Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing
Abstract
1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Data Sources
3. Methodology
3.1. Extreme Temperature Indices
3.2. Mann–Kendall Test
3.3. Attribution Analysis of Extreme Temperature Changes
3.3.1. Selection of Climate Driving Factors
3.3.2. Random Forest
4. Results
4.1. Long-Term Changes in Selected Extreme Temperature Indices
4.2. Changes in Intensity of Extreme Temperature
4.3. Changes in Frequency of Extreme Temperatures
4.4. Attribution Analysis of CLIMATE Indices on Extreme Temperature
5. Discussion
5.1. Variation Characteristics of Extreme Temperatures
Regions | Period | TXx (°C/Decade) | TXn (°C/Decade) | TD35 (TD25) (Days/Decade) | TR20 (Nights/Decade) |
---|---|---|---|---|---|
Chongqing | 1960–2019 | 0.31 | 0.19 | 1.60 (TD35) | 1.30 |
The Loess Plateau [49] | 1960–2013 | 0.20 | 0.30 | 4.17 (TD25) | 1.40 |
The Yangtze River Basin [50] | 1962–2011 | 0.16 | 0.33 | 2.93 (TD25) | 1.80 |
China land [51] | 1960–2010 | 0.17 | 0.32 | 1.90 (TD25) | 1.20 |
Global land [43] | 1951–2015 | 0.11 | 0.28 | 0.47 (TD25) | 0.91 |
5.2. Climate Driving Factors of Extreme Temperatures
6. Conclusions
- (1)
- From the perspective of temporal changes, all extreme temperature indices exhibited obvious increasing trends, with TXx of 0.03 °C/year, TXn of 0.02 °C/year, TD35 of 0.16 days/year, and TR20 of 0.14 nights/year. Abrupt change points of all indices were identified at around 2000, except for TXn.
- (2)
- From the perspective of spatial changes, extreme temperature in most stations showed an increasing trend, with 58.6%, 55.2%, 31.0%, and 41.4% of stations beyond 0.05 significance level for TXx, TXn, TD35, and TR20, respectively.
- (3)
- RF models were established between extreme temperature indices and climate driving factors, with an R2 value for all stations more than 0.85. GX and APV were the dominant climate driving factors in TXx and TXn, with cumulative contributions of 26.0% to 33.4%, while WPWPS, APV, NASH, and IOWP were the main dominant climate driving factors in TD35 and TR20, with cumulative contributions of 46.4 to 49.5%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TXx | The highest temperature of each month from the daily maximum temperature data |
TXn | The lowest value of the highest temperature for each month from the daily maximum temperature data |
TD35 | The number of days with a maximum temperature above 35 °C in each month from the daily maximum temperature data |
TR20 | The number of days with a minimum temperature above 20 °C in each month from the daily minimum temperature data |
SST | Sea surface temperature |
SLP | Sea-level pressure |
ISA | Indian Subtropical High Area Index |
WPSHA | Western Pacific Subtropical High Area Index |
AHA | Atlantic Subtropical High Area Index |
NASH | North Atlantic Subtropical High Intensity Index |
AO | Arctic Oscillation |
ASRP | Atlantic Sub Tropical High Ridge Position Index |
GX | Western Pacific Subtropical High Ridge Position Index |
WPSH | Western Pacific Subtropical High Intensity Index |
WP | West Pacific Pattern |
APVA | Asia Polar Vortex Area Index |
APV | Asia Polar Vortex Intensity Index |
IRP | Indian Subtropical High Ridge Position Index |
ISHI | Indian Subtropical High Intensity Index |
Niño 4 | Niño 4 Index |
IOWPA | Indian Ocean Warm Pool Area Index |
WPWPA | Western Pacific Warm Pool Area Index |
AMO | Atlantic Multi-decadal Oscillation Index |
WPWPS | Western Pacific Warm Pool Strength index |
IOWP | Indian Ocean Warm Pool Strength Index |
SOI | Southern Oscillation Index |
MEI | Multiviarate ENSO Index |
RF | Random forest model |
RMSEs | Root mean square errors |
M-K | Mann–Kendall |
IMSE | Incremental mean squared error |
References
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; pp. 4–31. [Google Scholar]
- China Meteorological Administration. Release of China Climate Change Blue Book (2024). Energy. Conserv. Environ. Prot. 2024, 7, 1. [Google Scholar]
- Zhou, X.; Li, Y.; Xiao, C.; Chen, W.; Mei, M.; Wang, G. High-Impact Extreme Weather and Climate Events in China: Summer 2024 Overview. Adv. Atmos. Sci. 2025, 42, 1064–1076. [Google Scholar] [CrossRef]
- Pan-Mao, Z.; Bai-Quan, Z.; Yang, C.; Rong, Y. Several New Understandings in the Climate Change Science. Adv. Clim. Change Res. 2021, 17, 629. [Google Scholar]
- Zhang, Y.; Hao, Z.; Feng, S.; Zhang, X.; Hao, F. Changes and Driving Factors of Compound Agricultural Droughts and Hot Events in Eastern China. Agric. Manag. Water Qual. 2022, 263, 107485. [Google Scholar] [CrossRef]
- A Quick Look at the WMO Global Climate Status Report 2023. China Meteorological News, 26 March 2024; Special Report. p. 4.
- Jones, B.; O’Neill, B.C.; McDaniel, L.; McGinnis, S.; Mearns, L.O.; Tebaldi, C. Future Population Exposure to US Heat Extremes. Nat. Clim. Change 2015, 5, 652–655. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Trauernicht, C. Global Risk of Deadly Heat. Nat. Clim. Change 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, X.; Zhou, T.; Zhang, W.; Hu, S.; Clark, R. Understanding and Attribution of Extreme Heat and Drought Events in 2022: Current Situation and Future Challenges. Adv. Atmos. Sci. 2023, 40, 1941–1951. [Google Scholar] [CrossRef]
- Jones, B.; O’Neill, B.C.; McDaniel, L.; McGinnis, S.; Mearns, L.O.; Tebaldi, C. The 2021 Western North America Heat Wave Among the Most Extreme Events Ever Recorded Globally. Advance 2022, 8, 6860. [Google Scholar]
- Vautard, R.; Cattiaux, J.; Happé, T.; Singh, J.; Bonnet, R.; Cassou, C.; Yiou, P. Heat Extremes in Western Europe Increasing Faster Than Simulated Due to Atmospheric Circulation Trends. Nat. Commun. 2023, 14, 6803. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Shen, S.; Thomas, N.; Bosilovich, M.; Wei, J.; Iredell, L. Have Heat Waves Become More Intense and Frequent in North America in the Past 40 Years? In Proceedings of the 23rd Meeting of the American Geophysical Union (AGU), San Francisco, CA, USA, 11–15 December 2023. Abstract A21C-2260. [Google Scholar]
- Li, D.; Zhou, T.; Zou, L.; Zhang, W.; Zhang, L. Extreme High-Temperature Events over East Asia in 1.5 °C and 2 °C Warmer Futures: Analysis of NCAR CESM Low-Warming Experiments. Geophys. Res. Lett. 2018, 45, 1541–1550. [Google Scholar] [CrossRef]
- Dian-Xiu, Y.; Ji-Fu, Y.; Zheng-Hong, C.; You-Fei, Z.; Rong-Jun, W. Spatial and Temporal Variations of Heat Waves in China from 1961 to 2010. Adv. Clim. Change Res. 2014, 5, 66–73. [Google Scholar] [CrossRef]
- Zou, Y.; Song, X.; Ma, Z. Historical Evolution and Future Projection of Compound Drought-Heat Wave Events in the Yangtze River Basin. Prog. Geogr. 2024, 43, 2242–2257. [Google Scholar]
- Zhao, J.; Liu, X.; Shen, Z.; Wang, R.; Wang, M. Spatiotemporal Variation Characteristics of High-Temperature Days and Heat Waves on the Qinghai-Tibet Plateau from 1971 to 2020. Chin. J. Appl. Environ. Biol. 2024, 30, 1085–1092. [Google Scholar]
- Zhang, Q.; Huang, Y.; Hao, L.; Wang, R.; Wang, M. Spatiotemporal characteristics of high temperature and heat wave in Dongting Lake Basin based on percentile threshold method. J. Meteorol. Environ. 2025, 41, 66–73. [Google Scholar]
- Keellings, D.; Waylen, P. Investigating Teleconnection Drivers of Bivariate Heat Waves in Florida Using Extreme Value Analysis. Clim. Dyn. 2015, 44, 3383–3391. [Google Scholar] [CrossRef]
- Deng, K.; Yang, S.; Ting, M.; Zhao, P.; Wang, Z. Dominant Modes of China Summer Heat Waves Driven by Global Sea Surface Temperature and Atmospheric Internal Variability. J. Clim. 2019, 32, 3761–3775. [Google Scholar] [CrossRef]
- Tang, S.; Qiao, S.; Feng, T.; Wang, Y.; Yang, Y.; Zhang, Z.; Feng, G. Asymmetry of Probabilistic Prediction Skills of the Midsummer Surface Air Temperature over the Middle and Lower Reach of the Yangtze River Valley. Clim. Dyn. 2021, 57, 3285–3302. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, G.; Liu, X.; He, Y.; Shen, Q.; Chen, Q. Heatwave Magnitude Quantization and Impact Factors Analysis over the Tibetan Plateau. npj Clim. Atmos. Sci. 2025, 8, 2. [Google Scholar] [CrossRef]
- Martyn-Nemeth, P.; Hayman, L.L. Climate Change and Cardiovascular Health. J. Cardiovasc. Nurs. 2024, 39, 305–306. [Google Scholar] [CrossRef]
- Witze, A. Racism Is Magnifying the Deadly Impact of Rising City Heat. Nature 2021, 595, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Cheng, B.; Liu, X.; Xiang, B.; Wang, Y. Variability of Extreme High Temperature and Response to Regional Warming over Chongqing. Meteorology 2008, 69–76. [Google Scholar] [CrossRef]
- Cheng, B.; Sun, W.; Guo, Q. Analyses of Climatological Features of the Summer High Temperature and Circulation Situation in Chongqing. J. Southwest Univ. (Nat. Sci. Ed.) 2010, 32, 73–80. [Google Scholar]
- Zhang, Q.; Lu, Y.; Yan, T.; Xie, Q.; Zhao, C.; Hu, Y. Temporal and Spatial Evolution Characteristics and Influencing Factors of Mountain Torrents in Chongqing. J. Yangtze River Sci. Res. Inst. 2023, 40, 80–87+117. [Google Scholar]
- Liu, Y.; Zhou, T.; Yu, W. Analysis of Changes in Ecological Environment Quality and Influencing Factors in Chongqing Based on a Remote-Sensing Ecological Index Mode. Land 2024, 13, 227. [Google Scholar] [CrossRef]
- Chen, S.; Wei, X.; Cai, Y.; Li, H.; Li, L.; Pu, J. Spatiotemporal Evolution of Rocky Desertification and Soil Erosion in Karst Area of Chongqing and Its Driving Factors. CATENA 2024, 242, 108108. [Google Scholar] [CrossRef]
- Luo, J.; Deng, C.Z.; Zhu, Y.; Li, H.; Li, L.; Pu, J. Characteristics and Cause Comparison of High Temperature in Different Stages of Midsummer 2022 in Chongqing. Meteorology 2023, 49, 1108–1118. [Google Scholar]
- Zhou, F. Performance and recommendations of the rare high temperature and drought disaster in Chongqing City in 2022. China Flood Drought Manag. 2023, 33, 12–14. [Google Scholar]
- Kenyon, J.; Hegerl, G.C. Influence of Modes of Climate Variability on Global Temperature Extremes. J. Clim. 2008, 21, 3872–3889. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Peng, J.; Ji, L. Preliminary Study on the Effect of Intraseasonal Evolution of the Tropical Atlantic SST Anomalies on Summer Persistent Heatwave Events over the Area South of the Yangtze River. Chin. J. Atmos. Sci. 2021, 45, 300–314. [Google Scholar]
- Peng, J.; Sun, S.; Lin, D. The extreme Hot Event Along the Yangtze Basins in Auguse 2022. J. Appl. Meteorol. Sci. 2023, 34, 527–539. [Google Scholar]
- Gu, Z.; Li, Y.; Qin, M.; Ji, K.; Yi, Q.; Li, P.; Feng, D. Spatiotemporal Variation Characteristics of Extreme Precipitation in Henan Province Based on RClimDex Model. Atmosphere 2024, 15, 1399. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, J. The Association Between Consecutive Days’ Heat Wave and Cardiovascular Disease Mortality in Beijing, China. BMC Public Health 2017, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.; Kitching, S. Updated Analyses of Temperature and Precipitation Extreme Indices Since the Beginning of the Twentieth Century. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Qian, C.; Zhang, X.; Li, Z. Linear Trends in Temperature Extremes in China, with an Emphasis on Non-Gaussian and Serially Dependent Characteristics. Clim. Dyn. 2019, 53, 533–550. [Google Scholar] [CrossRef]
- Singh, S.; Mall, R.K.; Singh, N. Changing Spatio-Temporal Trends of Heat Wave and Severe Heat Wave Events over India: An Emerging Health Hazard. Int. J. Bioclimatol. Biometeorol. 2021, 41, E1831–E1845. [Google Scholar] [CrossRef]
- Yin, S.; Wang, Y.; Lei, C.; Zhang, J. Runoff responses to landscape pattern changes and their quantitative attributions across different time scales in ecologically fragile basins. CATENA 2025, 249, 108716. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. APL Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Boyko, N.; Omeliukh, R.; Duliaba, N. The Random Forest Algorithm as an Element of Statistical Learning for Disease Prediction. Interactions 2022, 4, 13. [Google Scholar]
- Zhang, P.; Ren, G.; Xu, Y.; Wang, X.; Qin, Y.; Sun, X.; Ren, Y. Observed changes in extreme temperature over the global land based on a newly developed station daily dataset. J. Clim. 2019, 32, 8489–8509. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, Q.; Zhang, J.; Huang, P. Trends in Extreme High Temperature at Different Altitudes of Southwest China During 1961–2014. Atmos. Ocean. Sci. Lett. 2020, 13, 417–425. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, C.; Ke, X.; Pang, Y. Characteristics of heatwave and heavy rainfall in Sichuan-Chongqing Region and corresponding adaptive strategy. Yangtze River 2024, 55, 146–154. [Google Scholar]
- Xu, L.; Zhang, T.; Wang, A.; Yu, W.; Yang, S. Variations of Summer Extreme and Total Precipitation over Southeast Asia and Associated Atmospheric and Oceanic Features. J. Clim. 2022, 35, 6395–6409. [Google Scholar] [CrossRef]
- Zhang, X.; Long, Q.; Kun, D.; Yang, D.; Lei, L. Comprehensive Risk Assessment of Typical High-Temperature Cities in Various Provinces in China. Int. J. Environ. Res. Public Health 2022, 19, 4292. [Google Scholar] [CrossRef]
- Gabric, A.J. The Climate Change Crisis: A Review of Its Causes and Possible Responses. Atmosphere 2023, 14, 1081. [Google Scholar] [CrossRef]
- Zhao, A.; Liu, X.; Zhu, X.; Pan, Y.; Zhao, Y.; Wang, D. Trends and spatial differences of extreme temperatures in the Loess Plateaur egion from 1965 to 2013. Geogr. Res. 2016, 35, 639–652. [Google Scholar]
- Wang, Q.; Zhang, M.; Wang, S.; Luo, S.; Wang, B. Analysis of extreme temperature events in the Yangtze River Basin from 1962 to 2011. Acta Geogr. Sin. 2013, 68, 611–625. [Google Scholar]
- Zhou, B.; Xu, Y.; Wu, J.; Dong, S.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Bioclimatol. Biometeorol. 2016, 36, 1051–1066. [Google Scholar] [CrossRef]
- An, R.; Li, J.; Feng, J. Modulation of the link between the Hadley circulation and the meridional structure of tropical SSTs by the Atlantic multidecadal oscillation. Atmos. Res. 2024, 299, 107201. [Google Scholar] [CrossRef]
- Suarez-Gutierrez, L.; Müller, W.A.; Li, C.; Marotzke, J. Dynamical and thermodynamical drivers of variability in European summer heat extremes. Clim. Dyn. 2020, 54, 4351–4366. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Wang, B.; Yang, X.; Liu, F. Prediction of extreme temperature events in the Yellow River Basin of China using the SMLR and RF methods. J. Nat. Disasters 2024, 33, 74–88. [Google Scholar]
- Guan, W.; Hu, H.; Ren, X.; Yang, X. Subseasonal zonal variability of the western Pacific subtropical high in summer: Climate impacts and underlying mechanisms. Clim. Dyn. 2019, 53, 3325–3344. [Google Scholar] [CrossRef]
- Yook, S.; Thompson, D.; Sun, L.; Patrizio, C. The simulated atmospheric response to western North Pacific sea surface temperature anomalies. J. Clim. 2022, 35, 3335–3352. [Google Scholar] [CrossRef]
- Wu, H.; Xu, X.; Wang, Y. Effects of Orography on the High—Temperature Event on 22 June 2023 in North China. Atmosphere 2024, 15, 324. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, Y.; Mao, J.; Wu, G. Extreme heatwave over Eastern China in summer 2022: The role of three oceans and local soil moisture feedback. Environ. Res. Lett. 2023, 18, 044025. [Google Scholar] [CrossRef]
- Qin, Y.; Qin, Y.; Shen, Y.; Li, Y.; Xiang, B. Numerical Study on the Effects of Intraseasonal Oscillations for a Persistent Drought and Hot Event in South China Summer 2022. Remote Sens. 2023, 15, 892. [Google Scholar] [CrossRef]
- Qian, Y.; Chakraborty, T.; Li, J.; Li, D.; He, C.; Sarangi, C.; Chen, F.; Yang, X.; Leung, L. Urbanization impact on regional climate and extreme weather: Current understanding, uncertainties, and future research directions. Adv. Atmos. Sci. 2022, 39, 819–860. [Google Scholar] [CrossRef]
- Jiang, X.; Luo, Y.; Zhang, D.; Wu, M. Urbanization Enhanced Summertime Extreme Hourly Precipitation over the Yangtze River Delta. J. Clim. 2020, 33, 5809–5826. [Google Scholar] [CrossRef]
- An, N.; Dou, J.; González-Cruz, J.; Bornstein, R.; Miao, S.; Li, L. An observational case study of synergies between an intense heat wave and the urban heat island in Beijing. J. Appl. Meteorol. Climatol. 2020, 59, 605–620. [Google Scholar] [CrossRef]
- Du, H.; Zhou, F.; Li, C.; Cai, W.; Jiang, H.; Cai, Y. Analysis of the Impact of Land Use on Spatiotemporal Patterns of Surface Urban Heat Island in Rapid Urbanization: A Case Study of Shanghai, China. Sustainability 2020, 12, 1171. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, L.; Lu, J. Temporal evolution of urban heat island and quantitative relationship with urbanization development in Chongqing, China. Atmosphere 2022, 13, 1594. [Google Scholar] [CrossRef]
- Leal Filho, W.; Echevarria Icaza, L.; Emanche, V.; Al-Amin, A. An evidence-based review of impacts, strategies and tools to mitigate urban heat islands. Int. J. Environ. Res. Public Health 2017, 14, 1600. [Google Scholar] [CrossRef] [PubMed]
- Massaro, E.; Schifanella, R.; Piccardo, M.; Caporaso, L.; Taubenböck, H.; Cescatti, A.; Duveiller, G. Spatially-optimized urban greening for reduction of population exposure to land surface temperature extremes. Nat. Commun. 2023, 14, 2903. [Google Scholar] [CrossRef]
Station No. | Station | Latitude/° | Longitude/° | Elevation/m | Distance to Sea/km |
---|---|---|---|---|---|
1 | Chengkou | 31.57 | 108.4 | 798.2 | 1029.3 |
2 | Yunyang | 30.57 | 108.41 | 297.2 | 1001.1 |
3 | Wuxi | 31.24 | 109.37 | 337.8 | 970.6 |
4 | Fengjie | 31.01 | 109.32 | 299.8 | 996.8 |
5 | Tongnan | 30.11 | 105.48 | 297.7 | 956.2 |
6 | Dianjiang | 30.2 | 107.2 | 433.8 | 940.5 |
7 | Liangping | 30.41 | 107.48 | 454.5 | 974.3 |
8 | Wanzhou | 30.46 | 108.24 | 186.7 | 980.8 |
9 | Zhongxian | 30.18 | 108.02 | 325.6 | 930.4 |
10 | Shizhu | 29.59 | 108.07 | 632.3 | 894.9 |
11 | Rongchang | 29.25 | 105.35 | 338 | 882.6 |
12 | Tongliang | 29.51 | 106.04 | 326.3 | 913.5 |
13 | Beibei | 29.51 | 106.27 | 240.8 | 903.8 |
14 | Hechuan | 29.58 | 106.16 | 364.5 | 920.7 |
15 | Yubei | 29.44 | 106.37 | 464.7 | 887.5 |
16 | Bishan | 29.35 | 106.13 | 331.5 | 881.1 |
17 | Shapingba | 29.35 | 106.28 | 259.1 | 874.7 |
18 | Jiangjin | 29.17 | 106.15 | 261.4 | 848.2 |
19 | Banan | 29.2 | 106.3 | 506.1 | 847.1 |
20 | Nanchuan | 29.1 | 107.07 | 698.8 | 816.1 |
21 | Changshou | 29.5 | 107.04 | 377.6 | 889.7 |
22 | Fuling | 29.44 | 107.16 | 372.8 | 875.6 |
23 | Fengdu | 29.51 | 107.44 | 290.5 | 882.8 |
24 | Wulong | 29.19 | 107.45 | 406.9 | 823.8 |
25 | Qianjiang | 29.31 | 108.46 | 786.9 | 842.3 |
26 | Pengshui | 29.18 | 108.1 | 322.2 | 818.9 |
27 | Qijiang | 29 | 106.39 | 474.7 | 807.7 |
28 | Youyang | 28.49 | 108.46 | 826.5 | 764.7 |
29 | Xiushan | 28.22 | 109.01 | 548.7 | 715.9 |
Type | Circulation Name | Abbreviation |
---|---|---|
Atmospheric circulation | Indian Subtropical High Area Index | ISA |
Western Pacific Subtropical High Area Index | WPSHA | |
Atlantic Subtropical High Area Index | AHA | |
North Atlantic Subtropical High Intensity Index | NASH | |
Arctic Oscillation | AO | |
Atlantic Sub Tropical High Ridge Position Index | ASRP | |
Western Pacific Subtropical High Ridge Position Index | GX | |
Western Pacific Subtropical High Intensity Index | WPSH | |
West Pacific Pattern | WP | |
Asia Polar Vortex Area Index | APVA | |
Asia Polar Vortex Intensity Index | APV | |
Indian Subtropical High Ridge Position Index | IRP | |
Indian Subtropical High Intensity Index | ISHI | |
SST | Niño 4 Index | Niño 4 |
Indian Ocean Warm Pool Area Index | IOWPA | |
Western Pacific Warm Pool Area Index | WPWPA | |
Atlantic Multi-decadal Oscillation Index | AMO | |
Western Pacific Warm Pool Strength index | WPWPS | |
Indian Ocean Warm Pool Strength Index | IOWP | |
SLP | Southern Oscillation Index | SOI |
Multivariate ENSO Index | MEI |
Sector Index | Index | Definitions | Units |
---|---|---|---|
Intensity Index | TXx | The highest value of the highest temperature for each month from the daily maximum temperature data. | °C |
TXn | The lowest value of the highest temperature for each month from the daily maximum temperature data. | °C | |
Frequency Index | TD35 | The number of days with a maximum temperature above 35 °C in each month from the daily maximum temperature data. | days |
TR20 | The number of days with a minimum temperature above 20 °C in each month from the daily minimum temperature data. | nights |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, Y.; Lei, C.; Wei, S.; Huang, X.; Zhu, Z.; Zhou, S. Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing. Hydrology 2025, 12, 208. https://doi.org/10.3390/hydrology12080208
Wang C, Wang Y, Lei C, Wei S, Huang X, Zhu Z, Zhou S. Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing. Hydrology. 2025; 12(8):208. https://doi.org/10.3390/hydrology12080208
Chicago/Turabian StyleWang, Chujing, Yuefeng Wang, Chaogui Lei, Sitong Wei, Xingying Huang, Zhenghui Zhu, and Shuqiong Zhou. 2025. "Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing" Hydrology 12, no. 8: 208. https://doi.org/10.3390/hydrology12080208
APA StyleWang, C., Wang, Y., Lei, C., Wei, S., Huang, X., Zhu, Z., & Zhou, S. (2025). Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing. Hydrology, 12(8), 208. https://doi.org/10.3390/hydrology12080208