; Lozo, J. Beyond pathogenicity: The immunomodulatory role of the type III secretion system in beneficial plant-microbe interactions. Open Biol. 2025, 15, 240318. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, A.Q.; Chen, Y.; Xu, Z.H.; Liu, Y.X.; Yao, Y.L.; Wang, Y.M.; Jia, B.L. Beneficial microorganisms: Regulating growth and defense for plant welfare. Plant Biotechnol. J. 2025, 23, 986–998. [Google Scholar] [CrossRef]
- Özcengiz, G.; Öğülür, I. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. New Biotechnol. 2015, 32, 612–619. [Google Scholar] [CrossRef]
- Liu, L.; Jin, X.; Lu, X.; Guo, L.; Lu, P.; Yu, H.; Lv, B. Mechanisms of surfactin from Bacillus subtilis SF1 against Fusarium foetens: A novel pathogen inducing potato wilt. J. Fungi 2023, 9, 367. [Google Scholar] [CrossRef]
- Mathur, S.N.; Sharma, R.A. Effect of uracil and 5-nitrouracil on growth and flowering of tomato. Physiol. Plant. 1968, 21, 911–917. [Google Scholar] [CrossRef]
- Long, M.; Shou, J.; Wang, J.; Hu, W.; Hannan, F.; Mwamba, T.M.; Farooq, M.A.; Zhou, W.; Islam, F. Ursolic acid limits salt-induced oxidative damage by interfering with nitric oxide production and oxidative defense machinery in rice. Front. Plant Sci. 2020, 11, 697. [Google Scholar] [CrossRef]
- Gudoityte, E.; Arandarcikaite, O.; Mazeikiene, I.; Bendokas, V.; Liobikas, J. Ursolic and oleanolic acids: Plant metabolites with neuroprotective potential. Int. J. Mol. Sci. 2021, 22, 4599. [Google Scholar] [CrossRef]
- Turan, Y.; Konuk, M. The effect of uracil on the germination and growth of some leguminous plants. Turk. J. Bot. 1999, 23, 241–244. [Google Scholar]
- Poonia, B.K.; Sidhu, A.; Sharma, A.B. Cyclo(l-proline-l-serine) dipeptide suppresses seed borne fungal pathogens of rice: Altered cellular membrane integrity of fungal hyphae and seed quality benefits. J. Agric. Food Chem. 2022, 70, 2160–2168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toshmatov, Z.O.; Melikuziev, F.A.; Aytenov, I.S.; Isokulov, M.Z.; Kahar, G.; Bozorov, T.A.; Zhang, D. Secondary Metabolites of Bacillus zhangzhouensis from Zygophyllum oxianum and Their Antifungal and Plant Growth-Regulating Properties. Plants 2025, 14, 2058. https://doi.org/10.3390/plants14132058
Toshmatov ZO, Melikuziev FA, Aytenov IS, Isokulov MZ, Kahar G, Bozorov TA, Zhang D. Secondary Metabolites of Bacillus zhangzhouensis from Zygophyllum oxianum and Their Antifungal and Plant Growth-Regulating Properties. Plants. 2025; 14(13):2058. https://doi.org/10.3390/plants14132058
Chicago/Turabian StyleToshmatov, Zokir O., Fazliddin A. Melikuziev, Ilkham S. Aytenov, Ma’ruf Z. Isokulov, Gulnaz Kahar, Tohir A. Bozorov, and Daoyuan Zhang. 2025. "Secondary Metabolites of Bacillus zhangzhouensis from Zygophyllum oxianum and Their Antifungal and Plant Growth-Regulating Properties" Plants 14, no. 13: 2058. https://doi.org/10.3390/plants14132058
APA StyleToshmatov, Z. O., Melikuziev, F. A., Aytenov, I. S., Isokulov, M. Z., Kahar, G., Bozorov, T. A., & Zhang, D. (2025). Secondary Metabolites of Bacillus zhangzhouensis from Zygophyllum oxianum and Their Antifungal and Plant Growth-Regulating Properties. Plants, 14(13), 2058. https://doi.org/10.3390/plants14132058