Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (25,728)

Search Parameters:
Keywords = urban area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2032 KiB  
Article
BCTDNet: Building Change-Type Detection Networks with the Segment Anything Model in Remote Sensing Images
by Wei Zhang, Jinsong Li, Shuaipeng Wang and Jianhua Wan
Remote Sens. 2025, 17(15), 2742; https://doi.org/10.3390/rs17152742 (registering DOI) - 7 Aug 2025
Abstract
Observing building changes in remote sensing images plays a crucial role in monitoring urban development and promoting sustainable urbanization. Mainstream change detection methods have demonstrated promising performance in identifying building changes. However, buildings have large intra-class variance and high similarity with other objects, [...] Read more.
Observing building changes in remote sensing images plays a crucial role in monitoring urban development and promoting sustainable urbanization. Mainstream change detection methods have demonstrated promising performance in identifying building changes. However, buildings have large intra-class variance and high similarity with other objects, limiting the generalization ability of models in diverse scenarios. Moreover, most existing methods only detect whether changes have occurred but ignore change types, such as new construction and demolition. To address these issues, we present a building change-type detection network (BCTDNet) based on the Segment Anything Model (SAM) to identify newly constructed and demolished buildings. We first construct a dual-feature interaction encoder that employs SAM to extract image features, which are then refined through trainable multi-scale adapters for learning architectural structures and semantic patterns. Moreover, an interactive attention module bridges SAM with a Convolutional Neural Network, enabling seamless interaction between fine-grained structural information and deep semantic features. Furthermore, we develop a change-aware attribute decoder that integrates building semantics into the change detection process via an extraction decoding network. Subsequently, an attribute-aware strategy is adopted to explicitly generate distinct maps for newly constructed and demolished buildings, thereby establishing clear temporal relationships among different change types. To evaluate BCTDNet’s performance, we construct the JINAN-MCD dataset, which covers Jinan’s urban core area over a six-year period, capturing diverse change scenarios. Moreover, we adapt the WHU-CD dataset into WHU-MCD to include multiple types of changing. Experimental results on both datasets demonstrate the superiority of BCTDNet. On JINAN-MCD, BCTDNet achieves improvements of 12.64% in IoU and 11.95% in F1 compared to suboptimal methods. Similarly, on WHU-MCD, it outperforms second-best approaches by 2.71% in IoU and 1.62% in F1. BCTDNet’s effectiveness and robustness in complex urban scenarios highlight its potential for applications in land-use analysis and urban planning. Full article
17 pages, 1786 KiB  
Article
Simulation and Control of Water Pollution Load in the Xiaoxingkai Lake Basin Based on a System Dynamics Model
by Yaping Wu, Dan Chen, Fujia Li, Mingming Feng, Ping Wang, Lingang Hao and Chunnuan Deng
Sustainability 2025, 17(15), 7167; https://doi.org/10.3390/su17157167 (registering DOI) - 7 Aug 2025
Abstract
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment [...] Read more.
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment model based on the system dynamics methodology, incorporating subsystems for population, agriculture, and water pollution. The model focuses on four key indicators of pollution severity, namely, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and ammonia nitrogen (NH3-N), and simulates the changes in pollutant loads entering the river under five different scenarios from 2020 to 2030. The results show that agricultural non-point sources are the primary contributors to TN (79.5%) and TP (73.7%), while COD primarily originates from domestic sources (64.2%). NH3-N is mainly influenced by urban domestic activities (44.7%) and agricultural cultivation (41.2%). Under the status quo development scenario, pollutant loads continue to rise, with more pronounced increases under the economic development scenario, thus posing significant sustainability risks. The pollution control enhancement scenario is most effective in controlling pollutants, but it does not promote socio-economic development and has high implementation costs, failing to achieve coordinated socio-economic and environmental development in the region. The dual-reinforcement scenario and moderate-reinforcement scenario achieve a balance between pollution control and economic development, with the moderate-reinforcement scenario being more suitable for long-term regional development. The findings can provide a scientific basis for water resource management and planning in the Xiaoxingkai Lake basin. Full article
23 pages, 7494 KiB  
Article
Temporal and Spatial Evolution of Grey Water Footprint in the Huai River Basin and Its Influencing Factors
by Xi Wang, Yushuo Zhang, Qi Wang, Jing Xu, Fuju Xie and Weiying Xu
Sustainability 2025, 17(15), 7157; https://doi.org/10.3390/su17157157 (registering DOI) - 7 Aug 2025
Abstract
To evaluate water pollution status and sustainable development potential in the Huai River Basin, this study focused on the spatiotemporal evolution and influencing factors of the grey water footprint (GWF) across 35 cities in the basin from 2005 to 2020. This study quantifies [...] Read more.
To evaluate water pollution status and sustainable development potential in the Huai River Basin, this study focused on the spatiotemporal evolution and influencing factors of the grey water footprint (GWF) across 35 cities in the basin from 2005 to 2020. This study quantifies the GWF from agricultural, industrial, and domestic perspectives and analyzes its spatial disparities by incorporating spatial autocorrelation analysis. The Tapio decoupling model was applied to explore the relationship between pollution and economic growth, and geographic detectors along with the STIRPAT model were utilized to identify driving factors. The results revealed no significant global spatial clustering of GWF in the basin, but a pattern of “high in the east and west, low in the north and south” emerged, with high-value areas concentrated in southern Henan and northern Jiangsu. By 2020, 85.7% of cities achieved strong decoupling, indicating improved coordination between the environment and economy. Key driving factors included primary industry output, crop sown area, and grey water footprint intensity, with a notable interaction between agricultural output and grey water footprint intensity. The quantitative analysis based on the STIRPAT model demonstrated that seven factors, including grey water footprint intensity and total crop sown area, exhibited significant contributions to influencing variations. Ranked by importance, these factors were grey water footprint intensity > total crop sown area > urbanization rate > population size > secondary industry output > primary industry output > industrial wastewater discharge, collectively explaining 90.2% of the variability in GWF. The study provides a robust scientific basis for water pollution control and differentiated management in the river basin and holds significant importance for promoting sustainable development of the basin. Full article
Show Figures

Figure 1

18 pages, 4029 KiB  
Article
Characterizing CO2 Emission from Various PHEVs Under Charge-Depleting Conditions
by Nan Yang, Xuetong Lian, Zhenxiao Bai, Liangwu Rao, Junxin Jiang, Jiaqiang Li, Jiguang Wang and Xin Wang
Atmosphere 2025, 16(8), 946; https://doi.org/10.3390/atmos16080946 - 7 Aug 2025
Abstract
With the significant growth in the number of PHEVs, conducting in-depth research on their CO2 emission characteristics is essential. This study used the Horiba OBS-ONE Portable Emission Measurement System (PEMS) to measure the CO2 emissions of three Plug-in Hybrid Electric Vehicle [...] Read more.
With the significant growth in the number of PHEVs, conducting in-depth research on their CO2 emission characteristics is essential. This study used the Horiba OBS-ONE Portable Emission Measurement System (PEMS) to measure the CO2 emissions of three Plug-in Hybrid Electric Vehicle (PHEV) types: one Series Hybrid Electric Vehicle (S-HEV), one Parallel Hybrid Electric Vehicle (P-HEV), and one Series-Parallel Hybrid Electric Vehicle (SP-HEV), during real driving conditions. The findings show a correlation between acceleration and increased CO2 emissions for P-HEV, while acceleration has a relatively minor impact on S-HEV and SP-HEV emissions. Under urban driving conditions, the SP-HEV displays the lowest average CO2 emission rate. However, under suburban and highway conditions, the average CO2 emission rates follow the order S-HEV > SP-HEV > P-HEV. An analysis of CO2 emission factors across different road types and vehicle-specific power (VSP) ranges indicates that within low VSP intervals (VSP ≤ 0 for urban, VSP ≤ 5 for suburban, and VSP ≤ 15 for highway roads), the P-HEV exhibits the best CO2 emission control. As VSP increases, the P-HEV’s emission factors rise under all three road conditions, with its emission control capability weakening when VSP exceeds 5 in urban, 15 in suburban, and 20 on highway roads. For the SP-HEV, CO2 emission factors increase with VSP in urban and suburban areas but remain stable on highways. The S-HEV shows minimal changes in emission factors with varying VSP. This research provides valuable insights into the CO2 emission patterns of PHEVs, aiding vehicle optimization and policy development. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
Show Figures

Figure 1

13 pages, 2843 KiB  
Article
Evaluating the Climate Resilience of Agricultural Livelihoods Through the Impact of Climate Change on Sediment Loss and Retention—A Step Towards Ecosystem-Based Adaptation in Savannakhet Province, Lao People’s Democratic Republic
by Indrajit Pal, Sreejita Banerjee, Oulavanh Sinsamphanh, Jeeten Kumar and Puvadol Doydee
Sustainability 2025, 17(15), 7162; https://doi.org/10.3390/su17157162 - 7 Aug 2025
Abstract
This study assesses the projected impacts of climate change on sediment retention and soil loss in Savannakhet Province, Lao PDR, through the application of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Sediment Delivery Ratio (SDR) model. Using climate projections under SSP2-4.5 [...] Read more.
This study assesses the projected impacts of climate change on sediment retention and soil loss in Savannakhet Province, Lao PDR, through the application of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Sediment Delivery Ratio (SDR) model. Using climate projections under SSP2-4.5 and SSP5-8.5 scenarios for the mid- and late-21st century (2050 and 2080), compared against a 2015 baseline, the analysis quantifies changes in sediment dynamics and ecosystem service provision. Results reveal a substantial increase in sediment retention, particularly in forested and flooded vegetation areas, under moderate and high-emission pathways. However, an overall rise in soil loss is observed across croplands and urbanized zones, driven by intensified high-risk areas, which requires conservative management. This study advocates for ecosystem-based adaptation (EbA) strategies—including afforestation, intercropping, and riparian restoration—to enhance watershed resilience. These nature-based solutions align with national adaptation goals and offer co-benefits for biodiversity, climate regulation, and rural livelihoods. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

20 pages, 15138 KiB  
Article
Optimizing Pedestrian-Friendly Spaces in Xi’an’s Residential Streets: Accounting for PM2.5 Exposure
by Xina Ma, Handi Xie and Jingwen Wang
Atmosphere 2025, 16(8), 947; https://doi.org/10.3390/atmos16080947 - 7 Aug 2025
Abstract
Urban street canyons in high-density areas exacerbate PM2.5 accumulation, posing significant public health risks. Through integrated empirical and computational methods—including empirical PM2.5 and microclimate measurements, multivariate regression analysis, and high-resolution ENVI-met5.1 simulations—this study quantifies the threshold effects of pedestrian-oriented morphological indicators [...] Read more.
Urban street canyons in high-density areas exacerbate PM2.5 accumulation, posing significant public health risks. Through integrated empirical and computational methods—including empirical PM2.5 and microclimate measurements, multivariate regression analysis, and high-resolution ENVI-met5.1 simulations—this study quantifies the threshold effects of pedestrian-oriented morphological indicators on PM2.5 exposure in east–west-oriented residential streets. Key findings include the following: (1) the height-to-width ratio (H/W) negatively correlates with exposure, where H/W = 2.0 reduces the peak concentrations by 37–41% relative to H/W = 0.5 through enhanced vertical advection; (2) the Build-To-Line ratio (BTR) exhibits a positive correlation with exposure, with BTR = 63.2% mitigating exposure by 12–15% compared to BTR = 76.8% by reducing aerodynamic stagnation; (3) pollution exposure can be mitigated by enhancing airflow ventilation within street canyons through architectural facade design. These evidence-based morphological thresholds (H/W ≥ 1.5, BTR ≤ 70%) provide actionable strategies for reducing health risks in polluted urban corridors, supporting China to meet its national air quality improvement targets. Full article
(This article belongs to the Special Issue Characteristics and Control of Particulate Matter)
Show Figures

Figure 1

16 pages, 7600 KiB  
Article
Passive Long-Term Acoustic Sampling Reveals Multiscale Temporal Ecological Pattern and Anthropogenic Disturbance of Campus Forests in a High Density City
by Xiaoqing Xu, Xueyao Sun and Hanbin Xie
Forests 2025, 16(8), 1289; https://doi.org/10.3390/f16081289 - 7 Aug 2025
Abstract
Biodiversity conservation and sustainable development in high-density forest urban areas have attracted growing attention and are increasingly recognized as critical for achieving the Sustainable Development Goals (SDGs). University campus forests, functioning as ecological islands, possess unique acoustic characteristics and play a vital role [...] Read more.
Biodiversity conservation and sustainable development in high-density forest urban areas have attracted growing attention and are increasingly recognized as critical for achieving the Sustainable Development Goals (SDGs). University campus forests, functioning as ecological islands, possess unique acoustic characteristics and play a vital role in supporting urban biodiversity. In this case study, acoustic monitoring was conducted over the course of a full year to objectively reveal the ecological patterns across temporal scales of the campus sound environment, by combining acoustic indices’ visualization combined with statistical analysis. The findings indicate (1) the existence of ecological sound patterns across different temporal scales, closely associated with phenological cycles; (2) the identification of the specific timing affected by the different species‘ activities, such as the breeding season of birds, the chirping time of cicadas and other insects, as well as the fluctuations in the intensity of human activities, and (3) the development of a methodological framework integrating a visualization technique with statistical analysis to enhance the understanding of long-term ecological dynamics. The results offer a foundation for promoting the sustainable conservation of campus biodiversity in high-density urban settings. Full article
(This article belongs to the Special Issue Soundscape in Urban Forests—2nd Edition)
Show Figures

Figure 1

23 pages, 3193 KiB  
Perspective
The First Thirty Years of Green Stormwater Infrastructure in Portland, Oregon
by Michaela Koucka, Cara Poor, Jordyn Wolfand, Heejun Chang, Vivek Shandas, Adrienne Aiona, Henry Stevens, Tim Kurtz, Svetlana Hedin, Steve Fancher, Joshua Lighthipe and Adam Zucker
Sustainability 2025, 17(15), 7159; https://doi.org/10.3390/su17157159 - 7 Aug 2025
Abstract
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s [...] Read more.
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s two major rivers, the Columbia and the Willamette. Heavy rainfall often led to combined sewer overflows, significantly polluting these waterways. A partial solution was the construction of “The Big Pipe” project, a large-scale stormwater containment system designed to filter and regulate overflow. However, Portland has taken a more comprehensive and long-term approach by integrating sustainable stormwater management into urban planning. Over the past three decades, the city has successfully implemented GSI to mitigate these challenges. Low-impact development strategies, such as bioswales, green streets, and permeable surfaces, have been widely adopted in streetscapes, pathways, and parking areas, enhancing both environmental resilience and urban livability. This perspective highlights the history of the implementation of Portland’s GSI programs, current design and performance standards, and challenges and lessons learned throughout Portland’s recent history. Innovative approaches to managing runoff have not only improved stormwater control but also enhanced green spaces and contributed to the city’s overall climate resilience while addressing economic well-being and social equity. Portland’s success is a result of strong policy support, effective integration of green and gray infrastructure, and active community involvement. As climate change intensifies, cities need holistic, adaptive, and community-centered approaches to urban stormwater management. Portland’s experience offers valuable insights for cities seeking to expand their GSI amid growing concerns about climate resilience, equity, and aging infrastructure. Full article
Show Figures

Figure 1

30 pages, 3534 KiB  
Article
I-YOLOv11n: A Lightweight and Efficient Small Target Detection Framework for UAV Aerial Images
by Yukai Ma, Caiping Xi, Ting Ma, Han Sun, Huiyang Lu, Xiang Xu and Chen Xu
Sensors 2025, 25(15), 4857; https://doi.org/10.3390/s25154857 - 7 Aug 2025
Abstract
UAV small target detection in urban security, disaster monitoring, agricultural inspection, and other fields faces the challenge of increasing accuracy and real-time requirements. However, existing detection algorithms still have weak small target representation ability, extensive computational resource overhead, and poor deployment adaptability. Therefore, [...] Read more.
UAV small target detection in urban security, disaster monitoring, agricultural inspection, and other fields faces the challenge of increasing accuracy and real-time requirements. However, existing detection algorithms still have weak small target representation ability, extensive computational resource overhead, and poor deployment adaptability. Therefore, this paper proposes a lightweight algorithm, I-YOLOv11n, based on YOLOv11n, which is systematically improved in terms of both feature enhancement and structure compression. The RFCBAMConv module that combines deformable convolution and channel–spatial attention is designed to adjust the receptive field and strengthen the edge features dynamically. The multiscale pyramid of STCMSP context and the lightweight Transformer–DyHead hybrid detection head are designed by combining the multiscale hole feature pyramid (DFPC), which realizes the cross-scale semantic modeling and adaptive focusing of the target area. A collaborative lightweight strategy is proposed. Firstly, the semantic discrimination ability of the teacher model for small targets is transferred to guide and protect the subsequent compression process by integrating the mixed knowledge distillation of response alignment, feature imitation, and structure maintenance. Secondly, the LAMP–Taylor channel pruning mechanism is used to compress the model redundancy, mainly to protect the key channels sensitive to shallow small targets. Finally, K-means++ anchor frame optimization based on IoU distance is implemented to adapt the feature structure retained after pruning and the scale distribution of small targets of UAV. While significantly reducing the model size (parameter 3.87 M, calculation 14.7 GFLOPs), the detection accuracy of small targets is effectively maintained and improved. Experiments on VisDrone, AI-TOD, and SODA-A datasets show that the mAP@0.5 and mAP@0.5:0.95 of I-YOLOv11n are 7.1% and 4.9% higher than the benchmark model YOLOv11 n, respectively, while maintaining real-time processing capabilities, verifying its comprehensive advantages in accuracy, light weight, and deployment. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

17 pages, 6476 KiB  
Article
Spatiotemporal Exposure to Heavy-Day Rainfall in the Western Himalaya Mapped with Remote Sensing, GIS, and Deep Learning
by Zahid Ahmad Dar, Saurabh Kumar Gupta, Shruti Kanga, Suraj Kumar Singh, Gowhar Meraj, Pankaj Kumar, Bhartendu Sajan, Bojan Đurin, Nikola Kranjčić and Dragana Dogančić
Geomatics 2025, 5(3), 37; https://doi.org/10.3390/geomatics5030037 - 7 Aug 2025
Abstract
Heavy rainfall events, characterized by extreme downpours that exceed 100 mm per day, pose an intensifying hazard to the densely settled valleys of the western Himalaya; however, their coupling with expanding urban land cover remains under-quantified. This study mapped the spatiotemporal exposure of [...] Read more.
Heavy rainfall events, characterized by extreme downpours that exceed 100 mm per day, pose an intensifying hazard to the densely settled valleys of the western Himalaya; however, their coupling with expanding urban land cover remains under-quantified. This study mapped the spatiotemporal exposure of built-up areas to heavy-day rainfall (HDR) across Jammu, Kashmir, and Ladakh and the adjoining areas by integrating daily Climate Hazards Group InfraRed Precipitation with Stations product (CHIRPS) precipitation (0.05°) with Global Human Settlement Layer (GHSL) built-up fractions within the Google Earth Engine (GEE). Given the limited sub-hourly observations, a daily threshold of ≥100 mm was adopted as a proxy for HDR, with sensitivity evaluated at alternative thresholds. The results showed that HDR is strongly clustered along the Kashmir Valley and the Pir Panjal flank, as demonstrated by the mean annual count of threshold-exceeding pixels increasing from 12 yr−1 (2000–2010) to 18 yr−1 (2011–2020), with two pixel-scale hotspots recurring southwest of Srinagar and near Baramulla regions. The cumulative high-intensity areas covered 31,555.26 km2, whereas 37,897.04 km2 of adjacent terrain registered no HDR events. Within this hazard belt, the exposed built-up area increased from 45 km2 in 2000 to 72 km2 in 2020, totaling 828 km2. The years with the most expansive rainfall footprints, 344 km2 (2010), 520 km2 (2012), and 650 km2 (2014), coincided with heavy Western Disturbances (WDs) and locally vigorous convection, producing the largest exposure increments. We also performed a forecast using a univariate long short-term memory (LSTM), outperforming Autoregressive Integrated Moving Average (ARIMA) and linear baselines on a 2017–2020 holdout (Root Mean Square Error, RMSE 0.82 km2; measure of errors, MAE 0.65 km2; R2 0.89), projecting the annual built-up area intersecting HDR to increase from ~320 km2 (2021) to ~420 km2 (2030); 95% prediction intervals widened from ±6 to ±11 km2 and remained above the historical median (~70 km2). In the absence of a long-term increase in total annual precipitation, the projected rise most likely reflects continued urban encroachment into recurrent high-intensity zones. The resulting spatial masks and exposure trajectories provide operational evidence to guide zoning, drainage design, and early warning protocols in the region. Full article
Show Figures

Figure 1

20 pages, 6835 KiB  
Article
Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing
by Chujing Wang, Yuefeng Wang, Chaogui Lei, Sitong Wei, Xingying Huang, Zhenghui Zhu and Shuqiong Zhou
Hydrology 2025, 12(8), 208; https://doi.org/10.3390/hydrology12080208 - 7 Aug 2025
Abstract
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent [...] Read more.
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent circulation patterns remain poorly understood. Using daily temperature data from 29 meteorological stations in Chongqing (1960–2019), this study employs linear trend analysis, correlation analysis, and random forest (RF) models to analyze spatiotemporal variations in the intensity and frequency of extreme temperature. We selected 21 climate indicators from three categories—atmospheric circulation, sea surface temperature (SST), and sea-level pressure (SLP)—to identify the primary drivers of extreme temperatures and quantify their respective contributions. The key findings are as follows: (1) All extreme intensity indices exhibited an increasing trend, with the TXx (annual maximum daily maximum temperature) showing the higher trend (0.03 °C/year). The northeastern region experienced the most pronounced increases. (2) Frequency indices also displayed an upward trend. This was particularly evident for the TD35 (number of days with maximum temperature ≥35 °C), which increased at an average rate of 0.16 days/year, most notably in the northeast. (3) The Western Pacific Subtropical High Ridge Position Index (GX) and Asia Polar Vortex Area Index (APV) were the dominant climate factors driving intensity indices, with cumulative contributions of 26.0% to 33.4%, while the Western Pacific Warm Pool Strength Index (WPWPS), Asia Polar Vortex Area Index (APV), North Atlantic Subtropical High Intensity Index (NASH), and Indian Ocean Warm Pool Strength Index (IOWP) were the dominant climate factors influencing frequency indices, with cumulative contributions of 46.4 to 49.5%. The explanatory power of these indices varies spatially across stations, and the RF model effectively identifies key circulation factors at each station. In the future, more attention should be paid to urban planning adaptations, particularly green infrastructure and land use optimization, along with targeted heat mitigation strategies, such as early warning systems and public health interventions, to strengthen urban resilience against escalating extreme temperatures. Full article
Show Figures

Figure 1

20 pages, 12866 KiB  
Article
Integrating Spatial Autocorrelation and Greenest Images for Dynamic Analysis Urban Heat Islands Based on Google Earth Engine
by Dandan Yan, Yuqing Zhang, Peng Song, Xiaofang Zhang, Yu Wang, Wenyan Zhu and Qinghui Du
Sustainability 2025, 17(15), 7155; https://doi.org/10.3390/su17157155 - 7 Aug 2025
Abstract
With rapid global urbanization development, impermeable surface increase, urban population growth, building area expansion, and rising energy consumption, the urban heat island (UHI) effect is becoming increasingly serious. However, the spatial distribution of the UHI cannot be accurately extracted. Therefore, we focused on [...] Read more.
With rapid global urbanization development, impermeable surface increase, urban population growth, building area expansion, and rising energy consumption, the urban heat island (UHI) effect is becoming increasingly serious. However, the spatial distribution of the UHI cannot be accurately extracted. Therefore, we focused on Luoyang City as the research area and combined the Getis-Ord-Gi* statistic and the greenest image to extract the UHI based on the Google Earth Engine using land surface temperature–spatial autocorrelation characteristics and seasonal changes in vegetation. As bare land considerably influenced the UHI extraction results, we combined the greenest image with the initial extraction results and applied the maximum normalized difference vegetation index threshold method to remove this effect on UHI distribution extraction, thereby achieving improved UHI extraction accuracy. Our results showed that the UHI of Luoyang continuously expanded outward, increasing from 361.69 km2 in 2000 to 912.58 km2 in 2023, with a continuous expansion rate of 22.95 km2/year. Furthermore, the urban area had a higher UHI area growth rate than the county area. Analysis indicates that the UHI effect in Luoyang has increased in parallel with the expansion of the building area. Intensive urban construction is a primary driver of this growth, directly exacerbating the UHI effect. Additionally, rising temperatures, population growth, and gross domestic product accumulation have collectively contributed to the ongoing expansion of this phenomenon. This study provides scientific guidance for future urban planning through the accurate extraction of the UHI effect, which promotes the development of sustainable human settlements. Full article
(This article belongs to the Special Issue Sustainable Future of Ecohydrology: Climate Change and Land Use)
Show Figures

Figure 1

19 pages, 1684 KiB  
Article
Effectiveness of Implementing Hospital Wastewater Treatment Systems as a Measure to Mitigate the Microbial and Antimicrobial Burden on the Environment
by Takashi Azuma, Miwa Katagiri, Takatoshi Yamamoto, Makoto Kuroda and Manabu Watanabe
Antibiotics 2025, 14(8), 807; https://doi.org/10.3390/antibiotics14080807 - 7 Aug 2025
Abstract
Background: The emergence and spread of antimicrobial-resistant bacteria (ARB) has become an urgent global concern as a silent pandemic. When taking measures to reduce the impact of antimicrobial resistance (AMR) on the environment, it is important to consider appropriate treatment of wastewater from [...] Read more.
Background: The emergence and spread of antimicrobial-resistant bacteria (ARB) has become an urgent global concern as a silent pandemic. When taking measures to reduce the impact of antimicrobial resistance (AMR) on the environment, it is important to consider appropriate treatment of wastewater from medical facilities. Methods: In this study, a continuous-flow wastewater treatment system using ozone and ultraviolet light, which has excellent inactivation effects, was implemented in a hospital in an urban area of Japan. Results: The results showed that 99% (2 log10) of Gram-negative rods and more than 99.99% (>99.99%) of ARB comprising ESBL-producing Enterobacterales were reduced by ozone treatment from the first day after treatment, and ultraviolet light-emitting diode (UV-LED) irradiation after ozone treatment; UV-LED irradiation after ozonation further inactivated the bacteria to below the detection limit. Inactivation effects were maintained throughout the treatment period in this study. Metagenomic analysis showed that the removal of these microorganisms at the DNA level tended to be gradual in ozone treatment; however, the treated water after ozone/UV-LED treatment showed a 2 log10 (>99%) removal rate at the end of the treatment. The residual antimicrobials in the effluent were benzylpenicillin, cefpodoxime, ciprofloxacin, levofloxacin, azithromycin, clarithromycin, doxycycline, minocycline, and vancomycin, which were removed by ozone treatment on day 1. In contrast, the removal of ampicillin and cefdinir ranged from 19% to 64% even when combined with UV-LED treatment. Conclusions: Our findings will help to reduce the discharge of ARB and antimicrobials into rivers and maintain the safety of aquatic environments. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Wastewater Treatment Plants)
Show Figures

Figure 1

11 pages, 483 KiB  
Article
Consequences of Untreated Dental Caries on Schoolchildren in Mexico State’s Rural and Urban Areas
by José Cuauhtémoc Jiménez-Núñez, Álvaro Edgar González-Aragón Pineda, María Fernanda Vázquez-Ortíz, Julio César Flores-Preciado, María Eugenia Jiménez-Corona and Socorro Aída Borges-Yáñez
Dent. J. 2025, 13(8), 359; https://doi.org/10.3390/dj13080359 - 7 Aug 2025
Abstract
Background/Objectives: Dental caries is the most prevalent oral condition worldwide. Consequences of untreated dental caries (CUDC) can range from pulp damage and soft tissue ulceration due to root debris to more severe issues, such as fistulas and abscesses. Rural communities might be [...] Read more.
Background/Objectives: Dental caries is the most prevalent oral condition worldwide. Consequences of untreated dental caries (CUDC) can range from pulp damage and soft tissue ulceration due to root debris to more severe issues, such as fistulas and abscesses. Rural communities might be more vulnerable to CUDC because of lower socioeconomic status, poorer access to healthcare, and lower education levels. The objective of this study was to evaluate and compare the prevalence of CUDC in rural and urban areas in schoolchildren aged 8 to 12 years in the State of Mexico. Methods: A cross-sectional study was conducted using the PUFA index, considering the presence of pulp involvement (P), soft tissue ulcerations due to root remnants (U), fistulas (F), and abscesses (A). The independent variable was the geographic area (rural or urban), and the covariates were nutritional status, hyposalivation, having one’s own toothbrush, and having received topical fluoride in the last year. Logistic regression models were fitted, calculating odds ratios (ORs) and 95% confidence intervals (CIs). Results: The prevalence of CUDC (PUFA > 0) was 42.9% in rural areas and 25.9% in urban areas. Residing in a rural area (OR: 2.15, 95% CI 1.38–3.34, p = 0.001), hyposalivation (OR: 1.93, 95% CI 1.11–3.37, p = 0.020), and professional fluoride application (OR: 0.15, 95% CI 0.07–0.32, p < 0.001) were associated with the prevalence of CUDC. Conclusions: To prevent caries and its clinical consequences due to the lack of treatment, it is important to promote timely care seeking and access to dental care services, considering the conditions of each geographic area. Full article
Show Figures

Figure 1

19 pages, 12670 KiB  
Article
Risk Assessment of Flood Disasters with Multi-Source Data and Its Spatial Differentiation Characteristics
by Wenxia Jing, Yinghua Song, Wei Lv and Junyi Yang
Sustainability 2025, 17(15), 7149; https://doi.org/10.3390/su17157149 - 7 Aug 2025
Abstract
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight [...] Read more.
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight calculation method of traditional risk assessment model is single and ignores the difference of multi-dimensional information space involved in risk analysis. This study constructs a flood risk assessment model by incorporating natural, social, and economic factors into an indicator system structured around four dimensions: hazard, exposure, vulnerability, and disaster prevention and mitigation capacity. A combination of the Analytic Hierarchy Process (AHP) and the entropy weight method is employed to optimize both subjective and objective weights. Taking the central urban area of Wuhan with a high flood risk as an example, based on the risk assessment values, spatial autocorrelation analysis, cluster analysis, outlier analysis, and hotspot analysis are applied to explore the spatial clustering characteristics of risks. The results show that the overall assessment level of flood hazard in central urban area of Wuhan is medium, the overall assessment level of exposure and vulnerability is low, and the overall disaster prevention and mitigation capability is medium. The overall flood risk levels in Wuchang and Jianghan are the highest, while some areas in Qingshan and Hanyang have the lowest levels. The spatial characteristics of each dimension evaluation index show obvious autocorrelation and spatial differentiation. These findings aim to provide valuable suggestions and references for reducing urban disaster risks and achieving sustainable urban development. Full article
(This article belongs to the Special Issue Sustainable Transport and Land Use for a Sustainable Future)
Show Figures

Figure 1

Back to TopTop