Accelerated Adoption of Google Earth Engine for Mangrove Monitoring: A Global Review
Abstract
1. Introduction
2. Methods
- Peer-reviewed journal articles published in English between January 2017 and December 2022.
- Explicit use of GEE for any stage of data collection or analysis.
- Focus on mangrove ecosystems (e.g., extent mapping, species classification, change detection, carbon accounting).
3. Pre-GEE Era: Problems Encountered
4. GEE Testbeds: Study Sites and Scales
5. Use of GEE: Broad Categories
5.1. GEE Used for Data Extraction and Preprocessing
5.2. Leveraging GEE-Based Algorithms
5.3. GEE Used for Accuracy Assessment
5.4. GEE Used for Interactive Mapping/Web Tool
6. Approaches for Studying Mangroves Using GEE
6.1. Analyzing Indices and Spectral Signature
6.2. Generating Mangrove-Specific Image Composites
6.3. Developing and Testing Decision-Making Thresholds
6.4. Creating Buffer Zones for Separating Mangroves from Water
6.5. Considering Tide and Submerged Mangroves
6.6. Time Series Analysis
6.7. Spectral Unmixing
6.8. Mangrove Classification
6.9. Comparing Maps and Results
6.10. Assessing Drivers of Change
7. Current Shortcomings of GEE for Mangrove Studies
7.1. User-Related Shortcomings
7.2. Platform-Specific Constraints
7.3. Data Limitations
8. Lessons Learned
9. Future Directions
9.1. Fusing Data
9.2. Incorporating Spectral and Ecological Properties
9.3. Mapping with Spatial Awareness
9.4. Incorporating More Environmental Data
9.5. Using Diverse Spectral Indicators
9.6. Improving Reference Data Collection
9.7. Incorporating a Temporal Segmentation Algorithm
9.8. Detecting Degradation
9.9. Expanding Potential Drivers
9.10. Focusing on Carbon
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CODED | Continuous Degradation Detection |
EO-1 | Earth Observing-1 |
EVI | Enhanced Vegetation Index |
GEE | Google Earth Engine |
LAI | Leaf Area Index |
LANDSAT | Land Satellite |
LSWI | Land Surface Water Index |
MDPI | Multidisciplinary Digital Publishing Institute |
MMRI | Modular Mangrove Recognition Index |
mNDWI | Modified Normalized Difference Water Index |
MVI | Mangrove Vegetation Index |
NDVI | Normalized Difference Vegetation Index |
RF | Random Forest |
RS | Remote Sensing |
SNIC | Non-Iterative Clustering |
Appendix A
Article Title | Affiliated Country of First Author | Context/Study Area |
---|---|---|
10-m-resolution mangrove maps of China derived from multisource and multitemporal satellite observations | China | China |
A cloud computing-based approach to mapping mangrove erosion and progradation: Case studies from the Sundarbans and French Guiana | Singapore | India, Bangladesh, French Guiana |
A detailed mangrove map of China for 2019 derived from Sentinel-1 and-2 images and Google Earth images | China | China |
A history of the rehabilitation of mangroves and an assessment of their diversity and structure using Landsat annual composites (1987–2019) and transect plot inventories | Thailand | Thailand |
A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform | China | China |
Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time Series Data with Google Earth Engine: A Case Study in China | China | China |
An Improved Submerged Mangrove Recognition Index-Based Method for Mapping Mangrove Forests by Removing the Disturbance of Tidal Dynamics and S. alterniflora | China | China |
Application of Artificial Neural Networks for Mangrove Mapping Using Multitemporal and Multisource Remote Sensing Imagery | Iran | Iran |
Assessing cyclone disturbances (1988–2016) in the Sundarbans mangrove forests using Landsat and Google Earth Engine | Japan | India, Bangladesh |
Brazilian Mangrove Status: Three Decades of Satellite Data Analysis | Brazil | Brazil |
Characterizing Spatiotemporal Patterns of Mangrove Forests in Can Gio Biosphere Reserve Using Sentinel-2 Imagery | Vietnam | Vietnam |
Cloud-Based Monitoring and Evaluation of the Spatial-Temporal Distribution of Southeast Asia’s Mangroves Using Deep Learning | UK | Cambodia, Laos, Malaysia, Myanmar, Philippines, Indonesia, Thailand, Vietnam |
Combing Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on Google Earth Engine: a case study in Zhangjiang Estuary | China | China |
Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping | Philippines | Philippines, Japan |
Distribution and drivers of Vietnam mangrove deforestation from 1995 to 2019 | Vietnam | Vietnam |
Eleven Years of Mangrove-Mudflat Dynamics on the Mud Volcano-Induced Prograding Delta in East Java, Indonesia: Integrating UAV and Satellite Imagery | Netherlands | Indonesia |
Elucidating the phenology of the Sundarbans mangrove forest using 18-year time series of MODIS vegetation indices | Japan | Bangladesh |
Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa | USA | Senegal, Gambia |
Evaluating mangrove conservation and sustainability through spatiotemporal (1990–2020) mangrove cover change analysis in Pakistan | Pakistan | Pakistan |
Evaluation of Spatiotemporal Dynamics of Guyana’s Mangroves Using SAR and GEE | Guyana | Guyana |
Extrapolating canopy phenology information using Sentinel-2 data and the Google Earth Engine platform to identify the optimal dates for remotely sensed image acquisition of semiarid mangroves | Mexico | Mexico |
Gap-Free Monitoring of Annual Mangrove Forest Dynamics in Ca Mau Province, Vietnamese Mekong Delta, Using the Landsat-7–8 Archives and Post-Classification Temporal Optimization | Netherlands | Vietnam |
How to automate timely large-scale mangrove mapping with remote sensing | USA | USA, China |
Identifying and forecasting potential biophysical risk areas within a tropical mangrove ecosystem using multisensor data | USA | India |
Identifying large-area mangrove distribution based on remote sensing: A binary classification approach considering subclasses of non-mangroves | China | China |
Improved estimates of mangrove cover and change reveal catastrophic deforestation in Myanmar | Singapore | Myanmar |
Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform | China | China |
Large-Scale High-Resolution Coastal Mangrove Forests Mapping Across West Africa With Machine Learning Ensemble and Satellite Big Data | USA | Senegal, Gambia, Guinea Bissau, Guinea, Sierra Leone, Liberia, Ivory Coast, Ghana, Togo, Benin, Nigeria |
Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine | Iran | Iran |
Mangrove Forest Cover and Phenology with Landsat Dense Time Series in Central Queensland, Australia | Australia | Australia |
Mapping and dynamic analysis of mangrove forest during 2009–2019 using landsat-5 and sentinel-2 satellite data along Odisha Coast | India | India |
Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm | Netherlands | Suriname |
Mapping National Mangrove Cover for Belize Using Google Earth Engine and Sentinel-2 Imagery | USA | Belize |
Previous Shoreline Dynamics Determine Future Susceptibility to Cyclone Impact in the Sundarban Mangrove Forest | Singapore | India, Bangladesh |
Radar and optical remote sensing for near real-time assessments of cyclone impacts on coastal ecosystems | USA | India, Bangladesh |
Remote Sensing-Based Mapping of Senescent Leaf C:N Ratio in the Sundarbans Reserved Forest Using Machine Learning Techniques | China | Bangladesh |
Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features | China | China, North and South Korea |
The Google Earth Engine Mangrove Mapping Methodology (GEEMMM) | UK | Myanmar |
The Key Reason of False Positive Misclassification for Accurate Large-Area Mangrove Classifications | China | China |
Turning the Tide on Mapping Marginal Mangroves with Multidimensional Space-Time Remote Sensing | Australia | Australia |
Using multi-indices approach to quantify mangrove changes over the Western Arabian Gulf along Saudi Arabia coast | USA | Saudi Arabia |
Annual Change Analysis of Mangrove Forests in China during 1986–2021 Based on Google Earth Engine | China | China |
Assessment of mangrove cover dynamics and its health status in the Gulf of Khambhat, Western India, using high-resolution multitemporal satellite data and Google Earth Engine | India | India |
Decision surface optimization in mapping exotic mangrove species (Sonneratia apetala) across latitudinal coastal areas of China | China | China |
Identification of Mangrove Changes in The Mahakam Delta in 2007–2017 using Alos/Palsar and Landsat | Indonesia | Indonesia |
Landsat-8-based coastal ecosystem mapping in South Africa using Random Forest classification in Google Earth Engine | South Africa | South Africa |
Mapping Multidecadal Mangrove Extent in the Northern Coast of Vietnam Using Landsat Time Series Data on Google Earth Engine Platform | Vietnam | Vietnam |
Monitoring detailed mangrove hurricane damage and early recovery using multisource remote sensing data | Mexico | Mexico |
Quantifying Mangrove Extent Using a Combination of Optical and Radar Images in a Wetland Complex, Western Region, Ghana | Ghana | Ghana |
Remap: An online remote sensing application for land cover classification and monitoring | Australia | Australia |
The environmental burdens of special economic zones on the coastal and marine environment: A remote sensing assessment in Myanmar | USA | Myanmar |
The national nature reserves in China: Are they effective in conserving mangroves? | China | China |
Tracking changes in extent and distribution of tropical coastal covers using simple semi-supervised classification | USA | Colombia |
Tracking Deforestation, Drought, and Fire Occurrence in Kutai National Park, Indonesia | Canada | Indonesia |
Title | Publication Date | Total Citations | Average/Year | Summary of GEE Implementation: Methods, Advantages, and Future Directions |
---|---|---|---|---|
GWL-FCS30: a global 30 m wetland map with a fine classification system using multisourced and time series remote sensing imagery in 2020 [136] | JAN 2023 | 78 | 26 | Leveraged multisource, time series imagery in GEE; generated phenological composites, stratified random samples, and a Random Forest classifier; all preprocessing, classification, and accuracy assessment ran within GEE. Future work should integrate additional data sources to further refine map detail. |
Identifying mangroves through knowledge extracted from trained Random Forest models: An interpretable mangrove mapping approach (IMMA) [137] | JUL 2023 | 36 | 12 | Employed GEE to extract spectral-band thresholds from pretrained Random Forest models; GEE aided automation; interpretable delineation of mangrove extents without manual parameter tuning was possible. |
Remote sensing for cost-effective blue carbon accounting [63] | MAR 2023 | 28 | 9.33 | Demonstrated that cloud-computing platforms like GEE, combined with multisensor fusion, big-data integration, and AI algorithms, allow sophisticated blue-carbon estimation and have the potential to attain higher accuracy and precision without the need to download large volumes of observational data. |
Long-Term Wetland Monitoring Using the Landsat Archive: A Review [138] | FEB 2023 | 17 | 5.67 | Reviewed GEE-based workflows using intra-annual Landsat TM/ETM+/OLI-TIRS time series and efficient index calculations for regional to continental-scale change detection. Highlighted potential of GEE to reduce technology gaps between the Global North and South by democratizing access to large-scale time series analyses. |
Collaborative multiple change detection methods for monitoring the spatiotemporal dynamics of mangroves in Beibu Gulf, China [139] | DEC 2023 | 13 | 4.33 | Showcased GEE implementation of temporal-segmentation algorithms (e.g., CCDC) to deliver robust, automated mapping of mangrove extent and dynamics over time. |
Mangrove species mapping through phenological analysis using Random Forest algorithm on Google Earth Engine [140] | APR 2023 | 13 | 4.33 | Used GEE to access multisource, multitemporal imagery; applied cloud filtering, tidal-effect thresholding, and computed 21 spectral indices; generated max/mean/median composites; and ran Random Forest classification. Noted that rapidly mapping mangrove species was possible without requiring local training samples. |
Monitoring of 35-Year Mangrove Wetland Change Dynamics and Agents in the Sundarbans Using Temporal Consistency Checking [141] | FEB 2023 | 13 | 4.33 | Accessed the complete Landsat archive in GEE; applied cloud filtering, median composites, spectral-Tasseled-Cap indices, pixel unmixing, gap filling, and temporal segmentation algorithm; ran GEE-based Random Forest and preclassification workflows; compared age-structure map products; and computed accuracy while accounting for tidal effects. |
Annual Mangrove Vegetation Cover Changes (2014–2020) in Indian Sundarbans National Park Using Landsat 8 and Google Earth Engine [142] | MAR 2023 | 12 | 4 | Retrieved and preprocessed Landsat 8 in GEE; performed cloud/shadow masking, spectral-index computation, and median compositing; then conducted time series change detection. Authors demonstrated that the speed and efficiency of GEE were superior for large-scale mangrove monitoring. |
An enhanced approach to mangrove forest analysis in the Colombian Pacific coast using optical and SAR data in Google Earth Engine [143] | APR 2023 | 10 | 3.33 | Fused Landsat and SAR inputs in GEE with cloud/speckle (Refined Lee) filtering; computed spectral indices and GLCM texture metrics; generated image composites; and tuned Random Forest hyperparameters, which achieved improved classification accuracy. |
Spatiotemporal monitoring of Qeshm mangrove forests through machine learning classification of SAR and optical images on Google Earth Engine [144] | OCT 2023 | 9 | 3 | Employed GEE’s free access to Landsat 8, Sentinel-1/2; fused optical and radar data; applied spectral indices; and trained SVM and Random Forest models, computing overall accuracy entirely within GEE’s cloud environment. Noted that GEE gives researchers instant access to vast multisensor and multitemporal imagery, plus built-in tools for preprocessing, analysis, and machine learning. It enables fast, reproducible mapping without local hardware constraints. |
Satellite Data Reveal Concerns Regarding Mangrove Restoration Efforts in Southern China [145] | SEP 2023 | 7 | 2.33 | Used GEE to access the Landsat archive; calculate spectral indices; apply user-defined thresholding; analyze time series. Tidal influence was considered. Authors used temporal segmentation algorithm for disturbance detection. Accuracy was assessed using F1-score metrics using GEE. |
Comparison of the Applicability of J-M Distance Feature Selection Methods for Coastal Wetland Classification [146] | JUN 2023 | 7 | 2.33 | Accessed Sentinel and DEM data in GEE; performed cloud masking, SAR noise removal, and terrain correction; fused datasets; computed spectral indices and GLCM metrics; and trained a Random Forest classifier; evaluated performance via confusion-matrix. |
Time series (2001/2002–2021) analysis of Earth observation data using Google Earth Engine (GEE) for detecting changes in land use land cover (LULC) with specific reference to forest cover in East Godavari Region, Andhra Pradesh, India [147] | MAY 2023 | 7 | 2.33 | This paper is not explicitly mangrove-focused. Authors harnessed GEE’s cloud infrastructure to automate a 20-year LULC change-detection. The study accessed and preprocessed Landsat archives; applied cloud masking and normalization. GEE-based Hansen global forest change data was used. Classification and Regression Tree algorithm was utilized, and accuracy was assessed using GEE. |
Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil [148] | APR 2023 | 7 | 2.33 | Retrieved Landsat in GEE; applied topographic masking, median composites, and computed spectral indices. Ran supervised classifiers (CART, RF, Minimum Distance) and unsupervised methods (K-means, X-means, Cascade Simple K-means, LVQ, Cobweb), noting GEE’s capacity to handle unprecedented data volumes. Authors highlighted the MVI-Cobweb method for accurately identifying various mangrove ecotypes and recommended testing newer algorithms in future studies. |
Understanding the natural expansion of white mangrove (Laguncularia racemosa) in an ephemeral inlet based on geomorphological analysis and remote sensing data [149] | JUL 2023 | 7 | 2.33 | Analyzed Sentinel-2 NDVI time series via the GEE plugin in QGIS. Authors successfully detected spatial expansion patterns of L. racemosa linked to geomorphological changes. |
Understanding the states and dynamics of mangrove forests in land cover transitions of The Gambia using a Fourier transformation of Landsat and MODIS time series in Google Earth Engine [150] | FEB 23 2023 | 6 | 2 | Accessed Landsat/MODIS in GEE; applied cloud masking, generated gap-free median mosaics, computed spectral indices, and performed harmonics-based phenological analysis with K-means clustering for sample design. Ran Random Forest classification, assessed accuracy, and recommended longer data records and CCDC temporal segmentation for future work. |
References
- Barbier, E.B. Natural barriers to natural disasters: Replanting mangroves after the tsunami. Front. Ecol. Environ. 2006, 4, 124–131. [Google Scholar] [CrossRef]
- Spalding, M. World Mangrove Atlas; International Society for Mangrove Ecosystems: Okinawa, Japan, 1997. [Google Scholar]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Mitra, A. Mangrove Forests in India: Exploring Ecosystem Services; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Craft, C. Mangroves. In Creating and Restoring Wetlands; Elsevier: Amsterdam, The Netherlands, 2016; pp. 233–263. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Held, A.; Ticehurst, C.; Lymburner, L.; Williams, N. High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing. Int. J. Remote Sens. 2003, 24, 2739–2759. [Google Scholar] [CrossRef]
- Worthington, T.A.; Andradi-Brown, D.A.; Bhargava, R.; Buelow, C.; Bunting, P.; Duncan, C.; Fatoyinbo, L.; Friess, D.A.; Goldberg, L.; Hilarides, L.; et al. Harnessing Big Data to Support the Conservation and Rehabilitation of Mangrove Forests Globally. One Earth 2020, 2, 429–443. [Google Scholar] [CrossRef]
- Davie, J.D.S.; Hegerl, E.J.; Saenger, P. Global Status of Mangrove Ecosystems; IUCN: Gland, Switzerland, 1983. [Google Scholar]
- Clüsener-Godt, M.; Cárdenas Tomažič, M.R. 8—The Importance of Mangrove Ecosystems for Nature Protection and Food Productivity: Actions of UNESCO’s Man and the Biosphere Programme. In Halophytes for Food Security in Dry Lands; Khan, M.A., Ozturk, M., Gul, B., Ahmed, M.Z., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 125–140. [Google Scholar]
- Fao. The World’s Mangroves 2000–2020; FAO: Rome, Italy, 2023. [Google Scholar]
- Kusmana, C. Distribution and Current Status of Mangrove Forests in Indonesia. In Mangrove Ecosystems of Asia: Status, Challenges and Management Strategies; Faridah-Hanum, I., Latiff, A., Hakeem, K.R., Ozturk, M., Eds.; Springer: New York, NY, USA, 2014; pp. 37–60. [Google Scholar]
- Tangah, J.; Bajau, F.E.; Jilimin, W.; Baba, S.; Chan, H.T.; Kezuka, M. Rehabilitation of Mangroves in Sabah—The SFD-ISME Collaboration (2011–2014); Technical Report; Sabah Forestry Department, International Society for Mangrove Ecosystems and Tokio Marine & Nichido Fire Insurance Co., Ltd.: Tokyo, Japan, 2015. [Google Scholar]
- United Nations Development Programme; World Conservation Union. Mangroves for the Future: A Strategy for Promoting Investment in Coastal Ecosystem Conservation; Technical Report; United Nations Development Programme: New York, NY, USA; World Conservation Union: Gland, Switzerland, 2015. [Google Scholar]
- Adame, M.F.; Kauffman, J.B.; Medina, I.; Gamboa, J.N.; Torres, O.; Caamal, J.P.; Reza, M.; Herrera-Silveira, J.A. Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS ONE 2013, 8, e56569. [Google Scholar] [CrossRef]
- Atwood, T.B.; Connolly, R.M.; Almahasheer, H.; Carnell, P.E.; Duarte, C.M.; Ewers Lewis, C.J.; Irigoien, X.; Kelleway, J.J.; Lavery, P.S.; Macreadie, P.I.; et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change 2017, 7, 523–528. [Google Scholar] [CrossRef]
- Bouillon, S.; Borges, A.V.; Castañeda Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.Y.; Marchand, C.; Middelburg, J.J.; et al. Mangrove production and carbon sinks: A revision of global budget estimates. Glob. Biogeochem. Cycles 2008, 22, 3052. [Google Scholar] [CrossRef]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef]
- Moraes, O. Blue carbon in area-based coastal and marine management schemes—A review. J. Indian Ocean Reg. 2019, 15, 193–212. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D.; et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 2018, 13, 055002. [Google Scholar] [CrossRef]
- Vanderklift, M.A.; Marcos-Martinez, R.; Butler, J.R.A.; Coleman, M.; Lawrence, A.; Prislan, H.; Steven, A.D.L.; Thomas, S. Constraints and opportunities for market-based finance for the restoration and protection of blue carbon ecosystems. Mar. Policy 2019, 107, 103429. [Google Scholar] [CrossRef]
- Dittmar, T.; Hertkorn, N.; Kattner, G.; Lara, R.J. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 2006, 20, 2570. [Google Scholar] [CrossRef]
- Diop, S.; Barusseau, J.P.; Descamps, C. (Eds.) The Land/Ocean Interactions in the Coastal Zone of West and Central Africa; Estuaries of the World; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Mizanur Rahman, M.; Nabiul Islam Khan, M.; Fazlul Hoque, A.K.; Ahmed, I. Carbon stock in the Sundarbans mangrove forest: Spatial variations in vegetation types and salinity zones. Wetl. Ecol. Manag. 2015, 23, 269–283. [Google Scholar] [CrossRef]
- Thomas, S.; Dargusch, P.; Harrison, S.; Herbohn, J. Why are there so few afforestation and reforestation Clean Development Mechanism projects? Land Use Policy 2010, 27, 880–887. [Google Scholar] [CrossRef]
- Younes Cárdenas, N.; Joyce, K.E.; Maier, S.W. Monitoring mangrove forests: Are we taking full advantage of technology? Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 1–14. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data: Status and distributions of global mangroves. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef]
- Purnamasayangsukasih, P.R.; Norizah, K.; Ismail, A.A.M.; Shamsudin, I. A review of uses of satellite imagery in monitoring mangrove forests. IOP Conf. Ser. Earth Environ. Sci. 2016, 37, 012034. [Google Scholar] [CrossRef]
- Lewis, R.R.; Milbrandt, E.C.; Brown, B.; Krauss, K.W.; Rovai, A.S.; Beever, J.W.; Flynn, L.L. Stress in mangrove forests: Early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management. Mar. Pollut. Bull. 2016, 109, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Primavera, J.H.; Dahdouh-Guebas, F.; McKee, K.; Bosire, J.O.; Cannicci, S.; Diele, K.; Fromard, F.; Koedam, N.; Marchand, C.; et al. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 2014, 23, 726–743. [Google Scholar] [CrossRef]
- Farzanmanesh, R.; Khoshelham, K.; Thomas, S. Technological opportunities for measuring and monitoring blue carbon initiatives in mangrove ecosystems. Remote Sens. Appl. Soc. Environ. 2021, 24, 100612. [Google Scholar] [CrossRef]
- Diniz, C.; Cortinhas, L.; Nerino, G.; Rodrigues, J.; Sadeck, L.; Adami, M.; Souza, P. Brazilian Mangrove Status: Three Decades of Satellite Data Analysis. Remote Sens. 2019, 11, 808. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C.Z. A detailed mangrove map of China for 2019 derived from Sentinel-1 and-2 images and Google Earth images. Geosci. Data J. 2022, 9, 74–88. [Google Scholar] [CrossRef]
- Hickey, S.; Radford, B. Turning the Tide on Mapping Marginal Mangroves with Multi-Dimensional Space-Time Remote Sensing. Remote Sens. 2022, 14, 3365. [Google Scholar] [CrossRef]
- Chamberlain, D.; Phinn, S.; Possingham, H. Mangrove Forest Cover and Phenology with Landsat Dense Time Series in Central Queensland, Australia. Remote Sens. 2021, 13, 3032. [Google Scholar] [CrossRef]
- Yancho, J.; Jones, T.; Gandhi, S.; Ferster, C.; Lin, A.; Glass, L. The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sens. 2020, 12, 3758. [Google Scholar] [CrossRef]
- Tran, T.V.; Reef, R.; Zhu, X. A Review of Spectral Indices for Mangrove Remote Sensing. Remote Sens. 2022, 14, 4868. [Google Scholar] [CrossRef]
- Pham, T.D.; Xia, J.; Ha, N.T.; Bui, D.T.; Le, N.N.; Tekeuchi, W. A Review of Remote Sensing Approaches for Monitoring Blue Carbon Ecosystems: Mangroves, Seagrassesand Salt Marshes during 2010–2018. Sensors 2019, 19, 1933. [Google Scholar] [CrossRef]
- Schill, S.R.; McNulty, V.P.; Perez, D.; Shono, K.; Friedman, K. Remote Sensing Techniques for Mapping and Monitoring Mangroves at Fine Scales; FAO: Rome, Italy, 2024. [Google Scholar]
- Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges and opportunities. Future Gener. Comput. Syst. 2015, 51, 47–60. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Alonso, A.; Muñoz Carpena, R.; Kennedy, R.E.; Murcia, C. Wetland Landscape Spatio-Temporal Degradation Dynamics Using the New Google Earth Engine Cloud-Based Platform: Opportunities for Non-Specialists in Remote Sensing. Trans. ASABE 2016, 59, 1331–1342. [Google Scholar]
- Jahromi, M.N.; Jahromi, M.N.; Zolghadr-Asli, B.; Pourghasemi, H.R.; Alavipanah, S.K. Google Earth Engine and Its Application in Forest Sciences. In Spatial Modeling in Forest Resources Management; Shit, P.K., Pourghasemi, H.R., Das, P., Bhunia, G.S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 629–649. [Google Scholar]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Tinh, P.; MacKenzie, R.; Hung, T.; Hanh, N.; Hanh, N.; Manh, D.; Ha, H.; Tuan, M. Distribution and drivers of Vietnam mangrove deforestation from 1995 to 2019. Mitig. Adapt. Strateg. Glob. Change 2022, 27, 29. [Google Scholar] [CrossRef]
- Bhargava, R.; Sarkar, D.; Friess, D. A cloud computing-based approach to mapping mangrove erosion and progradation: Case studies from the Sundarbans and French Guiana. Estuar. Coast. Shelf Sci. 2021, 248, 106798. [Google Scholar] [CrossRef]
- Beselly, S.; van der Wegen, M.; Grueters, U.; Reyns, J.; Dijkstra, J.; Roelvink, D. Eleven Years of Mangrove-Mudflat Dynamics on the Mud Volcano-Induced Prograding Delta in East Java, Indonesia: Integrating UAV and Satellite Imagery. Remote Sens. 2021, 13, 1084. [Google Scholar] [CrossRef]
- Gilani, H.; Naz, H.; Arshad, M.; Nazim, K.; Akram, U.; Abrar, A.; Asif, M. Evaluating mangrove conservation and sustainability through spatiotemporal (1990–2020) mangrove cover change analysis in Pakistan. Estuar. Coast. Shelf Sci. 2021, 249, 107128. [Google Scholar] [CrossRef]
- Palmatier, R.W.; Houston, M.B.; Hulland, J. Review articles: Purpose, process, and structure. J. Acad. Mark. Sci. 2018, 46, 1–5. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Inf. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Clarivate. Web of Science Editorial Selection Process. 2023. Available online: https://clarivate.com/academia-government/scientific-and-academic-research/research-discovery-and-referencing/web-of-science/web-of-science-core-collection/editorial-selection-process/ (accessed on 31 March 2023).
- Ibharim, N.; Mustapha, M.; Lihan, T.; Mazlan, A. Mapping mangrove changes in the Matang Mangrove Forest using multi temporal satellite imageries. Ocean Coast. Manag. 2015, 114, 64–76. [Google Scholar] [CrossRef]
- Jean-Baptiste, N.; Jensen, J.R. Measurement of Mangrove Biophysical Characteristics in the Bocozelle Ecosystem in Haiti Using ASTER Multispectral Data. Geocarto Int. 2006, 21, 3–8. [Google Scholar] [CrossRef]
- Quader, M.A.; Agrawal, S.; Kervyn, M. Multi-decadal land cover evolution in the Sundarban, the largest mangrove forest in the world. Ocean Coast. Manag. 2017, 139, 113–124. [Google Scholar] [CrossRef]
- Giri, C. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sens. 2016, 8, 783. [Google Scholar] [CrossRef]
- Granell, C.; Havlik, D.; Schade, S.; Sabeur, Z.; Delaney, C.; Pielorz, J.; Usländer, T.; Mazzetti, P.; Schleidt, K.; Kobernus, M.; et al. Future Internet technologies for environmental applications. Environ. Model. Softw. 2016, 78, 1–15. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L.M. Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens. 2022, 14, 3657. [Google Scholar] [CrossRef]
- Malerba, M.E.; Costa, M.D.d.P.; Friess, D.A.; Schuster, L.; Young, M.A.; Lagomasino, D.; Serrano, O.; Hickey, S.M.; York, P.H.; Rasheed, M.; et al. Remote sensing for cost-effective blue carbon accounting. Earth-Sci. Rev. 2023, 238, 104337. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Jin, X.; Han, J. K-Means Clustering. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010; pp. 563–564. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shmilovici, A. Support Vector Machines. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: Boston, MA, USA, 2005; pp. 257–276. [Google Scholar]
- Tax, D.M.; Duin, R.P. Support Vector Data Description. Mach. Learn. 2004, 54, 45–66. [Google Scholar] [CrossRef]
- Bloomfield, P. Fourier Analysis of Time Series: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Forthofer, R.N.; Lee, E.S.; Hernandez, M. 13 - Linear Regression. In Biostatistics, 2nd ed.; Forthofer, R.N., Lee, E.S., Hernandez, M., Eds.; Academic Press: San Diego, CA, USA, 2007; pp. 349–386. [Google Scholar]
- Pimple, U.; Simonetti, D.; Hinks, I.; Oszwald, J.; Berger, U.; Pungkul, S.; Leadprathom, K.; Pravinvongvuthi, T.; Maprasoap, P.; Gond, V. A history of the rehabilitation of mangroves and an assessment of their diversity and structure using Landsat annual composites (1987-2019) and transect plot inventories. For. Ecol. Manag. 2020, 462, 118007. [Google Scholar] [CrossRef]
- Murray, N.J.; Keith, D.A.; Simpson, D.; Wilshire, J.H.; Lucas, R.M. Remap: An online remote sensing application for land cover classification and monitoring. Methods Ecol. Evol. 2018, 9, 2019–2027. [Google Scholar] [CrossRef]
- Bhargava, R.; Friess, D. Previous Shoreline Dynamics Determine Future Susceptibility to Cyclone Impact in the Sundarban Mangrove Forest. Front. Mar. Sci. 2022, 9, 814577. [Google Scholar] [CrossRef]
- Li, H.; Jia, M.; Zhang, R.; Ren, Y.; Wen, X. Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform. Remote Sens. 2019, 11, 2479. [Google Scholar] [CrossRef]
- Nedd, G.; Oyedotun, T.; Simard, M. Evaluation of Spatio-Temporal Dynamics of Guyana’s Mangroves Using SAR and GEE. Earth Syst. Environ. 2021, 7, 509–524. [Google Scholar] [CrossRef]
- Shrestha, S.; Miranda, I.; Kumar, A.; Pardo, M.; Dahal, S.; Rashid, T.; Remillard, C.; Mishra, D. Identifying and forecasting potential biophysical risk areas within a tropical mangrove ecosystem using multi-sensor data. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 281–294. [Google Scholar] [CrossRef]
- Mandal, M.; Kamruzzaman, M.; Hosaka, T. Elucidating the phenology of the Sundarbans mangrove forest using 18-year time series of MODIS vegetation indices. Tropics 2020, 29, 41–55. [Google Scholar] [CrossRef]
- Valenti, V.L.; Carcelen, E.C.; Lange, K.; Russo, N.J.; Chapman, B. Leveraging Google Earth Engine User Interface for Semiautomated Wetland Classification in the Great Lakes Basin at 10 m With Optical and Radar Geospatial Datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6008–6018. [Google Scholar] [CrossRef]
- Scheip, C.M.; Wegmann, K.W. HazMapper: A global open-source natural hazard mapping application in Google Earth Engine. Nat. Hazards Earth Syst. Sci. 2021, 21, 1495–1511. [Google Scholar] [CrossRef]
- Baloloy, A.; Blanco, A.; Ana, R.; Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. Isprs J. Photogramm. Remote Sens. 2020, 166, 95–117. [Google Scholar] [CrossRef]
- Cissell, J.; Canty, S.; Steinberg, M.; Simpson, L. Mapping National Mangrove Cover for Belize Using Google Earth Engine and Sentinel-2 Imagery. Appl. Sci. 2021, 11, 4258. [Google Scholar] [CrossRef]
- de Jong, S.; Shen, Y.; de Vries, J.; Bijnaar, G.; van Maanen, B.; Augustinus, P.; Verweij, P. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102293. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Zaghian, S.; Asiyabi, R.M.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine. Remote Sens. 2021, 13, 2565. [Google Scholar] [CrossRef]
- Guild, R.; Wang, X.; Russon, A.E. Tracking Deforestation, Drought, and Fire Occurrence in Kutai National Park, Indonesia. Remote Sens. 2022, 14, 5630. [Google Scholar] [CrossRef]
- Parida, B.; Kumar, P. Mapping and dynamic analysis of mangrove forest during 2009–2019 using landsat-5 and sentinel-2 satellite data along Odisha Coast. Trop. Ecol. 2020, 61, 538–549. [Google Scholar] [CrossRef]
- Rahman, M.; Zhang, X.; Ahmed, I.; Iqbal, Z.; Zeraatpisheh, M.; Kanzaki, M.; Xu, M. Remote Sensing-Based Mapping of Senescent Leaf C:N Ratio in the Sundarbans Reserved Forest Using Machine Learning Techniques. Remote Sens. 2020, 12, 1375. [Google Scholar] [CrossRef]
- Vu, T.T.P.; Pham, T.D.; Saintilan, N.; Skidmore, A.; Luu, H.V.; Vu, Q.H.; Le, N.N.; Nguyen, H.Q.; Matsushita, B. Mapping Multi-Decadal Mangrove Extent in the Northern Coast of Vietnam Using Landsat Time-Series Data on Google Earth Engine Platform. Remote Sens. 2022, 14, 4664. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, M.; Wang, Z.; Zhou, Y.; Mao, D.; Ren, C.; Zhao, C.; Liu, X. Tracking annual dynamics of mangrove forests in mangrove National Nature Reserves of China based on time series Sentinel-2 imagery during 2016–2020. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102918. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C.Z. Identifying large-area mangrove distribution based on remote sensing: A binary classification approach considering subclasses of non-mangroves. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102750. [Google Scholar] [CrossRef]
- Johnston-González, R.; Coca, O.; Duque, D.; Ricaurte-Villota, C. Tracking changes in extent and distribution of tropical coastal covers using simple semi-supervised classification. Remote Sens. Appl. Soc. Environ. 2022, 27, 100822. [Google Scholar] [CrossRef]
- Aja, D.; Miyittah, M.K.; Angnuureng, D.B. Quantifying Mangrove Extent Using a Combination of Optical and Radar Images in a Wetland Complex, Western Region, Ghana. Sustainability 2022, 14, 16687. [Google Scholar] [CrossRef]
- De Alban, J.; Jamaludin, J.; de Wen, D.; Than, M.; Webb, E. Improved estimates of mangrove cover and change reveal catastrophic deforestation in Myanmar. Environ. Res. Lett. 2020, 15, 034034. [Google Scholar] [CrossRef]
- Dong, D.; Wang, C.; Yan, J.; He, Q.; Zeng, J.; Wei, Z. Combing Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on Google Earth Engine: A case study in Zhangjiang Estuary. J. Appl. Remote Sens. 2020, 14, 044504. [Google Scholar]
- Mondal, P.; Dutta, T.; Qadir, A.; Sharma, S. Radar and optical remote sensing for near real-time assessments of cyclone impacts on coastal ecosystems. Remote Sens. Ecol. Conserv. 2022, 8, 506–520. [Google Scholar] [CrossRef]
- Solanki, J.B.; Lele, N.; Das, A.K.; Maurya, P.; Kumari, R. Assessment of mangrove cover dynamics and its health status in the Gulf of Khambhat, Western India, using high-resolution multi-temporal satellite data and Google Earth Engine. Environ. Monit. Assess. 2022, 194, 896. [Google Scholar] [CrossRef]
- Xia, Q.; He, T.; Qin, C.; Xing, X.; Xiao, W. An Improved Submerged Mangrove Recognition Index-Based Method for Mapping Mangrove Forests by Removing the Disturbance of Tidal Dynamics and S. alterniflora. Remote Sens. 2022, 14, 3112. [Google Scholar] [CrossRef]
- Bessinger, M.; Lück-Vogel, M.; Skowno, A.; Conrad, F. Landsat-8 based coastal ecosystem mapping in South Africa using random forest classification in Google Earth Engine. S. Afr. J. Bot. 2022, 150, 928–939. [Google Scholar] [CrossRef]
- Hauser, L.; Binh, N.; Hoa, P.; Quan, N.; Timmermans, J. Gap-Free Monitoring of Annual Mangrove Forest Dynamics in Ca Mau Province, Vietnamese Mekong Delta, Using the Landsat-7-8 Archives and Post-Classification Temporal Optimization. Remote Sens. 2020, 12, 3729. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C.Z. The Key Reason of False Positive Misclassification for Accurate Large-Area Mangrove Classifications. Remote Sens. 2021, 13, 2909. [Google Scholar] [CrossRef]
- Aung, T.S.; Overland, I.; Vakulchuk, R.; Xie, Y. The environmental burdens of special economic zones on the coastal and marine environment: A remote sensing assessment in Myanmar. Remote Sens. Appl. Soc. Environ. 2022, 28, 100809. [Google Scholar] [CrossRef]
- Hu, L.; Xu, N.; Liang, J.; Li, Z.; Chen, L.; Zhao, F. Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sens. 2020, 12, 3120. [Google Scholar] [CrossRef]
- Liu, X.; Fatoyinbo, T.; Thomas, N.; Guan, W.; Zhan, Y.; Mondal, P.; Lagomasino, D.; Simard, M.; Trettin, C.; Deo, R.; et al. Large-Scale High-Resolution Coastal Mangrove Forests Mapping Across West Africa With Machine Learning Ensemble and Satellite Big Data. Front. Earth Sci. 2021, 8, 560933. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L. How to automate timely large-scale mangrove mapping with remote sensing. Remote Sens. Environ. 2021, 264, 112585. [Google Scholar] [CrossRef]
- Mondal, P.; Liu, X.; Fatoyinbo, T.; Lagomasino, D. Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sens. 2019, 11, 2928. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C.Z. 10-m-resolution mangrove maps of China derived from multi-source and multi-temporal satellite observations. Isprs J. Photogramm. Remote Sens. 2020, 169, 389–405. [Google Scholar] [CrossRef]
- Le, H.; Tran, T.; Gyeltshen, S.; Nguyen, C.; Tran, D.; Luu, T.; Duong, M. Characterizing Spatiotemporal Patterns of Mangrove Forests in Can Gio Biosphere Reserve Using Sentinel-2 Imagery. Appl. Sci. 2020, 10, 4058. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.; Flores-Verdugo, F.; Rodriguez-Sobreyra, R.; Kovacs, J.; Flores-de Santiago, F. Extrapolating canopy phenology information using Sentinel-2 data and the Google Earth Engine platform to identify the optimal dates for remotely sensed image acquisition of semiarid mangroves. J. Environ. Manag. 2021, 279, 111617. [Google Scholar] [CrossRef] [PubMed]
- Google. Sentinel Collections in Earth Engine: Earth Engine Data Catalog; Google: Mountain View, CA, USA, 2023. [Google Scholar]
- Ghorbanian, A.; Ahmadi, S.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Application of Artificial Neural Networks for Mangrove Mapping Using Multi-Temporal and Multi-Source Remote Sensing Imagery. Water 2022, 14, 244. [Google Scholar] [CrossRef]
- Lomeo, D.; Singh, M. Cloud-Based Monitoring and Evaluation of the Spatial-Temporal Distribution of Southeast Asia’s Mangroves Using Deep Learning. Remote Sens. 2022, 14, 2291. [Google Scholar] [CrossRef]
- Mullissa, A.; Vollrath, A.; Odongo-Braun, C.; Slagter, B.; Balling, J.; Gou, Y.; Gorelick, N.; Reiche, J. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sens. 2021, 13, 1954. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef]
- Google. Earth Engine Quotas: Google Earth Engine; Google: Mountain View, CA, USA, 2023. [Google Scholar]
- Priyono, K.D.; Saifuddin, A.; Nugroho, F.S.; Jumadi, J. Identification of Mangrove Changes in The Mahakam Delta in 2007–2017 using Alos/Palsar and Landsat. Int. J. GEOMATE 2022, 23, 77–84. [Google Scholar] [CrossRef]
- Google. Machine Learning in Earth Engine: Google Earth Engine: Google for Developers; Google: Mountain View, CA, USA, 2023. [Google Scholar]
- Google. Earth Engine Data Catalog: Google for Developers; Google: Mountain View, CA, USA, 2023. [Google Scholar]
- Li, W.; El-Askary, H.; Qurban, M.; Li, J.; ManiKandan, K.; Piechota, T. Using multi-indices approach to quantify mangrove changes over the Western Arabian Gulf along Saudi Arabia coast. Ecol. Indic. 2019, 102, 734–745. [Google Scholar] [CrossRef]
- Hooper, S.; Kennedy, R.E. A spatial ensemble approach for broad-area mapping of land surface properties. Remote Sens. Environ. 2018, 210, 473–489. [Google Scholar] [CrossRef]
- Montero, D.; Aybar, C.; Mahecha, M.D.; Wieneke, S. Spectral: Awesome Spectral Indices deployed via the Google Earth Engine JavaScript API. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 48, 301–306. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Arévalo, P.; Bratley, K.H.; Bullock, E.L.; Gorelick, N.; Yang, Z.; Kennedy, R.E. Demystifying LandTrendr and CCDC temporal segmentation. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102806. [Google Scholar] [CrossRef]
- Murillo-Sandoval, P.J.; Fatoyinbo, L.; Simard, M. Mangroves Cover Change Trajectories 1984–2020: The Gradual Decrease of Mangroves in Colombia. Front. Mar. Sci. 2022, 9, 892946. [Google Scholar] [CrossRef]
- Lee, C.K.F.; Duncan, C.; Nicholson, E.; Fatoyinbo, T.E.; Lagomasino, D.; Thomas, N.; Worthington, T.A.; Murray, N.J. Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data. Remote Sens. 2021, 13, 2047. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Olofsson, P. Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sens. Environ. 2020, 238, 110968. [Google Scholar] [CrossRef]
- Vancutsem, C.; Achard, F.; Pekel, J.F.; Vieilledent, G.; Carboni, S.; Simonetti, D.; Gallego, J.; Aragão, L.E.O.C.; Nasi, R. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 2021, 7, eabe1603. [Google Scholar] [CrossRef]
- Obida, C.B.; Blackburn, G.A.; Whyatt, J.D.; Semple, K.T. Counting the cost of the Niger Delta’s largest oil spills: Satellite remote sensing reveals extensive environmental damage with >1million people in the impact zone. Sci. Total Environ. 2021, 775, 145854. [Google Scholar] [CrossRef]
- Onyena, A.P.; Sam, K. A review of the threat of oil exploitation to mangrove ecosystem: Insights from Niger Delta, Nigeria. Glob. Ecol. Conserv. 2020, 22, e00961. [Google Scholar] [CrossRef]
- Barenblitt, A.; Fatoyinbo, L.; Thomas, N.; Stovall, A.; de Sousa, C.; Nwobi, C.; Duncanson, L. Invasion in the Niger Delta: Remote sensing of mangrove conversion to invasive Nypa fruticans from 2015 to 2020. Remote Sens. Ecol. Conserv. 2023, 10, 5–23. [Google Scholar] [CrossRef]
- Lassalle, G.; Ferreira, M.P.; Cué La Rosa, L.E.; Del’Papa Moreira Scafutto, R.; de Souza Filho, C.R. Advances in multi- and hyperspectral remote sensing of mangrove species: A synthesis and study case on airborne and multisource spaceborne imagery. ISPRS J. Photogramm. Remote Sens. 2023, 195, 298–312. [Google Scholar] [CrossRef]
- Arasumani, M.; Kumaresan, M.; Esakki, B. Mapping native and non-native vegetation communities in a coastal wetland complex using multi-seasonal Sentinel-2 time series. Biol. Invasions 2024, 26, 1105–1124. [Google Scholar] [CrossRef]
- Lang, N.; Jetz, W.; Schindler, K.; Wegner, J.D. A high-resolution canopy height model of the Earth. Nature Ecology & Evolution 2023, 7, 1778–1789. [Google Scholar]
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda Moya, E.; Thomas, N.; Van der Stocken, T. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- Zeng, Y.; Friess, D.A.; Sarira, T.V.; Siman, K.; Koh, L.P. Global potential and limits of mangrove blue carbon for climate change mitigation. Curr. Biol. 2021, 31, 1737–1743.e3. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, L.; Zhao, T.; Chen, X.; Lin, S.; Wang, J.; Mi, J.; Liu, W. GWLFCS30: A global 30 m wetland map with a fine classificationsystem using multi-sourced and time-series remote sensing imagery in 2020. Earth Syst. Sci. Data 2023, 15, 265–293. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, M.; Wang, Z.; Mao, D.; Wang, Y. Identifying mangroves through knowledge extracted from trained random forest models: An interpretable mangrove mapping approach (IMMA). ISPRS J. Photogramm. Remote Sens. 2023, 201, 209–225. [Google Scholar] [CrossRef]
- Demarquet, Q.; Rapinel, S.; Dufour, S.; Hubert-Moy, L. Long-Term Wetland Monitoring Using the Landsat Archive: A Review. Remote Sens. 2023, 15, 820. [Google Scholar] [CrossRef]
- Fu, B.; Yao, H.; Lan, F.; Li, S.; Liang, Y.; He, H.; Jia, M.; Wang, Y.; Fan, D. Collaborative multiple change detection methods for monitoring the spatio-temporal dynamics of mangroves in Beibu Gulf, China. Giscience Remote Sens. 2023, 60, 2202506. [Google Scholar] [CrossRef]
- Aji, M.A.P.; Kamal, M.; Farda, N.M. Mangrove species mapping through phenological analysis using random forest algorithm on Google Earth Engine. Remote Sens.-Appl.-Soc. Environ. 2023, 30, 100978. [Google Scholar] [CrossRef]
- Zhang, Z.; Ahmed, M.R.; Zhang, Q.; Li, Y.; Li, Y. Monitoring of 35-Year Mangrove Wetland Change Dynamics and Agents in the Sundarbans Using Temporal Consistency Checking. Remote Sens. 2023, 15, 625. [Google Scholar] [CrossRef]
- Karsch, G.; Mukul, S.A.; Srivastava, S.K. Annual Mangrove Vegetation Cover Changes (2014-2020) in Indian Sundarbans National Park Using Landsat 8 and Google Earth Engine. Sustainability 2023, 15, 5592. [Google Scholar] [CrossRef]
- Selvaraj, J.J.; Perez, B.E.G. An enhanced approach to mangrove forest analysis in the Colombian Pacific coast using optical and SAR data in Google Earth Engine. Remote Sens.-Appl.-Soc. Environ. 2023, 30, 100938. [Google Scholar] [CrossRef]
- Mahdavifard, M.; Ahangar, S.K.; Feizizadeh, B.; Kamran, K.V.; Karimzadeh, S. Spatio-Temporal monitoring of Qeshm mangrove forests through machine learning classification of SAR and optical images on Google Earth Engine. Int. J. Eng. Geosci. 2023, 8, 239–250. [Google Scholar] [CrossRef]
- Fan, C.; Hou, X.; Zhang, Y.; Li, D. Satellite Data Reveal Concerns Regarding Mangrove Restoration Efforts in Southern China. Remote Sens. 2023, 15, 4151. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, X.; Fu, D.; Wang, Y.; Sun, S.; Wang, F.; Wang, C.; Xiao, Z.; Shi, Y. Comparison of the Applicability of J-M Distance Feature Selection Methods for Coastal Wetland Classification. Water 2023, 15, 2212. [Google Scholar] [CrossRef]
- Kaur, H.; Tyagi, S.; Mehta, M.; Singh, D. Time series (2001/2002–2021) analysis of Earth observation data using Google Earth Engine (GEE) for detecting changes in land use land cover (LULC) with specific reference to forest cover in East Godavari Region, Andhra Pradesh, India. J. Earth Syst. Sci. 2023, 132, 86. [Google Scholar] [CrossRef]
- Rodrigues, F.H.; Cerri, R.I.; Kolya, A.d.A.; Veiga, V.M.; Reis, F.A.G.V. Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil. Remote Sens.-Appl.-Soc. Environ. 2023, 30, 100965. [Google Scholar] [CrossRef]
- Flores-de Santiago, F.; Rodríguez-Sobreyra, R.; Álvarez Sánchez, L.F.; Valderrama-Landeros, L.; Amezcua, F.; Flores-Verdugo, F. Understanding the natural expansion of white mangrove (Laguncularia racemosa) in an ephemeral inlet based on geomorphological analysis and remote sensing data. J. Environ. Manag. 2023, 338, 117820. [Google Scholar] [CrossRef]
- Harou, I.L.; Inyele, J.; Minang, P.; Duguma, L. Understanding the states and dynamics of mangrove forests in land cover transitions of The Gambia using a Fourier transformation of Landsat and MODIS time series in Google Earth Engine. Front. For. Glob. Change 2023, 5, 934019. [Google Scholar]
Mangrove RS Subfield | How GEE Was Utilized | Accurate Mapping | Change Dynamics | Damage Assessment | Leaf Biochemical Property Inversion |
---|---|---|---|---|---|
Extent mapping | Data extraction, preprocessing | 3 (35) | 2 (7) | 0 (0) | 0 (0) |
Data extraction, preprocessing AND Modeling and (or) using algorithm | 10 (107) | 6 (24) | 1 (1) | 0 (0) | |
Data extraction, preprocessing AND Accuracy assessment | 1 (206) | 0 (0) | 2 (24) | 0 (0) | |
Data extraction, preprocessing AND Interactive mapping | 1 (48) | 0 (0) | 0 (0) | 0 (0) | |
Modeling and (or) using algorithm AND Accuracy assessment | 0 (0) | 1 (0) | 0 (0) | 0 (0) | |
Data extraction, preprocessing AND Modeling and (or) using algorithm AND Accuracy assessment | 5 (69) | 8 (160) | 1 (1) | 0 (0) | |
Data extraction, preprocessing AND Modeling and (or) using algorithm AND Interactive mapping | 0 (0) | 1 (15) | 0 (0) | 0 (0) | |
Data extraction, preprocessing AND Modeling and (or) using algorithm AND Accuracy assessment AND Interactive mapping | 0 (0) | 1 (16) | 0 (0) | 0 (0) | |
Extent mapping and height estimation | Data extraction, preprocessing | 0 (0) | 0 (0) | 1 (0) | 0 (0) |
Data extraction, preprocessing AND Modeling and (or) using algorithm | 0 (0) | 1 (7) | 0 (0) | 0 (0) | |
Species mapping | Data extraction, preprocessing | 1 (21) | 1 (9) | 0 (0) | 0 (0) |
Data extraction, preprocessing AND Modeling and (or) using algorithm | 1 (0) | 0 (0) | 0 (0) | 0 (0) | |
Data extraction, preprocessing AND Modeling and (or) using algorithm AND Accuracy assessment | 1 (34) | 0 (0) | 0 (0) | 0 (0) | |
Species mapping and height estimation | Data extraction, preprocessing AND Modeling and (or) using algorithm | 0 (0) | 1 (6) | 0 (0) | 0 (0) |
Biomass estimation | Data extraction, preprocessing AND Modeling and (or) using algorithm AND Accuracy assessment | 0 (0) | 1 (0) | 0 (0) | 0 (0) |
Health condition | Data extraction, preprocessing | 0 (0) | 1 (0) | 0 (0) | 0 (0) |
Effect of climate | Data extraction, preprocessing AND Modeling and (or) using algorithm AND Accuracy assessment | 0 (0) | 1 (18) | 0 (0) | 0 (0) |
Ecosystem process | Data extraction, preprocessing | 0 (0) | 0 (0) | 0 (0) | 1 (5) |
Total | 23 (520) | 25 (262) | 5 (26) | 1 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, K.M.A.; Murillo-Sandoval, P.; Bullock, E.; Kennedy, R. Accelerated Adoption of Google Earth Engine for Mangrove Monitoring: A Global Review. Remote Sens. 2025, 17, 2290. https://doi.org/10.3390/rs17132290
Islam KMA, Murillo-Sandoval P, Bullock E, Kennedy R. Accelerated Adoption of Google Earth Engine for Mangrove Monitoring: A Global Review. Remote Sensing. 2025; 17(13):2290. https://doi.org/10.3390/rs17132290
Chicago/Turabian StyleIslam, K. M. Ashraful, Paulo Murillo-Sandoval, Eric Bullock, and Robert Kennedy. 2025. "Accelerated Adoption of Google Earth Engine for Mangrove Monitoring: A Global Review" Remote Sensing 17, no. 13: 2290. https://doi.org/10.3390/rs17132290
APA StyleIslam, K. M. A., Murillo-Sandoval, P., Bullock, E., & Kennedy, R. (2025). Accelerated Adoption of Google Earth Engine for Mangrove Monitoring: A Global Review. Remote Sensing, 17(13), 2290. https://doi.org/10.3390/rs17132290