Evaluating the Climate Resilience of Agricultural Livelihoods Through the Impact of Climate Change on Sediment Loss and Retention—A Step Towards Ecosystem-Based Adaptation in Savannakhet Province, Lao People’s Democratic Republic
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Climate Data and Projections
2.2.2. Land Use
2.2.3. Quantifying Ecosystem Services—Sediment Export
3. Results
3.1. Climate Change Scenarios
3.2. Spatiotemporal Distribution and Change in Sediment Retention and Soil Loss Under Different Climate Scenarios
3.2.1. Sediment Retention
3.2.2. Change in Soil Loss
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- UNDP. M.D. of W.R. (DWR) Integrated Water Resource Management and Ecosys. Integrated Water Resource Management and Ecosystem-based Adaptation (EbA) in the Xe Bang Hieng River Basin and Luang Prabang City; UNDP: New York, NY, USA, 2020. [Google Scholar]
- Chen, C.-N.; Tfwala, S.S.; Tsai, C.-H. Climate Change Impacts on Soil Erosion and Sediment Yield in a Watershed. Water 2020, 12, 2247. [Google Scholar] [CrossRef]
- Shaw, M.R.; Pendleton, L.; Cameron, D.R.; Morris, B.; Bachelet, D.; Klausmeyer, K.; MacKenzie, J.; Conklin, D.R.; Bratman, G.N.; Lenihan, J.; et al. The impact of climate change on California’s ecosystem services. Clim. Change 2011, 109, 465–484. [Google Scholar] [CrossRef]
- Martinez-Harms, M.J.; Bryan, B.A.; Figueroa, E.; Pliscoff, P.; Runting, R.K.; Wilson, K.A. Scenarios for land use and ecosystem services under global change. Ecosyst. Serv. 2017, 25, 56–68. [Google Scholar] [CrossRef]
- Runting, R.K.; Bryan, B.A.; Dee, L.E.; Maseyk, F.J.F.; Mandle, L.; Hamel, P.; Wilson, K.A.; Yetka, K.; Possingham, H.P.; Rhodes, J.R. Incorporating climate change into ecosystem service assessments and decisions: A review. Glob. Change Biol. 2016, 23, 28–41. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Lucas, P.L.; Hilderink, H. Downscaling drivers of global environmental change: Enabling use of global SRES scenarios at the national and grid levels. Glob. Environ. Change 2007, 17, 114–130. [Google Scholar] [CrossRef]
- Gafforov, K.S.; Bao, A.; Rakhimov, S.; Liu, T.; Abdullaev, F.; Jiang, L.; Durdiev, K.; Duulatov, E.; Rakhimova, M.; Mukanov, Y. The Assessment of Climate Change on Rainfall-Runoff Erosivity in the Chirchik–Akhangaran Basin, Uzbekistan. Sustainability 2020, 12, 3369. [Google Scholar] [CrossRef]
- Ngoc, Q.T.K. Assessing the value of coral reefs in the face of climate change: The evidence from Nha Trang Bay, Vietnam. Ecosyst. Serv. 2019, 35, 99–108. [Google Scholar] [CrossRef]
- Oteros-Rozas, E.; Martín-López, B.; Daw, T.M.; Bohensky, E.L.; Butler, J.R.; Hill, R.; Martin-Ortega, J.; Quinlan, A.; Ravera, F.; Ruiz-Mallén, I.; et al. Participatory scenario planning in place-based social-ecological research: Insights and experiences from 23 case studies. Ecol. Soc. 2015, 20, 32. [Google Scholar] [CrossRef]
- Mooney, H.; Larigauderie, A.; Cesario, M.; Elmquist, T.; Hoegh-Guldberg, O.; Lavorel, S.; Mace, G.M.; Palmer, M.; Scholes, R.; Yahara, T. Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 2009, 1, 46–54. [Google Scholar] [CrossRef]
- Agol, D.; Reid, H.; Crick, F.; Wendo, H. Ecosystem-based adaptation in Lake Victoria Basin; synergies and trade-offs. R. Soc. Open Sci. 2021, 8, 201847. [Google Scholar] [CrossRef]
- Reid, H.; Bourne, A.; Muller, H.; Podvin, K.; Scorgie, S.; Orindi, V. A framework for assessing the effectiveness of ecosystem-based approaches to adaptation. In Resilience; Elsevier: Amsterdam, The Netherlands, 2018; pp. 207–216. [Google Scholar]
- International Union for Conservation of Nature. Ecosystem-Based Adaptation: Issues Brief; International Union for Conservation of Nature: Gland, Switzerland, 2017. [Google Scholar]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- SHAVER, G.R.; Canadell, J.; Chapin, F.S.; Gurevitch, J.; Harte, J.; Henry, G.; Ineson, P.; Jonasson, S.; Melillo, J.; Pitelka, L.; et al. Global Warming and Terrestrial Ecosystems: A Conceptual Framework for Analysis. Bioscience 2000, 50, 871. [Google Scholar] [CrossRef]
- Fischlin, A.; Midgley, G.F.; Hughs, L.; Price, J.; Leemans, R.; Gopal, B.; Turley, C.; Rounsevell, M.; Dube, P.; Tarazona, J.; et al. Ecosystems, their properties, goods and services. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Cambridge University Press (CUP): Cambridge, UK, 2007; pp. 211–272. [Google Scholar]
- Banerjee, S.; Pal, I.; Loc, H.H. Modeling the impacts of climate and land use changes on nutrient export using the INVEST model in Tra Vinh Province of the Vietnamese Mekong Delta. In The Mekong Delta Environmental Research Guidebook; Elsevier: Amsterdam, The Netherlands, 2025; pp. 349–363. [Google Scholar] [CrossRef]
- Park, S.; Chun, J.A.; Kim, D.; Sitthikone, M. Climate risk management for the rainfed rice yield in Lao PDR using APCC MME seasonal forecasts. Agric. Water Manag. 2022, 274, 107976. [Google Scholar] [CrossRef]
- Ikeura, H.; Phongchanmixay, S.; Chomxaythong, A.; Matsumoto, N.; Kawamura, K.; Homsengchanh, L.; Inkhamseng, S. Variation in lowland rice yield and its determinants in a rainfed area in Savannakhet Province, Laos. Paddy Water Environ. 2019, 17, 121–130. [Google Scholar] [CrossRef]
- Global Facility for Disaster Risk Reduction. Post Disaster Needs Assessment Floods Lao PDR; Global Facility for Disaster Risk Reduction: Washington, DC, USA, 2018. [Google Scholar]
- Maraun, D.; Widmann, M. Statistical Downscaling and Bias Correction For Climate Research. Available online: https://www.scribd.com/document/800673484/Statistical-Downscaling-and-Bias-Correction-for-Climate-Research-Douglas-Maraun-Martin-Widmann-Z-Library (accessed on 3 August 2025).
- Swart, N.C.; Cole, J.N.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S.; Wang, Z.; Ismail, T.B.; Dewan, A.; Asaduzzaman, M. Future Köppen-Geiger climate zones over Southeast Asia using CMIP6 multimodel ensemble. Atmos. Res. 2023, 283, 106560. [Google Scholar]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arneth, A.; Arsouze, T.; Bergmann, T.; Bernadello, R.; Bousetta, S.; Caron, L.P.; et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. Discuss. 2022, 15, 2973–3020. [Google Scholar] [CrossRef]
- Desmet, Q.; Duc, T. A novel method for ranking CMIP6 global climate models over the southeast Asian region. Int. J. Climatol. 2022, 42, 97–117. [Google Scholar]
- Dunne, J.P.; Horowitz, L.W.; Adcroft, A.J.; Ginoux, P.; Held, I.M.; John, J.G.; Krasting, J.P.; Malyshev, S.; Naik, V.; Paulot, F.; et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM4.1): Overall Coupled Model Description and Simulation Characteristics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002015. [Google Scholar] [CrossRef]
- Baghel, T.; babel, M.S.; Shrestha, S.; Salin, K.R.; Virdis, S.G.P.; Shinde, V.R. A generalized methodology for ranking climate models based on climate indices for sector-specific studies: An application to the Mekong sub-basin. Sci. Total Environ. 2022, 829, 154551. [Google Scholar]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component. J. Meteorol. Soc. Jpn. 2019, 97, 931–965. [Google Scholar] [CrossRef]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Ziarh, G.F.; Chung, E.; Wang, Z. Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmos. Res. 2021, 254, 105525. [Google Scholar]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 2015, 524–525, 166–177. [Google Scholar] [CrossRef]
- AHA Center. The AHA Center Flash Update, Lao PDR, Flooding in Savannakhet; AHA Center: Jakarta, Indonesia, 2023. [Google Scholar]
- Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Sharp, R.; Nelson, E. InVEST 2.2.2 User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2011. [Google Scholar]
- Xue, C.; Chen, X.; Xue, L.; Zhang, H.; Chen, J.; Li, D. Modeling the spatially heterogeneous relationships between tradeoffs and synergies among ecosystem services and potential drivers considering geographic scale in Bairin Left Banner, China. Sci. Total Environ. 2023, 855, 158834. [Google Scholar] [CrossRef]
- Yin, L.; Zheng, W.; Shi, H.; Ding, D. Ecosystem services assessment and sensitivity analysis based on ANN model and spatial data: A case study in Miaodao Archipelago. Ecol. Indic. 2022, 135, 108511. [Google Scholar] [CrossRef]
- da S, P.; Barbosa, M.A.G.A.; Mauad, F.F. Evaluation of InVEST’s Water Ecosystem Service Models in a Brazilian Subtropical Basin. Water 2022, 14, 1559. [Google Scholar] [CrossRef]
- Sahle, M.; Saito, O.; Fürst, C.; Yeshitela, K. Quantifying and mapping of water-related ecosystem services for enhancing the security of the food-water-energy nexus in tropical data–sparse catchment. Sci. Total Environ. 2019, 646, 573–586. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Warren, P.H.; Evans, K.L.; Hancock, S.; Harris, J.A. The impact of land use/land cover scale on modelling urban ecosystem services. Landsc. Ecol. 2016, 31, 1509–1522. [Google Scholar] [CrossRef]
- Aghsaei, H.; Dinan, N.M.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ. 2020, 712, 136449. [Google Scholar] [CrossRef]
- Panondi, W.; Izumi, N. Climate Change Impact on the Hydrologic Regimes and Sediment Yield of Pulangi River Basin (PRB) for Watershed Sustainability. Sustainability 2021, 13, 9041. [Google Scholar] [CrossRef]
- Kulsoontornrat, J.; Ongsomwang, S. Suitable Land-Use and Land-Cover Allocation Scenarios to Minimize Sediment and Nutrient Loads into Kwan Phayao, Upper Ing Watershed, Thailand. Appl. Sci. 2021, 11, 10430. [Google Scholar] [CrossRef]
- Bhattarai, R.; Dutta, D. Estimation of Soil Erosion and Sediment Yield Using GIS at Catchment Scale. Water Resour. Manag. 2006, 21, 1635–1647. [Google Scholar] [CrossRef]
- Vidarshana, W.D.M.; Illeperuma, I.; Udayakumara, E.P.N. Estimation of the sedimentation in kalu river basin within ratnapura district using invest sdr model. GARI Int. J. Multidiscip. Res. 2021, 7, 87–105. [Google Scholar]
- Aneseyee, A.B.; Elias, E.; Soromessa, T.; Feyisa, G.L. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Sci. Total Environ. 2020, 728, 138776. [Google Scholar] [CrossRef]
- Banerjee, S.; Loc, H.H.; Pal, I.; Mukhopadhyay, A.; Huynh, T.V.P.; Pham, D.T.; Thi, H.C.N. Assessing the sensitivity of physiographical parameters in modeling hydrological ecosystem services that support food security: The case of Vietnamese Mekong Delta. Model. Earth Syst. Environ. 2025, 11, 239. [Google Scholar] [CrossRef]
- Vigiak, O.; Borselli, L.; Newham, L.T.H.; McInnes, J.; Roberts, A.M. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 2012, 138, 74–88. [Google Scholar] [CrossRef]
- Nazaripouya, H.; Sepehri, M.; Atapourfard, A.; Ghermezcheshme, B.; Santos, C.A.G.; Khoshbakht, M.; Meshram, S.G.; Rana, V.K.; Linh, N.T.T.; Pham, Q.B.; et al. Evaluating Sediment Yield Response to Watershed Management Practices (WMP) by Employing the Concept of Sediment Connectivity. Sustainability 2023, 15, 2346. [Google Scholar] [CrossRef]
- López-Vicente, M.; Poesen, J.; Navas, A.; Gaspar, L. Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena 2013, 102, 62–73. [Google Scholar] [CrossRef]
- Chen, J.; Cui, T.; Wang, H.; Liu, G.; Gilfedder, M.; Bai, Y. Spatio-temporal evolution of water-related ecosystem services: Taihu Basin, China. PeerJ 2018, 6, e5041. [Google Scholar] [CrossRef]
- Bangash, R.F.; Passuello, A.; Sanchez-Canales, M.; Terrado, M.; López, A.; Elorza, F.J.; Ziv, G.; Acuña, V.; Schuhmacher, M. Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control. Sci. Total Environ. 2013, 458–460, 246–255. [Google Scholar] [CrossRef]
- Tran, T.; Phuong, T.T.B.; Duong, D.V.; Banerjee, S.; Ho, L.H. Linking Ecosystem Services through Nature-Based Solutions: A Case Study of Gia Dinh and Tao Dan Parks in Ho Chi Minh City, Vietnam. J. Urban Plan Dev. 2024, 150, 05024016. [Google Scholar] [CrossRef]
SN | GCM | Institute | Reference | Resolution | Evaluated by |
---|---|---|---|---|---|
1. | CanESM5 | Canadian Centre for Climate Modelling and Analysis, Victoria | Swart et al. (2019) [24] | 2.81 × 2.81 | Hamed et al. (2023) [25] |
2. | EC-Earth3 | EC-Earth-Consortium, Europe | Döscher et al. (2022) [26] | 0.70 × 0.70 | Desmet and Ngo-Duc (2022) [27] |
3. | GFDL-ESM4 | NOAA-Geophysical Fluid Dynamics Laboratory (GFDL), USA | Dunne et al. (2020) [28] | 1:25 × 1:00 | Baghel et al. (2022) [29] |
4. | MRI-ESM2-0 | Meteorological Research Institute (MRI), Japan. | Yukimoto et al. (2019) [30] | 1:13 × 1:12 | Iqbal et al. (2021) [31] |
5. | TaiESM1 | Research Center for Environmental |
Required Data | Data Type | Data Source |
---|---|---|
DEM | Raster | SRTM |
Study area mask | Vector polygon | Hydrosheds |
Land use/land cover | Vector polygon | ESRI |
Soil map | Vector polygon | FAO |
Precipitation | Tabulate | Aphrodite gridded dataset |
LULC Code | LULC Class | C Value | p Value |
---|---|---|---|
1 | Water | 0 | 0 |
2 | Forest | 0.001 | 1 |
3 | Flooded vegetation | 0.15 | 1 |
4 | Cropland | 0.1 | 1 |
5 | Built-up area | 0.2 | 1 |
6 | Bare ground | 0.1 | 1 |
7 | Grassland | 0.2 | 1 |
Parameters | Values |
---|---|
Threshold Flow Accumulation (TFA) | 1000 |
Kb | 2 |
IC0 | 0.5 |
SDRmax | 0.8 |
Land Use | Sediment Retention (ton/ha) | ||||
---|---|---|---|---|---|
Baseline (2015) | SSP 245 (2050) | SSP 245 (2080) | SSP 585 (2050) | SSP 585 (2080) | |
Water | 7,589,734 | 10,126,930 | 11,364,788 | 11,002,160 | 47,438,735 |
Forest | 2,370,819 | 2,877,757 | 3,253,437 | 3,105,434 | 101,739,123 |
Flooded vegetation | 2,640,483 | 3,700,221 | 4,147,069 | 4,061,451 | 14,429,936 |
Cropland | 3,224,597 | 4,462,266 | 5,018,137 | 4,868,720 | 29,417,001 |
Built-up area | 1,614,456 | 2,175,847 | 2,449,204 | 2,371,305 | 30,950,113 |
Bare ground | 2,207,204 | 3,029,586 | 3,403,027 | 3,314,369 | 35,711,514 |
Grassland | 3,491,761 | 4,609,493 | 5,186,858 | 4,992,868 | 31,929,142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pal, I.; Banerjee, S.; Sinsamphanh, O.; Kumar, J.; Doydee, P. Evaluating the Climate Resilience of Agricultural Livelihoods Through the Impact of Climate Change on Sediment Loss and Retention—A Step Towards Ecosystem-Based Adaptation in Savannakhet Province, Lao People’s Democratic Republic. Sustainability 2025, 17, 7162. https://doi.org/10.3390/su17157162
Pal I, Banerjee S, Sinsamphanh O, Kumar J, Doydee P. Evaluating the Climate Resilience of Agricultural Livelihoods Through the Impact of Climate Change on Sediment Loss and Retention—A Step Towards Ecosystem-Based Adaptation in Savannakhet Province, Lao People’s Democratic Republic. Sustainability. 2025; 17(15):7162. https://doi.org/10.3390/su17157162
Chicago/Turabian StylePal, Indrajit, Sreejita Banerjee, Oulavanh Sinsamphanh, Jeeten Kumar, and Puvadol Doydee. 2025. "Evaluating the Climate Resilience of Agricultural Livelihoods Through the Impact of Climate Change on Sediment Loss and Retention—A Step Towards Ecosystem-Based Adaptation in Savannakhet Province, Lao People’s Democratic Republic" Sustainability 17, no. 15: 7162. https://doi.org/10.3390/su17157162
APA StylePal, I., Banerjee, S., Sinsamphanh, O., Kumar, J., & Doydee, P. (2025). Evaluating the Climate Resilience of Agricultural Livelihoods Through the Impact of Climate Change on Sediment Loss and Retention—A Step Towards Ecosystem-Based Adaptation in Savannakhet Province, Lao People’s Democratic Republic. Sustainability, 17(15), 7162. https://doi.org/10.3390/su17157162