Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,170)

Search Parameters:
Keywords = urban energy strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4460 KiB  
Article
An Improved Soft Actor–Critic Framework for Cooperative Energy Management in the Building Cluster
by Wencheng Lu, Yan Gao, Zhi Sun and Qianning Mao
Appl. Sci. 2025, 15(16), 8966; https://doi.org/10.3390/app15168966 - 14 Aug 2025
Viewed by 77
Abstract
Buildings are significant contributors to global energy consumption and greenhouse gas emissions, with air conditioning systems representing a large share of this demand. Multi-building cooperative energy management is a promising solution for improving energy efficiency, but traditional control methods often struggle with dynamic [...] Read more.
Buildings are significant contributors to global energy consumption and greenhouse gas emissions, with air conditioning systems representing a large share of this demand. Multi-building cooperative energy management is a promising solution for improving energy efficiency, but traditional control methods often struggle with dynamic environments and complex interactions. This study proposes an enhanced Soft Actor–Critic (SAC) algorithm, termed ORAR-SAC, to address these challenges in building cluster energy management. The ORAR-SAC integrates an Ordered Reward-based Experience Replay mechanism to prioritize high-value samples, improving data utilization and accelerating policy convergence. Additionally, an adaptive temperature parameter regularization strategy is implemented to balance exploration and exploitation dynamically, enhancing training stability and policy robustness. Using the CityLearn simulation platform, the proposed method is evaluated on a cluster of three commercial buildings in Beijing under time-of-use electricity pricing. Results demonstrate that ORAR-SAC outperforms conventional rule-based and standard SAC strategies, achieving reductions of up to 11% in electricity costs, 7% in peak demand, and 3.5% in carbon emissions while smoothing load profiles and improving grid compatibility. These findings highlight the potential of ORAR-SAC to support intelligent, low-carbon building energy systems and advance sustainable urban energy management. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

46 pages, 26730 KiB  
Review
AI-Driven Multi-Objective Optimization and Decision-Making for Urban Building Energy Retrofit: Advances, Challenges, and Systematic Review
by Rudai Shan, Xiaohan Jia, Xuehua Su, Qianhui Xu, Hao Ning and Jiuhong Zhang
Appl. Sci. 2025, 15(16), 8944; https://doi.org/10.3390/app15168944 - 13 Aug 2025
Viewed by 168
Abstract
Urban building energy retrofit (UBER) is a critical strategy for advancing the low-carbon and climate-resilience transformation of cities. The integration of machine learning (ML), data-driven clustering, and multi-objective optimization (MOO) is a key aspect of artificial intelligence (AI) that is transforming the process [...] Read more.
Urban building energy retrofit (UBER) is a critical strategy for advancing the low-carbon and climate-resilience transformation of cities. The integration of machine learning (ML), data-driven clustering, and multi-objective optimization (MOO) is a key aspect of artificial intelligence (AI) that is transforming the process of retrofit decision-making. This integration enables the development of scalable, cost-effective, and robust solutions on an urban scale. This systematic review synthesizes recent advances in AI-driven MOO frameworks for UBER, focusing on how state-of-the-art methods can help to identify and prioritize retrofit targets, balance energy, cost, and environmental objectives, and develop transparent, stakeholder-oriented decision-making processes. Key advances highlighted in this review include the following: (1) the application of ML-based surrogate models for efficient evaluation of retrofit design alternatives; (2) data-driven clustering and classification to identify high-impact interventions across complex urban fabrics; (3) MOO algorithms that support trade-off analysis under real-world constraints; and (4) the emerging integration of explainable AI (XAI) for enhanced transparency and stakeholder engagement in retrofit planning. Representative case studies demonstrate the practical impact of these approaches in optimizing envelope upgrades, active system retrofits, and prioritization schemes. Notwithstanding these advancements, considerable challenges persist, encompassing data heterogeneity, the transferability of models across disparate urban contexts, fragmented digital toolchains, and the paucity of real-world validation of AI-based solutions. The subsequent discussion encompasses prospective research directions, with particular emphasis on the potential of deep learning (DL), spatiotemporal forecasting, generative models, and digital twins to further advance scalable and adaptive urban retrofit. Full article
(This article belongs to the Special Issue Artificial Intelligence (AI) for Energy Systems)
Show Figures

Figure 1

27 pages, 4588 KiB  
Article
Remote Sensing as a Sentinel for Safeguarding European Critical Infrastructure in the Face of Natural Disasters
by Miguel A. Belenguer-Plomer, Omar Barrilero, Paula Saameño, Inês Mendes, Michele Lazzarini, Sergio Albani, Naji El Beyrouthy, Mario Al Sayah, Nathan Rueche, Abla Mimi Edjossan-Sossou, Tommaso Monopoli, Edoardo Arnaudo and Gianfranco Caputo
Appl. Sci. 2025, 15(16), 8908; https://doi.org/10.3390/app15168908 - 13 Aug 2025
Viewed by 172
Abstract
Critical infrastructure, such as transport networks, energy facilities, and urban installations, is increasingly vulnerable to natural hazards and climate change. Remote sensing technologies, namely satellite imagery, offer solutions for monitoring, evaluating, and enhancing the resilience of these vital assets. This paper explores how [...] Read more.
Critical infrastructure, such as transport networks, energy facilities, and urban installations, is increasingly vulnerable to natural hazards and climate change. Remote sensing technologies, namely satellite imagery, offer solutions for monitoring, evaluating, and enhancing the resilience of these vital assets. This paper explores how applications based on synthetic aperture radar (SAR) and optical satellite imagery contribute to the protection of critical infrastructure by enabling near real-time monitoring and early detection of natural hazards for actionable insights across various European critical infrastructure sectors. Case studies demonstrate the integration of remote sensing data into geographic information systems (GISs) for promoting situational awareness, risk assessment, and predictive modeling of natural disasters. These include floods, landslides, wildfires, and earthquakes. Accordingly, this study underlines the role of remote sensing in supporting long-term infrastructure planning and climate adaptation strategies. The presented work supports the goals of the European Union (EU-HORIZON)-sponsored ATLANTIS project, which focuses on strengthening the resilience of critical EU infrastructures by providing authorities and civil protection services with effective tools for managing natural hazards. Full article
Show Figures

Figure 1

40 pages, 5647 KiB  
Article
Digital Twin Technology and Energy Sustainability in China: A Regional and Spatial Perspective
by Yejin Liu and Min Ye
Energies 2025, 18(16), 4294; https://doi.org/10.3390/en18164294 - 12 Aug 2025
Viewed by 272
Abstract
This study aims to explore the role and impact of digital twin technology in enhancing the sustainable development of the energy industry so as to analyze how digital twin technology facilitates urban sustainability. Using data from 281 prefecture-level cities in China over the [...] Read more.
This study aims to explore the role and impact of digital twin technology in enhancing the sustainable development of the energy industry so as to analyze how digital twin technology facilitates urban sustainability. Using data from 281 prefecture-level cities in China over the twelve-year period from 2013 to 2024, the study employs methods such as the entropy method, kernel density analysis, and spatial econometric models to conduct an in-depth analysis of improvements in energy efficiency. The findings indicate that digital twin technology plays a significant role in promoting the sustainable development of the energy industry. Furthermore, China is divided into four regions—eastern, central, western, and northeastern—for a comparative analysis, revealing regional differences in the relationship between the application level of digital twin technology and sustainable development of the energy industry. To effectively apply digital twin technology in this context, it is recommended to establish comprehensive digital twin models and intelligent decision-making systems for accurate energy monitoring and efficient management decisions. The results reveal that while digital twin technology enhances energy efficiency and promotes sustainable development overall, significant regional imbalances persist. The eastern region shows the highest integration level and performance, while the western and northeastern regions lag behind. In response, the study proposes tailored regional strategies, including the development of scalable digital twin technology, integrated data platforms, and strengthened governance mechanisms to enhance digital coordination and ensure data security. This research provides new empirical evidence and strategic guidance for leveraging digital twin technology in promoting low-carbon and sustainable urban energy systems. Full article
(This article belongs to the Special Issue Sustainable Energy & Society—2nd Edition)
Show Figures

Figure 1

48 pages, 2592 KiB  
Article
Coordinated Electric Vehicle Demand Management in the Unit Commitment Problem Integrated with Transmission Constraints
by Dimitrios Stamatakis and Athanasios I. Tolis
Energies 2025, 18(16), 4293; https://doi.org/10.3390/en18164293 - 12 Aug 2025
Viewed by 300
Abstract
Advancements in battery technology, marked by reduced costs and enhanced efficiency, are steadily making electric vehicles (EVs) more accessible to consumers. This trend is fueling global growth in EV fleet sizes, allowing EVs to compete directly with internal combustion engine vehicles. However, this [...] Read more.
Advancements in battery technology, marked by reduced costs and enhanced efficiency, are steadily making electric vehicles (EVs) more accessible to consumers. This trend is fueling global growth in EV fleet sizes, allowing EVs to compete directly with internal combustion engine vehicles. However, this rapid growth in EV numbers is likely to introduce challenges to the power grid, necessitating effective load management strategies. This work proposes an optimization method where EV load management is integrated into the Transmission Constrained Unit Commitment Problem (TCUCP). A Differential Evolution (DE) variant, enhanced with heuristic repair sub-algorithms, is employed to address the TCUCP. The heuristic sub-algorithms, adapted from earlier approaches to the simpler Unit Commitment Problem (UCP), are updated to incorporate power flow constraints and ensure the elimination of transmission line violations. Additionally, new repair mechanisms are introduced that combine priority lists with grid information to minimize violation. The proposed formulation considers EVs as both flexible loads and energy sources in a large urban environment powered by two grid nodes, accounting for the vehicles’ daily movement patterns. The algorithm exhibits exceptionally fast convergence to a feasible solution in fewer than 150 generations, despite the nonlinearity of the problem. Depending on the scenario, the total production cost is reduced by up to 45% within these generations. Moreover, the results of the proposed model, when compared with a MILP algorithm, achieve values with a relative difference of approximately 1%. Full article
Show Figures

Figure 1

17 pages, 1899 KiB  
Article
Research on Carbon Reduction Pathways: A Case Study of Kau Yi Chau Artificial Islands
by Xingyu Liu, Ming Zhang, Foci Chen, Yunzhe Tong, Kexi Xu, Zezhou Wu, Yani Lai, Yuefu Zhou and Xiangsheng Chen
Land 2025, 14(8), 1622; https://doi.org/10.3390/land14081622 - 9 Aug 2025
Viewed by 226
Abstract
Developing artificial islands is considered to be an effective solution for land scarcity and economic growth in coastal regions. However, the construction and operation of artificial islands could generate significant carbon emissions, posing challenges for low-carbon transitions. In this study, Kau Yi Chau [...] Read more.
Developing artificial islands is considered to be an effective solution for land scarcity and economic growth in coastal regions. However, the construction and operation of artificial islands could generate significant carbon emissions, posing challenges for low-carbon transitions. In this study, Kau Yi Chau Artificial Islands are analyzed to explore low-carbon strategies tailored to artificial island development. A carbon emission accounting framework based on urban operational processes is established, and five scenarios are developed using the LEAP model: the Baseline Scenario (BAS), Low-Demand Scenario (S1), Regular Carbon Reduction Scenario (S2), Enhanced Carbon Reduction Scenario (S3), and Deepened Carbon Reduction Scenario (S4). Energy demand and carbon emissions are systematically assessed across sectors such as buildings, transportation, solid waste, and vegetation-based carbon sinks. The results indicate that, compared to the BAS, carbon emissions in the S1, S2, S3, and S4 scenarios are reduced by 19.5%, 20.8%, 41.9%, and 54.6%, respectively. S4 is identified as the optimal development pathway for the artificial islands. The carbon reduction contributions of different sectors are analyzed, and optimization measures are proposed, providing valuable insights for low-carbon planning in artificial islands development. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

23 pages, 5418 KiB  
Article
Optimal Roof Strategy for Mitigating Urban Heat Island in Hot Arid Climates: Simulation and Python-Based Multi-Criteria Decision Analysis
by Rehab Alaa, Amira Elbalazi and Walaa S.E. Ismaeel
Urban Sci. 2025, 9(8), 310; https://doi.org/10.3390/urbansci9080310 - 8 Aug 2025
Viewed by 460
Abstract
This study adopts a multi-scale, simulation-driven approach to evaluate the performance of different passive roof types in mitigating Urban Heat Island (UHI) in hot arid climate. A comparative analysis was performed for selected roof types; green, pond, cool, and dark roofs. At the [...] Read more.
This study adopts a multi-scale, simulation-driven approach to evaluate the performance of different passive roof types in mitigating Urban Heat Island (UHI) in hot arid climate. A comparative analysis was performed for selected roof types; green, pond, cool, and dark roofs. At the urban scale, ENVI-met v5.7.1 was employed to simulate microclimatic impacts, including Mean Radiant Temperature (MRT) at the pedestrian street level (1.4 m) and above building canopy level (25 m). The results revealed that green roofs were the most effective in mitigating UHI on the urban scale, reducing MRT by 1.83 °C at the pedestrian level and by 3.5 °C at the above canopy level. Surprisingly, dark roofs also performed well, with MRT reductions of 1.81 °C and 3.5 °C, respectively, outperforming pond roofs, which showed reductions of 1.80 °C and 0.31 °C. While cool roofs effectively reduced MRT at the pedestrian level by 1.80 °C, they had adverse effect at the canopy level, increasing MRT by 15.58 °C. At the building scale, Design Builder v7.3.1, coupled with Energy Plus, was used to assess indoor thermal and energy performance. Pond and cool roofs reduced operative temperature by 0.08 °C and 0.07 °C, respectively, followed by green roofs, with a 0.05 °C reduction, while dark roofs increased it by 0.07 °C. In terms of energy performance, green roofs yielded the greatest benefit, reducing cooling load by 3.3%, followed by pond roofs, with a 1.32% reduction; cool roofs showed negligible reduction, while dark roofs increased it by 1.2%. Finally, a Python-based Multi criteria Decision Making (MCDM) analytical framework integrated these findings with additional factors to optimize thermal comfort, environmental impact, sustainability, and feasibility and rank strategies accordingly. The analysis identified green roofs as the optimal solution, followed by pond roofs and then cool roofs tied with the base case, leaving dark roofs as the least favorable strategy. This study’s key contribution lies in its integrated simulation–decision analysis methodology, which bridges urban climatology and building performance to provide actionable insights for sustainable urban design. By validating green roofs as the most effective passive strategy in hot arid regions, this work aids policymakers and planners in prioritizing interventions that support climate-resilient urbanization. Full article
Show Figures

Figure 1

16 pages, 715 KiB  
Review
Public Perceptions and Social Acceptance of Renewable Energy Projects in Epirus, Greece: The Role of Education, Demographics and Visual Exposure
by Evangelos Tsiaras, Stergios Tampekis and Costas Gavrilakis
World 2025, 6(3), 111; https://doi.org/10.3390/world6030111 - 6 Aug 2025
Viewed by 298
Abstract
The social acceptance of Renewable Energy Sources (RESs) is a decisive factor in the successful implementation of clean energy projects. This study explores the attitudes, demographic profiles, and common misconceptions of citizens in the Region of Epirus, Greece, toward photovoltaic and wind energy [...] Read more.
The social acceptance of Renewable Energy Sources (RESs) is a decisive factor in the successful implementation of clean energy projects. This study explores the attitudes, demographic profiles, and common misconceptions of citizens in the Region of Epirus, Greece, toward photovoltaic and wind energy installations. Special attention is given to the role of education, age, and access to information—as well as spatial factors such as visual exposure—in shaping public perceptions and influencing acceptance of RES deployment. A structured questionnaire was administered to 320 participants across urban and rural areas, with subdivision between regions with and without visual exposure to RES infrastructure. Findings indicate that urban residents exhibit greater acceptance of RES, while rural inhabitants—especially those in proximity to installations—express skepticism, often grounded in esthetic concerns or perceived procedural injustice. Misinformation and lack of knowledge dominate in areas without visual contact. Statistical analysis confirms that younger and more educated participants are more supportive and environmentally aware. The study highlights the importance of targeted educational interventions, transparent consultation, and spatially sensitive communication strategies in fostering constructive engagement with renewable energy projects. The case of Epirus underscores the need for inclusive, place-based policies to bridge the social acceptance gap and support the national energy transition. Full article
Show Figures

Graphical abstract

22 pages, 1566 KiB  
Review
Multi-Objective Evolutionary Algorithms in Waste Disposal Systems: A Comprehensive Review of Applications, Case Studies, and Future Directions
by Saad Talal Alharbi
Computers 2025, 14(8), 316; https://doi.org/10.3390/computers14080316 - 4 Aug 2025
Viewed by 364
Abstract
Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful optimization tools for addressing the complex, often conflicting goals present in modern waste disposal systems. This review explores recent advances and practical applications of MOEAs in key areas, including waste collection routing, waste-to-energy (WTE) systems, [...] Read more.
Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful optimization tools for addressing the complex, often conflicting goals present in modern waste disposal systems. This review explores recent advances and practical applications of MOEAs in key areas, including waste collection routing, waste-to-energy (WTE) systems, and facility location and allocation. Real-world case studies from cities like Braga, Lisbon, Uppsala, and Cyprus demonstrate how MOEAs can enhance operational efficiency, boost energy recovery, and reduce environmental impacts. While these algorithms offer significant advantages, challenges remain in computational complexity, adapting to dynamic environments, and integrating with emerging technologies. Future research directions highlight the potential of combining MOEAs with machine learning and real-time data to create more flexible and responsive waste management strategies. By leveraging these advancements, MOEAs can play a pivotal role in developing sustainable, efficient, and adaptive waste disposal systems capable of meeting the growing demands of urbanization and stricter environmental regulations. Full article
(This article belongs to the Special Issue Operations Research: Trends and Applications)
Show Figures

Graphical abstract

25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 - 3 Aug 2025
Viewed by 537
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

21 pages, 4415 KiB  
Article
Friction and Regenerative Braking Shares Under Various Laboratory and On-Road Driving Conditions of a Plug-In Hybrid Passenger Car
by Dimitrios Komnos, Alessandro Tansini, Germana Trentadue, Georgios Fontaras, Theodoros Grigoratos and Barouch Giechaskiel
Energies 2025, 18(15), 4104; https://doi.org/10.3390/en18154104 - 2 Aug 2025
Viewed by 440
Abstract
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative [...] Read more.
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative braking, i.e., recuperation of the deceleration kinetic and potential energy to the vehicle battery, is one of the strategies to reduce the brake emission levels and improve vehicle efficiency. According to the regulation, the shares of friction and regenerative braking can be determined with actual testing of the vehicle on a chassis dynamometer. In this study we tested the regenerative capabilities of a plug-in hybrid vehicle, both in the laboratory and on the road, under different protocols (including both smooth and aggressive braking) and covering a wide range of driving conditions (urban, rural, motorway) over 10,000 km of driving. Good agreement was obtained between laboratory and on-road tests, with the use of the friction brakes being on average 7% and 5.3%, respectively. However, at the same time it was demonstrated that the friction braking share can vary over a wide range (up to around 30%), depending on the driver’s behaviour. Full article
Show Figures

Figure 1

25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Viewed by 352
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

29 pages, 3508 KiB  
Article
Assessment of the Energy Efficiency of Individual Means of Transport in the Process of Optimizing Transport Environments in Urban Areas in Line with the Smart City Idea
by Grzegorz Augustyn, Jerzy Mikulik, Wojciech Lewicki and Mariusz Niekurzak
Energies 2025, 18(15), 4079; https://doi.org/10.3390/en18154079 - 1 Aug 2025
Viewed by 280
Abstract
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a [...] Read more.
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a case study—an assessment of the possibilities of changing mobility habits based on the idea of sustainable urban transport, taking into account the criterion of energy consumption of individual means of transport. The analyses are based on a comparison of selected means of transport occurring in the urban environment according to several key parameters for the optimization and efficiency of transport processes, i.e., cost, time, travel comfort, and impact on the natural environment, while simultaneously linking them to the criterion of energy consumption of individual means of transport. The analyzed parameters currently constitute the most important group of challenges in the area of shaping and planning optimal and sustainable urban transport. The presented research was used to indicate the connections between various areas of optimization of the transport process and the energy efficiency of individual modes of transport. Analyses have shown that the least time-consuming process of urban mobility is associated with the highest level of CO2 emissions and, at the same time, the highest level of energy efficiency. However, combining public transport with other means of transport can meet most of the transport expectations of city residents, also in terms of energy optimization. The research results presented in the article can contribute to the creation of a strategy for the development of the transport network based on the postulates of increasing the optimization and efficiency of individual means of transport in urban areas. At the same time, recognizing the criterion of energy intensity of means of transport as leading in the development of sustainable urban mobility. Thus, confirming the important role of existing transport systems in the process of shaping and planning sustainable urban mobility in accordance with the idea of Smart City. Full article
Show Figures

Figure 1

17 pages, 5311 KiB  
Article
Projections of Urban Heat Island Effects Under Future Climate Scenarios: A Case Study in Zhengzhou, China
by Xueli Ni, Yujie Chang, Tianqi Bai, Pengfei Liu, Hongquan Song, Feng Wang and Man Jin
Remote Sens. 2025, 17(15), 2660; https://doi.org/10.3390/rs17152660 - 1 Aug 2025
Viewed by 525
Abstract
As global climate change accelerates, the urban heat island (UHI) phenomenon has become increasingly pronounced, posing significant challenges to urban energy balance, atmospheric processes, and public health. This study used the Weather Research and Forecasting (WRF) model to dynamically downscale two CMIP6 scenarios—moderate [...] Read more.
As global climate change accelerates, the urban heat island (UHI) phenomenon has become increasingly pronounced, posing significant challenges to urban energy balance, atmospheric processes, and public health. This study used the Weather Research and Forecasting (WRF) model to dynamically downscale two CMIP6 scenarios—moderate forcing (SSP245) and high forcing (SSP585)—focusing on Zhengzhou, a rapidly urbanizing city in central China. High-resolution simulations captured fine-scale intra-urban temperature patterns and analyze the spatial and seasonal variations in UHI intensity in 2030 and 2060. The results demonstrated significant seasonal variations in UHI effects in Zhengzhou for both 2030 and 2060 under SSP245 and SSP585 scenarios, with the most pronounced warming in summer. Notably, under the SSP245 scenario, elevated autumn temperatures in suburban areas reduced the urban–rural temperature gradient, while intensified rural cooling during winter enhanced the UHI effect. These findings underscore the importance of integrating high-resolution climate modeling into urban planning and developing targeted adaptation strategies based on future UHI patterns to address climate challenges. Full article
Show Figures

Figure 1

18 pages, 9390 KiB  
Article
An Integrated SEA–Deep Learning Approach for the Optimal Geometry Performance of Noise Barrier
by Hao Wu, Lingshan He, Ziyu Tao, Duo Zhang and Yunke Luo
Machines 2025, 13(8), 670; https://doi.org/10.3390/machines13080670 - 31 Jul 2025
Cited by 1 | Viewed by 238
Abstract
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating [...] Read more.
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating the acoustic performance of both vertical (VB) and fully enclosed (FB) barrier configurations. The study incorporated Maa’s theory of micro-perforated plate (MPP) parameter optimization and developed a neural network surrogate model focused on insertion loss maximization for barrier geometric design. Key findings revealed significant barrier-induced near-track noise amplification, with peak effects observed at the point located 1 m from the barrier and 2 m above the rail. Frequency-dependent analysis demonstrated a characteristic rise-and-fall reflection pattern, showing maximum amplifications of 1.47 dB for VB and 4.13 dB for FB within the 400–2000 Hz range. The implementation of optimized MPPs was found to effectively eliminate the near-field noise amplification effects, achieving sound pressure level reductions of 4–8 dB at acoustically sensitive locations. Furthermore, the high-precision surrogate model (R2 = 0.9094, MSE = 0.8711) facilitated optimal geometric design solutions. The synergistic combination of MPP absorption characteristics and geometric optimization resulted in substantially enhanced barrier performance, offering practical solutions for urban rail noise mitigation strategies. Full article
(This article belongs to the Special Issue Advances in Noise and Vibrations for Machines)
Show Figures

Figure 1

Back to TopTop