Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (981)

Search Parameters:
Keywords = urban land-use classification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1844 KiB  
Article
Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon
by Lucy Deba Enomah, Joni Downs, Michael Acheampong, Qiuyan Yu and Shirley Tanyi
Remote Sens. 2025, 17(15), 2631; https://doi.org/10.3390/rs17152631 - 29 Jul 2025
Viewed by 216
Abstract
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its [...] Read more.
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its implications for food security and livelihood. This study seeks to identify and quantify recent LULC changes in Limbe, Cameroon, and to measure rates of conversion between agricultural, forest, and urban lands between 1986 and 2020 using remote sensing and GIS. Also, there is a deficiency of research employing these data to evaluate the efficiency of LULC satellite data and a lack of awareness by local stakeholders regarding the impact on LULC change. The changes were identified in four classes utilizing maximum supervised classification in ENVI and ArcGIS environments. The classification result reveals that the 2020 image has the highest overall accuracy of 94.6 while the 2002 image has an overall accuracy of 89.2%. The overall gain for agriculture was approximately 4.6 km2, urban had an overall gain of nearly 12.7 km2, while the overall loss for forest was −16.9 km2 during this period. Much of the land area previously occupied by forest is declining as pressures for urban areas and new settlements increase. This study’s findings have significant policy implications for sustainable land use and food security. It also provides a spatial method for monitoring LULC variations that can be used as a framework by stakeholders who are interested in environmentally conscious development and sustainable land use practices. Full article
Show Figures

Figure 1

24 pages, 10342 KiB  
Article
Land-Use Evolution and Driving Forces in Urban Fringe Archaeological Sites: A Case Study of the Western Han Imperial Mausoleums
by Huihui Liu, Boxiang Zhao, Junmin Liu and Yingning Shen
Land 2025, 14(8), 1554; https://doi.org/10.3390/land14081554 - 29 Jul 2025
Viewed by 284
Abstract
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images [...] Read more.
Archaeological sites located on the edge of growing cities often struggle to reconcile heritage protection with rapid development. To understand this tension, we examined a 50.83 km2 zone around the Western Han Imperial Mausoleums in the Qin-Han New District. Using Landsat images from 1992, 2002, 2012, and 2022, this study applied supervised classification, land-use transfer matrices, and dynamic-degree analysis to trace three decades of land-use change. From 1992 to 2022, built-up land expanded by 29.85 percentage points, largely replacing farmland, which shrank by 35.64 percentage points and became fragmented. Forest cover gained a modest 5.78 percentage points and migrated eastward toward the mausoleums. Overall, urban growth followed a “spread–integrate–connect” pattern along major roads. This study interprets these trends through five interrelated drivers, including policy, planning, economy, population, and heritage protection, and proposes an integrated management model. The model links archaeological pre-assessment with land-use compatibility zoning and active community participation. Together, these measures offer a practical roadmap for balancing conservation and sustainable land management at imperial burial complexes and similar urban fringe heritage sites. Full article
Show Figures

Figure 1

16 pages, 3848 KiB  
Article
Residential Location Preferences in a Post-Conflict Context: An Agent-Based Modeling Approach to Assess High-Demand Areas in Kabul New City, Afghanistan
by Vineet Chaturvedi and Walter Timo de Vries
Land 2025, 14(7), 1502; https://doi.org/10.3390/land14071502 - 21 Jul 2025
Viewed by 422
Abstract
As part of the post-conflict reconstruction and recovery, the development of Kabul New City aims to bring relief to the existing capital city, Kabul, which has experienced exponential population growth, putting heavy pressure on its existing resources. Kabul New City is divided into [...] Read more.
As part of the post-conflict reconstruction and recovery, the development of Kabul New City aims to bring relief to the existing capital city, Kabul, which has experienced exponential population growth, putting heavy pressure on its existing resources. Kabul New City is divided into four subsectors, and each of them is being developed and is expected to reach a target population by 2025, as defined by the master plan. The study’s objective is to determine which of the four zones are in demand and need to be prioritized for development, as per the model results. The data collection involves an online questionnaire, and the responses are collected from residents of Kabul and Herat. Agent-based modeling (ABM) is an emerging method of simulating urban dynamics. Cities are evolving continuously and are forming unique spatial patterns that result from the movement of residents in search of new locations that accommodate their needs and preferences. An agent-based model is developed using the weighted random selection process based on household size and income levels. The agents are the residents of Kabul and Herat, and the environment is the land use classification image using the Sentinel 2 image of Kabul New City. The barren class is treated as the developable area and is divided into four sub-sectors. The model simulates three alternative growth rate scenarios, i.e., ambitious, moderate, and steady. The results of the simulation reveal that the sub-sector Dehsabz South, being closer to Kabul city, is in higher demand. Barikab is another sub-sector high in demand, which has connectivity through the highway and is an upcoming industrial hub. Full article
(This article belongs to the Special Issue Spatial-Temporal Evolution Analysis of Land Use)
Show Figures

Figure 1

20 pages, 3263 KiB  
Article
Land Cover Transformations and Thermal Responses in Representative North African Oases from 2000 to 2023
by Tallal Abdel Karim Bouzir, Djihed Berkouk, Safieddine Ounis, Sami Melik, Noradila Rusli and Mohammed M. Gomaa
Urban Sci. 2025, 9(7), 282; https://doi.org/10.3390/urbansci9070282 - 18 Jul 2025
Viewed by 288
Abstract
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), [...] Read more.
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), Nefta (Tunisia), Ghadames (Libya), and Siwa (Egypt) over the period 2000–2023, using Landsat satellite imagery. A three-step analysis was employed: calculation of NDVI (Normalized Difference Vegetation Index), NDBI (Normalized Difference Built-up Index), and LST, followed by supervised land cover classification and statistical tests to examine the relationships between the studied variables. The results reveal substantial reductions in bare soil (e.g., 48.10% in Siwa) and notable urban expansion (e.g., 136.01% in Siwa and 48.46% in Ghadames). Vegetation exhibited varied trends, with a slight decline in Tolga (0.26%) and a significant increase in Siwa (+27.17%). LST trends strongly correlated with land cover changes, demonstrating increased temperatures in urbanized areas and moderated temperatures in vegetated zones. Notably, this study highlights that traditional urban designs integrated with dense palm groves significantly mitigate thermal stress, achieving lower LST compared to modern urban expansions characterized by sparse, heat-absorbing surfaces. In contrast, areas dominated by fragmented vegetation or seasonal crops exhibited reduced cooling capacity, underscoring the critical role of vegetation type, spatial arrangement, and urban morphology in regulating oasis microclimates. Preserving palm groves, which are increasingly vulnerable to heat-driven pests, diseases and the introduction of exotic species grown for profit, together with a revival of the traditional compact urban fabric that provides shade and has been empirically confirmed by other oasis studies to moderate the microclimate more effectively than recent low-density extensions, will maintain the crucial synergy between buildings and vegetation, enhance the cooling capacity of these settlements, and safeguard their tangible and intangible cultural heritage. Full article
(This article belongs to the Special Issue Geotechnology in Urban Landscape Studies)
Show Figures

Figure 1

23 pages, 6199 KiB  
Article
PDAA: An End-to-End Polygon Dynamic Adjustment Algorithm for Building Footprint Extraction
by Longjie Luo, Jiangchen Cai, Bin Feng and Liufeng Tao
Remote Sens. 2025, 17(14), 2495; https://doi.org/10.3390/rs17142495 - 17 Jul 2025
Viewed by 205
Abstract
Buildings are a significant component of urban space and are essential to smart cities, catastrophe monitoring, and land use planning. However, precisely extracting building polygons from remote sensing images remains difficult because of the variety of building designs and intricate backgrounds. This paper [...] Read more.
Buildings are a significant component of urban space and are essential to smart cities, catastrophe monitoring, and land use planning. However, precisely extracting building polygons from remote sensing images remains difficult because of the variety of building designs and intricate backgrounds. This paper proposes an end-to-end polygon dynamic adjustment algorithm (PDAA) to improve the accuracy and geometric consistency of building contour extraction by dynamically generating and optimizing polygon vertices. The method first locates building instances through the region of interest (RoI) to generate initial polygons, and then uses four core modules for collaborative optimization: (1) the feature enhancement module captures local detail features to improve the robustness of vertex positioning; (2) the contour vertex tuning module fine-tunes vertex coordinates through displacement prediction to enhance geometric accuracy; (3) the learnable redundant vertex removal module screens key vertices based on a classification mechanism to eliminate redundancy; and (4) the missing vertex completion module iteratively restores missed vertices to ensure the integrity of complex contours. PDAA dynamically adjusts the number of vertices to adapt to the geometric characteristics of different buildings, while simplifying the prediction process and reducing computational complexity. Experiments on public datasets such as WHU, Vaihingen, and Inria show that PDAA significantly outperforms existing methods in terms of average precision (AP) and polygon similarity (PolySim). It is at least 2% higher than existing methods in terms of average precision (AP), and the generated polygonal contours are closer to the real building geometry. Values of 75.4% AP and 84.9% PolySim were achieved on the WHU dataset, effectively solving the problems of redundant vertices and contour smoothing, and providing high-precision building vector data support for scenarios such as smart cities and emergency response. Full article
Show Figures

Figure 1

21 pages, 5313 KiB  
Article
MixtureRS: A Mixture of Expert Network Based Remote Sensing Land Classification
by Yimei Liu, Changyuan Wu, Minglei Guan and Jingzhe Wang
Remote Sens. 2025, 17(14), 2494; https://doi.org/10.3390/rs17142494 - 17 Jul 2025
Viewed by 326
Abstract
Accurate land-use classification is critical for urban planning and environmental monitoring, yet effectively integrating heterogeneous data sources such as hyperspectral imagery and laser radar (LiDAR) remains challenging. To address this, we propose MixtureRS, a compact multimodal network that effectively integrates hyperspectral imagery and [...] Read more.
Accurate land-use classification is critical for urban planning and environmental monitoring, yet effectively integrating heterogeneous data sources such as hyperspectral imagery and laser radar (LiDAR) remains challenging. To address this, we propose MixtureRS, a compact multimodal network that effectively integrates hyperspectral imagery and LiDAR data for land-use classification. Our approach employs a 3-D plus heterogeneous convolutional stack to extract rich spectral–spatial features, which are then tokenized and fused via a cross-modality transformer. To enhance model capacity without incurring significant computational overhead, we replace conventional dense feed-forward blocks with a sparse Mixture-of-Experts (MoE) layer that selectively activates the most relevant experts for each token. Evaluated on a 15-class urban benchmark, MixtureRS achieves an overall accuracy of 88.6%, an average accuracy of 90.2%, and a Kappa coefficient of 0.877, outperforming the best homogeneous transformer by over 12 percentage points. Notably, the largest improvements are observed in water, railway, and parking categories, highlighting the advantages of incorporating height information and conditional computation. These results demonstrate that conditional, expert-guided fusion is a promising and efficient strategy for advancing multimodal remote sensing models. Full article
Show Figures

Graphical abstract

30 pages, 14631 KiB  
Article
Unsupervised Plot Morphology Classification via Graph Attention Networks: Evidence from Nanjing’s Walled City
by Ziyu Liu and Yacheng Song
Land 2025, 14(7), 1469; https://doi.org/10.3390/land14071469 - 15 Jul 2025
Viewed by 309
Abstract
Urban plots are pivotal links between individual buildings and the city fabric, yet conventional plot classification methods often overlook how buildings interact within each plot. This oversight is particularly problematic in the irregular fabrics typical of many Global South cities. This study aims [...] Read more.
Urban plots are pivotal links between individual buildings and the city fabric, yet conventional plot classification methods often overlook how buildings interact within each plot. This oversight is particularly problematic in the irregular fabrics typical of many Global South cities. This study aims to create a plot classification method that jointly captures metric and configurational characteristics. Our approach converts each cadastral plot into a graph whose nodes are building centroids and whose edges reflect Delaunay-based proximity. The model then learns unsupervised graph embeddings with a two-layer Graph Attention Network guided by a triple loss that couples building morphology with spatial topology. We then cluster the embeddings together with normalized plot metrics. Applying the model to 8973 plots in Nanjing’s historic walled city yields seven distinct plot morphological types. The framework separates plots that share identical FAR–GSI values but differ in internal organization. The baseline and ablation experiments confirm the indispensability of both configurational and metric information. Each type aligns with specific renewal strategies, from incremental upgrades of courtyard slabs to skyline management of high-rise complexes. By integrating quantitative graph learning with classical typo-morphology theory, this study not only advances urban form research but also offers planners a tool for context-sensitive urban regeneration and land-use management. Full article
Show Figures

Figure 1

15 pages, 1051 KiB  
Article
Land Use Land Cover (LULC) Mapping for Assessment of Urbanization Impacts on Cropping Patterns and Water Availability in Multan, Pakistan
by Khawaja Muhammad Zakariya, Tahir Sarwar, Hafiz Umar Farid, Raffaele Albano, Muhammad Azhar Inam, Muhammad Shoaib, Abrar Ahmad and Matlob Ahmad
Earth 2025, 6(3), 79; https://doi.org/10.3390/earth6030079 - 14 Jul 2025
Viewed by 914
Abstract
Urbanization is causing a decrease in agricultural land. This leads to changes in cropping patterns, irrigation water availability, and water allowance. Therefore, change in cropping pattern, irrigation water availability, and water allowance were investigated in the Multan region of Pakistan using remote sensing [...] Read more.
Urbanization is causing a decrease in agricultural land. This leads to changes in cropping patterns, irrigation water availability, and water allowance. Therefore, change in cropping pattern, irrigation water availability, and water allowance were investigated in the Multan region of Pakistan using remote sensing and GIS techniques. The multi-temporal Landsat images with 30 m resolution were acquired for both Rabi (winter) and Kharif (summer) seasons for the years of 1988, 1999 and 2020. The image processing tasks including layer stacking, sub-setting, land use/land cover (LULC) classification, and accuracy assessment were performed using ERDAS Imagine (2015) software. The LULC maps showed a considerable shift of orchard area to urban settlements and other crops. About 82% of orchard areas have shifted to urban settlements and other crops from 1988 to 2020. The LULC maps for Kharif season indicated that cropped areas for cotton have decreased by 42.5% and the cropped areas for rice have increased by 718% in the last 32 years (1988–2020). During the rabi season, the cropped areas for wheat (Triticum aestivum L.) have increased by 27% from 1988 to 2020. The irrigation water availability and water allowance have increased up to 125 and 110% due to decrease in agricultural land, respectively. The overall average accuracies were found as 87 and 89% for Rabi and Kharif crops, respectively. The LULC mapping technique may be used to develop a decision support system for evaluating the changes in cropping pattern and their impacts on net water availability and water allowances. Full article
Show Figures

Figure 1

10 pages, 2030 KiB  
Proceeding Paper
Enhancing Urban Resource Management Through Urban and Peri-Urban Agriculture
by Asmaa Moussaoui, Hicham Bahi, Imane Sebari and Kenza Ait El Kadi
Eng. Proc. 2025, 94(1), 6; https://doi.org/10.3390/engproc2025094006 - 10 Jul 2025
Viewed by 235
Abstract
Urbanization is one of the most important challenges contributing to the trend of replacing agricultural land with high-value land uses, such as housing, as well as industrial and commercial activities, as a result of significant population growth. To face these challenges and improve [...] Read more.
Urbanization is one of the most important challenges contributing to the trend of replacing agricultural land with high-value land uses, such as housing, as well as industrial and commercial activities, as a result of significant population growth. To face these challenges and improve urban sustainability, integrating an embedded concept of spatial planning, taking into account urban and peri-urban agriculture, will contribute to mitigating food security issues and the negative impact of climate change, while improving social and economic development. This project aims to analyze land use/cover changes in the Casablanca metropolitan area and its surrounding cities, which are undergoing rapid urban growth. To achieve this, time series of remote sensing data were analyzed in order to investigate the spatio-temporal changes in LU/LC and to evaluate the dynamics and spatial pattern of the city’s expansion over the past three decades, which has come at the expense of agricultural land. The study will also examine the relationship between urbanization and agricultural land use change over time. The results of this study show that Casablanca and its outskirts experience significant urban expansion and a decline in arable lands, with rates of 45% and 42%, respectively. The analysis of SDG indicator 11.3.1 has also shown that land consumption in the provinces of Mediouna, Mohammadia, and Nouaceur has exceeded population growth, due to rapid, uncontrolled urbanization at the expense of agricultural land, which highlights the need to develop a new conceptual framework for regenerating land systems based on the implementation of urban and peri-urban agriculture in vacant sites within urban and peri-urban areas. This will offer valuable insights for policymakers to investigate measures that can ensure sustainable land use planning strategies that effectively integrate agriculture into urban development. Full article
Show Figures

Figure 1

21 pages, 5716 KiB  
Article
Urban Allotment Gardens with Turf Reduce Biodiversity and Provide Limited Regulatory Ecosystem Services
by Marta Melon, Tomasz Dzieduszyński, Beata Gawryszewska, Maciej Lasocki, Adrian Hoppa, Arkadiusz Przybysz and Piotr Sikorski
Sustainability 2025, 17(13), 6216; https://doi.org/10.3390/su17136216 - 7 Jul 2025
Viewed by 312
Abstract
Urban gardens, including family allotment gardens (FAGs) and community gardens (CGs), play an increasingly important role in urban resilience to climate change—particularly through the delivery of regulatory ecosystem services. They occupy as much as 2.6% of Warsaw’s land area and thus have a [...] Read more.
Urban gardens, including family allotment gardens (FAGs) and community gardens (CGs), play an increasingly important role in urban resilience to climate change—particularly through the delivery of regulatory ecosystem services. They occupy as much as 2.6% of Warsaw’s land area and thus have a tangible impact on the entire metropolitan system. These gardens are used in different ways, and each use affects the magnitude of the provided ecosystem services. This preliminary study explores how different types of allotment garden uses affect biodiversity and ecosystem services, addressing a critical knowledge gap in the classification and ecological functioning of urban gardens. We surveyed 44 plots in Warsaw, categorizing them into five vegetation use types: turf, flower, vegetable, orchard, and abandoned. For each plot, we assessed the floristic diversity, vegetation structure (leaf area index, LAI), and six regulatory services: air and soil cooling, water retention, humidity regulation, PM 2.5 retention, and nectar provision. Flower gardens had the highest species diversity (Shannon index = 1.93), while turf gardens had the lowest (1.43) but the highest proportion of native species (92%). Abandoned plots stood out due to the densest vegetation (LAI = 4.93) and ecological distinctiveness. Principal component analysis showed that the selected ecosystem services explained 25% of the variation in vegetation types. We propose a use-based classification of urban gardens and highlight abandoned plots as a functionally unique and overlooked ecological category. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

37 pages, 13906 KiB  
Review
Accelerated Adoption of Google Earth Engine for Mangrove Monitoring: A Global Review
by K. M. Ashraful Islam, Paulo Murillo-Sandoval, Eric Bullock and Robert Kennedy
Remote Sens. 2025, 17(13), 2290; https://doi.org/10.3390/rs17132290 - 3 Jul 2025
Viewed by 818
Abstract
Mangrove forests support coastal resilience, biodiversity, and significant carbon sequestration, yet they face escalating threats from climate change, urban expansion, and land-use change. Traditional remote sensing workflows often struggle with large data volumes, complex preprocessing, and limited computational resources. Google Earth Engine (GEE) [...] Read more.
Mangrove forests support coastal resilience, biodiversity, and significant carbon sequestration, yet they face escalating threats from climate change, urban expansion, and land-use change. Traditional remote sensing workflows often struggle with large data volumes, complex preprocessing, and limited computational resources. Google Earth Engine (GEE) addresses these challenges through scalable, cloud-based computation, extensive, preprocessed imagery catalogs, built-in algorithms for rapid feature engineering, and collaborative script sharing that improves reproducibility. To evaluate how the potential of GEE has been harnessed for mangrove research, we systematically reviewed peer-reviewed articles published between 2017 and 2022. We examined the spectrum of GEE-based tasks, the extent to which studies incorporated mangrove-specific preprocessing, and the challenges encountered. Our analysis reveals a noteworthy yearly increase in GEE-driven mangrove studies but also identifies geographic imbalances, with several high-mangrove-density countries remaining underrepresented. Although most studies leveraged streamlined preprocessing and basic classification workflows, relatively few employed advanced automated methods. Persistent barriers include limited coding expertise, platform quotas, and sparse high-resolution data in certain regions. We outline a generalized workflow that includes automated tidal filtering, dynamic image composite generation, and advanced classification pipelines to address these gaps. By synthesizing achievements and ongoing limitations, this review offers guidance for future GEE-based mangrove studies and conservation efforts and aims to improve methodological rigor and maximize the potential of GEE. Full article
(This article belongs to the Special Issue Remote Sensing in Mangroves III)
Show Figures

Graphical abstract

19 pages, 51503 KiB  
Article
LSANet: Lightweight Super Resolution via Large Separable Kernel Attention for Edge Remote Sensing
by Tingting Yong and Xiaofang Liu
Appl. Sci. 2025, 15(13), 7497; https://doi.org/10.3390/app15137497 - 3 Jul 2025
Viewed by 322
Abstract
In recent years, remote sensing imagery has become indispensable for applications such as environmental monitoring, land use classification, and urban planning. However, the physical constraints of satellite imaging systems frequently limit the spatial resolution of these images, impeding the extraction of fine-grained information [...] Read more.
In recent years, remote sensing imagery has become indispensable for applications such as environmental monitoring, land use classification, and urban planning. However, the physical constraints of satellite imaging systems frequently limit the spatial resolution of these images, impeding the extraction of fine-grained information critical to downstream tasks. Super-resolution (SR) techniques thus emerge as a pivotal solution to enhance the spatial fidelity of remote sensing images via computational approaches. While deep learning-based SR methods have advanced reconstruction accuracy, their high computational complexity and large parameter counts restrict practical deployment in real-world remote sensing scenarios—particularly on edge or low-power devices. To address this gap, we propose LSANet, a lightweight SR network customized for remote sensing imagery. The core of LSANet is the large separable kernel attention mechanism, which efficiently expands the receptive field while retaining low computational overhead. By integrating this mechanism into an enhanced residual feature distillation module, the network captures long-range dependencies more effectively than traditional shallow residual blocks. Additionally, a residual feature enhancement module, leveraging contrast-aware channel attention and hierarchical skip connections, strengthens the extraction and integration of multi-level discriminative features. This design preserves fine textures and ensures smooth information propagation across the network. Extensive experiments on public datasets such as UC Merced Land Use and NWPU-RESISC45 demonstrate LSANet’s competitive or superior performance compared to state-of-the-art methods. On the UC Merced Land Use dataset, LSANet achieves a PSNR of 34.33, outperforming the best-baseline HSENet with its PSNR of 34.23 by 0.1. For SSIM, LSANet reaches 0.9328, closely matching HSENet’s 0.9332 while demonstrating excellent metric-balancing performance. On the NWPU-RESISC45 dataset, LSANet attains a PSNR of 35.02, marking a significant improvement over prior methods, and an SSIM of 0.9305, maintaining strong competitiveness. These results, combined with the notable reduction in parameters and floating-point operations, highlight the superiority of LSANet in remote sensing image super-resolution tasks. Full article
Show Figures

Figure 1

25 pages, 20862 KiB  
Article
GIS-Based Multi-Criteria Analysis for Urban Afforestation Planning in Semi-Arid Cities
by Halil İbrahim Şenol, Abdurahman Yasin Yiğit and Ali Ulvi
Forests 2025, 16(7), 1064; https://doi.org/10.3390/f16071064 - 26 Jun 2025
Viewed by 410
Abstract
Urban forests are very important for the environment and for people, especially in semi-arid cities where there is not much greenery. This makes heat stress worse and makes the city less livable. This paper presents a comprehensive geospatial methodology for selecting afforestation sites [...] Read more.
Urban forests are very important for the environment and for people, especially in semi-arid cities where there is not much greenery. This makes heat stress worse and makes the city less livable. This paper presents a comprehensive geospatial methodology for selecting afforestation sites in the expanding semi-arid urban area of Şanlıurfa, Turkey, characterized by minimal forest cover, rapid urbanization, and extreme weather conditions. We identified nine ecological and infrastructure criteria using high-resolution Sentinel-2 images and features from the terrain. These criteria include slope, aspect, topography, land surface temperature (LST), solar radiation, flow accumulation, land cover, and proximity to roads and homes. After being normalized to make sure they were ecologically relevant and consistent, all of the datasets were put together into a GIS-based Multi-Criteria Decision Analysis (MCDA) tool. The Analytic Hierarchy Process (AHP) was then used to weight the criteria. A deep learning-based semantic segmentation model was used to create a thorough classification of land cover, primarily to exclude unsuitable areas such as dense urban fabric and water bodies. The final afforestation suitability map showed that 151.33 km2 was very suitable and 192.06 km2 was suitable, mostly in the northeastern and southeastern urban fringes. This was because the terrain and subclimatic conditions were good. The proposed methodology illustrates that urban green infrastructure planning can be effectively directed within climate adaptation frameworks through the integration of remote sensing and spatial decision-support tools, especially in ecologically sensitive and rapidly urbanizing areas. Full article
Show Figures

Figure 1

26 pages, 2197 KiB  
Article
Consolidating the Polish Land Use Cadastral Register with the Austrian and German Systems: An Extension of the Polish Cadastre Model Towards Sustainable Land Management
by Olga Matuk and Beata Calka
Sustainability 2025, 17(13), 5783; https://doi.org/10.3390/su17135783 - 23 Jun 2025
Viewed by 333
Abstract
Research on the semantic approach to different land use classes is considered an important aspect of overcoming challenges related to proper land management. This research has direct implications for sustainable land management. The aim of this study is to introduce a new land [...] Read more.
Research on the semantic approach to different land use classes is considered an important aspect of overcoming challenges related to proper land management. This research has direct implications for sustainable land management. The aim of this study is to introduce a new land use class in the Polish cadastre based on land use registration systems that function in other European countries. To achieve this, the existing land use registration systems in selected European countries were analyzed. The criterion for including land in the new class will be its actual use. The proposed new land use class may be a highly promising solution for the clear identification of areas with a special functional nature. By proposing the introduction of this new class, authors highlights the areas that, under the current land use registration system, are not clearly identified within the broadly understood categories of built-up and urbanized land. The research findings may also serve as a practical guideline for local authorities responsible for land administration and property taxation. Moreover, accurate land use classification is essential for sustainable land management, as it enables better planning and resource allocation. Improved clarity in land categorization supports environmental protection and balanced development, contributing to long-term sustainability goals. Full article
Show Figures

Figure 1

16 pages, 1058 KiB  
Article
Multi-Scale Context Enhancement Network with Local–Global Synergy Modeling Strategy for Semantic Segmentation on Remote Sensing Images
by Qibing Ma, Hongning Liu, Yifan Jin and Xinyue Liu
Electronics 2025, 14(13), 2526; https://doi.org/10.3390/electronics14132526 - 21 Jun 2025
Cited by 1 | Viewed by 316
Abstract
Semantic segmentation of remote sensing images is a fundamental task in geospatial analysis and Earth observation research, and has a wide range of applications in urban planning, land cover classification, and ecological monitoring. In complex geographic scenes, low target-background discriminability in overhead views [...] Read more.
Semantic segmentation of remote sensing images is a fundamental task in geospatial analysis and Earth observation research, and has a wide range of applications in urban planning, land cover classification, and ecological monitoring. In complex geographic scenes, low target-background discriminability in overhead views (e.g., indistinct boundaries, ambiguous textures, and low contrast) significantly complicates local–global information modeling and results in blurred boundaries and classification errors in model predictions. To address this issue, in this paper, we proposed a novel Multi-Scale Local–Global Mamba Feature Pyramid Network (MLMFPN) through designing a local–global information synergy modeling strategy, and guided and enhanced the cross-scale contextual information interaction in the feature fusion process to obtain quality semantic features to be used as cues for precise semantic reasoning. The proposed MLMFPN comprises two core components: Local–Global Align Mamba Fusion (LGAMF) and Context-Aware Cross-attention Interaction Module (CCIM). Specifically, LGAMF designs a local-enhanced global information modeling through asymmetric convolution for synergistic modeling of the receptive fields in vertical and horizontal directions, and further introduces the Vision Mamba structure to facilitate local–global information fusion. CCIM introduces positional encoding and cross-attention mechanisms to enrich the global-spatial semantics representation during multi-scale context information interaction, thereby achieving refined segmentation. The proposed methods are evaluated on the ISPRS Potsdam and Vaihingen datasets and the outperformance in the results verifies the effectiveness of the proposed method. Full article
Show Figures

Figure 1

Back to TopTop