Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,419)

Search Parameters:
Keywords = urban agriculture region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2373 KiB  
Article
Simulation and Control of Water Pollution Load in the Xiaoxingkai Lake Basin Based on a System Dynamics Model
by Yaping Wu, Dan Chen, Fujia Li, Mingming Feng, Ping Wang, Lingang Hao and Chunnuan Deng
Sustainability 2025, 17(15), 7167; https://doi.org/10.3390/su17157167 (registering DOI) - 7 Aug 2025
Abstract
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment [...] Read more.
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment model based on the system dynamics methodology, incorporating subsystems for population, agriculture, and water pollution. The model focuses on four key indicators of pollution severity, namely, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and ammonia nitrogen (NH3-N), and simulates the changes in pollutant loads entering the river under five different scenarios from 2020 to 2030. The results show that agricultural non-point sources are the primary contributors to TN (79.5%) and TP (73.7%), while COD primarily originates from domestic sources (64.2%). NH3-N is mainly influenced by urban domestic activities (44.7%) and agricultural cultivation (41.2%). Under the status quo development scenario, pollutant loads continue to rise, with more pronounced increases under the economic development scenario, thus posing significant sustainability risks. The pollution control enhancement scenario is most effective in controlling pollutants, but it does not promote socio-economic development and has high implementation costs, failing to achieve coordinated socio-economic and environmental development in the region. The dual-reinforcement scenario and moderate-reinforcement scenario achieve a balance between pollution control and economic development, with the moderate-reinforcement scenario being more suitable for long-term regional development. The findings can provide a scientific basis for water resource management and planning in the Xiaoxingkai Lake basin. Full article
Show Figures

Figure 1

21 pages, 4581 KiB  
Article
Spatiotemporal Variations and Drivers of the Ecological Footprint of Water Resources in the Yangtze River Delta
by Aimin Chen, Lina Chang, Peng Zhao, Xianbin Sun, Guangsheng Zhang, Yuanping Li, Haojun Deng and Xiaoqin Wen
Water 2025, 17(15), 2340; https://doi.org/10.3390/w17152340 - 6 Aug 2025
Abstract
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial [...] Read more.
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial and temporal scales. In this study, we collected the data and information from the 2005–2022 Statistical Yearbook and Water Resources Bulletin of the Yangtze River Delta Urban Agglomeration (YRDUA), and calculated evaluation indicators: WREF, water resources ecological carrying capacity (WRECC), water resources ecological pressure (WREP), and water resources ecological surplus and deficit (WRESD). We primarily analyzed the temporal and spatial variation in the per capita WREF and used the method of Geodetector to explore factors driving its temporal and spatial variation in the YRDUA. The results showed that: (1) From 2005 to 2022, the per capita WREF (total water, agricultural water, and industrial water) of the YRDUA generally showed fluctuating declining trends, while the per capita WREF of domestic water and ecological water showed obvious growth. (2) The per capita WREF and the per capita WRECC were in the order of Jiangsu Province > Anhui Province > Shanghai City > Zhejiang Province. The spatial distribution of the per capita WREF was similar to those of the per capita WRECC, and most areas effectively consume water resources. (3) The explanatory power of the interaction between factors was greater than that of a single factor, indicating that the spatiotemporal variation in the per capita WREF of the YRDUA was affected by the combination of multiple factors and that there were regional differences in the major factors in the case of secondary metropolitan areas. (4) The per capita WREF of YRDUA was affected by natural resources, and the impact of the ecological condition on the per capita WREF increased gradually over time. The impact factors of secondary metropolitan areas also clearly changed over time. Our results showed that the ecological situation of per capita water resources in the YRDUA is generally good, with obvious spatial and temporal differences. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

26 pages, 14923 KiB  
Article
Multi-Sensor Flood Mapping in Urban and Agricultural Landscapes of the Netherlands Using SAR and Optical Data with Random Forest Classifier
by Omer Gokberk Narin, Aliihsan Sekertekin, Caglar Bayik, Filiz Bektas Balcik, Mahmut Arıkan, Fusun Balik Sanli and Saygin Abdikan
Remote Sens. 2025, 17(15), 2712; https://doi.org/10.3390/rs17152712 - 5 Aug 2025
Abstract
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning [...] Read more.
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning method to evaluate the July 2021 flood in the Netherlands. The research developed 25 different feature scenarios through the combination of Sentinel-1, Landsat-8, and Radarsat-2 imagery data by using backscattering coefficients together with optical Normalized Difference Water Index (NDWI) and Hue, Saturation, and Value (HSV) images and Synthetic Aperture Radar (SAR)-derived Grey Level Co-occurrence Matrix (GLCM) texture features. The Random Forest (RF) classifier was optimized before its application based on two different flood-prone regions, which included Zutphen’s urban area and Heijen’s agricultural land. Results demonstrated that the multi-sensor fusion scenarios (S18, S20, and S25) achieved the highest classification performance, with overall accuracy reaching 96.4% (Kappa = 0.906–0.949) in Zutphen and 87.5% (Kappa = 0.754–0.833) in Heijen. For the flood class F1 scores of all scenarios, they varied from 0.742 to 0.969 in Zutphen and from 0.626 to 0.969 in Heijen. Eventually, the addition of SAR texture metrics enhanced flood boundary identification throughout both urban and agricultural settings. Radarsat-2 provided limited benefits to the overall results, since Sentinel-1 and Landsat-8 data proved more effective despite being freely available. This study demonstrates that using SAR and optical features together with texture information creates a powerful and expandable flood mapping system, and RF classification performs well in diverse landscape settings. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Flood Forecasting and Monitoring)
Show Figures

Figure 1

19 pages, 3259 KiB  
Article
Examining the Impact of National Planning on Rural Residents’ Disposable Income in China—The Case of Functional Zoning
by Junrong Ma, Chen Liu and Li Tian
Land 2025, 14(8), 1587; https://doi.org/10.3390/land14081587 - 3 Aug 2025
Viewed by 277
Abstract
The growth of rural residents’ disposable income is essential for narrowing the income gap between urban and rural areas and promoting integrated development. This study explores how China’s National Main Functional Zoning Plan influences rural household income through its regulatory impact on construction [...] Read more.
The growth of rural residents’ disposable income is essential for narrowing the income gap between urban and rural areas and promoting integrated development. This study explores how China’s National Main Functional Zoning Plan influences rural household income through its regulatory impact on construction land expansion. Using data from county−level administrative units across China, the research identified the construction land regulation index as a key mediating variable linking zoning policy to changes in household income. By shifting the analytical perspective from a traditional urban–rural classification to a framework aligned with the National Main Functional Zoning Plan, the study reveals how spatial planning tools, particularly differentiated land quota allocations, influence household income. The empirical results confirm a structured causal chain in which zoning policy affects land development intensity, which in turn drives rural income growth. This relationship varies across different functional zones. In key development zones, strict land control limits income potential by constraining land supply. In main agricultural production zones, moderate regulatory control enhances land use efficiency and contributes to higher income levels. In key ecological function zones, ecological constraints require diverse approaches to value realization. The investigation contributes both theoretical and practical insights by elucidating the microeconomic effects of national spatial planning policies and offering actionable guidance for optimizing land use regulation to support income growth tailored to regional functions. Full article
Show Figures

Figure 1

21 pages, 6621 KiB  
Article
Ecological Restoration Reshapes Ecosystem Service Interactions: A 30-Year Study from China’s Southern Red-Soil Critical Zone
by Gaigai Zhang, Lijun Yang, Jianjun Zhang, Chongjun Tang, Yuanyuan Li and Cong Wang
Forests 2025, 16(8), 1263; https://doi.org/10.3390/f16081263 - 2 Aug 2025
Viewed by 235
Abstract
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. [...] Read more.
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. Consequently, multiple restoration initiatives have been implemented in the region over recent decades. However, it remains unclear how relationships among ecosystem services have evolved under these interventions and how future ecosystem management should be optimized based on these changes. Thus, in this study, we simulated and assessed the spatiotemporal dynamics of five key ESs in Gannan region from 1990 to 2020. Through integrated correlation, clustering, and redundancy analyses, we quantified ES interactions, tracked the evolution of ecosystem service bundles (ESBs), and identified their socio-ecological drivers. Despite a 31% decline in water yield, ecological restoration initiatives drove substantial improvements in key regulating services: carbon storage increased by 6.9 × 1012 gC while soil conservation rose by 4.8 × 108 t. Concurrently, regional habitat quality surged by 45% in mean scores, and food production increased by 2.1 × 105 t. Critically, synergistic relationships between habitat quality, soil retention, and carbon storage were progressively strengthened, whereas trade-offs between food production and habitat quality intensified. Further analysis revealed that four distinct ESBs—the Agricultural Production Bundle (APB), Urban Development Bundle (UDB), Eco-Agriculture Transition Bundle (ETB), and Ecological Protection Bundle (EPB)—were shaped by slope, forest cover ratio, population density, and GDP. Notably, 38% of the ETB transformed into the EPB, with frequent spatial interactions observed between the APB and UDB. These findings underscore that future ecological restoration and conservation efforts should implement coordinated, multi-service management mechanisms. Full article
Show Figures

Figure 1

22 pages, 1289 KiB  
Article
Assessment of Heavy Metal Contamination and Human Health Risk in Parapenaeus longirostris from Coastal Tunisian Aquatic Ecosystems
by Walid Ben Ameur, Ali Annabi, Kaddachi Rania and Mauro Marini
Pollutants 2025, 5(3), 23; https://doi.org/10.3390/pollutants5030023 - 1 Aug 2025
Viewed by 254
Abstract
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the [...] Read more.
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the red shrimp Parapenaeus longirostris, collected in 2023 from four coastal regions: Bizerte, Monastir, Kerkennah, and Gabes. Metal analysis was conducted using flame atomic absorption spectroscopy. This species was chosen due to its ecological and economic importance. The study sites were chosen based on their differing levels of industrial, urban, and agricultural influence, providing a representative overview of regional contamination patterns. Mean concentrations were 1.04 µg/g for Zn, 0.59 µg/g for Cu, 1.56 µg/g for Pb, and 0.21 µg/g for Cd (dry weight). Pb was the most prevalent metal across sites. Statistically significant variation was observed only for Cu (p = 0.0334). All metal concentrations were below international safety limits set by FAO/WHO and the European Union. Compared to similar studies, the levels reported were similar or slightly lower. Human health risk was evaluated using target hazard quotient (THQ), hazard index (HI), and cancer risk (CR) values. For adults, THQ ranged from 5.44 × 10−6 to 8.43 × 10−4, while for children it ranged from 2.40 × 10−5 to 3.72 × 10−3. HI values were also well below 1, indicating negligible non-carcinogenic risk. CR values for Cd and Pb in both adults and children fell within the acceptable risk range (10−6 to <10−4), suggesting no significant carcinogenic concern. This study provides the first field-based dataset on metal contamination in P. longirostris from Tunisia, contributing valuable insights for seafood safety monitoring and public health protection. Full article
(This article belongs to the Special Issue Marine Pollutants: 3rd Edition)
Show Figures

Figure 1

23 pages, 30771 KiB  
Article
Spatiotemporal Characteristics of Ground Subsidence in Xiong’an New Area Revealed by a Combined Observation Framework Based on InSAR and GNSS Techniques
by Shaomin Liu and Mingzhou Bai
Remote Sens. 2025, 17(15), 2654; https://doi.org/10.3390/rs17152654 - 31 Jul 2025
Viewed by 374
Abstract
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns [...] Read more.
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns from 2017/05 to 2025/03. The key results show: (1) Three subsidence hotspots, namely northern Xiongxian (max. cumulative subsidence: 591 mm; 70 mm/yr), Luzhuang, and Liulizhuang, strongly correlate with geothermal wells and F4/F5 fault zones; (2) GNSS baseline analysis (e.g., XA01-XA02) reveals fissure-induced differential deformation (max. horizontal/vertical rates: 40.04 mm/yr and 19.8 mm/yr); and (3) InSAR–GNSS cross-validation confirms the high consistency of the results (Pearson’s correlation coefficient = 0.86). Subsidence in Xiongxian is driven by geothermal/industrial groundwater use, without any seasonal variations, while Anxin exhibits agricultural pumping-linked seasonal fluctuations. The use of rooftop GNSS stations reduces multipath effects and improves urban monitoring accuracy. The spatiotemporal heterogeneity stems from coupled resource exploitation and tectonic activity. We propose prioritizing rooftop GNSS deployments to enhance east–west deformation monitoring. This framework balances regional and local-scale precision, offering a replicable solution for geological risk assessments in emerging cities. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

27 pages, 31400 KiB  
Article
Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China
by Zhiyuan Xu, Fuyan Ke, Jiajie Yu and Haotian Zhang
Land 2025, 14(8), 1569; https://doi.org/10.3390/land14081569 - 31 Jul 2025
Viewed by 315
Abstract
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and [...] Read more.
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and grid scales. Therefore, this study selects Zhejiang Province—a representative rapidly transforming region in China—to establish a “type-process-ecological effect” analytical framework. Utilizing four-period (2005–2020) 30 m resolution land use data alongside natural and socio-economic factors, four spatial scales (city, county, township, and 5 km grid) were selected to systematically evaluate multi-scale impacts of land use transition on EEQ and their driving mechanisms. The research reveals that the spatial distribution, changing trends, and driving factors of EEQ all exhibit significant scale dependence. The county scale demonstrates the strongest spatial agglomeration and heterogeneity, making it the most appropriate core unit for EEQ management and planning. City and county scales generally show degradation trends, while township and grid scales reveal heterogeneous patterns of local improvement, reflecting micro-scale changes obscured at coarse resolutions. Expansive land transition including conversions of forest ecological land (FEL), water ecological land (WEL), and agricultural production land (APL) to industrial and mining land (IML) primarily drove EEQ degradation, whereas restorative ecological transition such as transformation of WEL and IML to grassland ecological land (GEL) significantly enhanced EEQ. Regarding driving mechanisms, natural factors (particularly NDVI and precipitation) dominate across all scales with significant interactive effects, while socio-economic factors primarily operate at macro scales. This study elucidates the scale complexity of land use transition impacts on ecological environments, providing theoretical and empirical support for developing scale-specific, typology-differentiated ecological governance and spatial planning policies. Full article
Show Figures

Figure 1

28 pages, 6962 KiB  
Article
Mapping Drought Incidents in the Mediterranean Region with Remote Sensing: A Step Toward Climate Adaptation
by Aikaterini Stamou, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, Eleni Karachaliou, Ioannis Tavantzis and Efstratios Stylianidis
Land 2025, 14(8), 1564; https://doi.org/10.3390/land14081564 - 30 Jul 2025
Viewed by 482
Abstract
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are [...] Read more.
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are a concerning consequence of this phenomenon, causing severe environmental damage and transforming natural landscapes. However, droughts involve a two-way interaction: On the one hand, climate change and various human activities, such as urbanization and deforestation, influence the development and severity of droughts. On the other hand, droughts have a significant impact on various sectors, including ecology, agriculture, and the local economy. This study investigates drought dynamics in four Mediterranean countries, Greece, France, Italy, and Spain, each of which has experienced severe wildfire events in recent years. Using satellite-based Earth observation data, we monitored drought conditions across these regions over a five-year period that includes the dates of major wildfires. To support this analysis, we derived and assessed key indices: the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI). High-resolution satellite imagery processed within the Google Earth Engine (GEE) platform enabled the spatial and temporal analysis of these indicators. Our findings reveal that, in all four study areas, peak drought conditions, as reflected in elevated NDDI values, were observed in the months leading up to wildfire outbreaks. This pattern underscores the potential of satellite-derived indices for identifying regional drought patterns and providing early signals of heightened fire risk. The application of GEE offered significant advantages, as it allows efficient handling of long-term and large-scale datasets and facilitates comprehensive spatial analysis. Our methodological framework contributes to a deeper understanding of regional drought variability and its links to extreme events; thus, it could be a valuable tool for supporting the development of adaptive management strategies. Ultimately, such approaches are vital for enhancing resilience, guiding water resource planning, and implementing early warning systems in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Land and Drought: An Environmental Assessment Through Remote Sensing)
Show Figures

Figure 1

20 pages, 8292 KiB  
Article
Landscape Zoning Strategies for Small Mountainous Towns: Insights from Yuqian Town in China
by Qingwei Tian, Yi Xu, Shaojun Yan, Yizhou Tao, Xiaohua Wu and Bifan Cai
Sustainability 2025, 17(15), 6919; https://doi.org/10.3390/su17156919 - 30 Jul 2025
Viewed by 243
Abstract
Small towns in mountainous regions face significant challenges in formulating effective landscape zoning strategies due to pronounced landscape fragmentation, which is driven by both the dominance of large-scale forest resources and the lack of coordination between administrative planning departments. To tackle this problem, [...] Read more.
Small towns in mountainous regions face significant challenges in formulating effective landscape zoning strategies due to pronounced landscape fragmentation, which is driven by both the dominance of large-scale forest resources and the lack of coordination between administrative planning departments. To tackle this problem, this study focused on Yuqian, a quintessential small mountainous town in Hangzhou, Zhejiang Province. The town’s layout was divided into a grid network measuring 70 m × 70 m. A two-step cluster process was employed using ArcGIS and SPSS software to analyze five landscape variables: altitude, slope, land use, heritage density, and visual visibility. Further, eCognition software’s semi-automated segmentation technique, complemented by manual adjustments, helped delineate landscape character types and areas. The overlay analysis integrated these areas with administrative village units, identifying four landscape character types across 35 character areas, which were recategorized into four planning and management zones: urban comprehensive service areas, agricultural and cultural tourism development areas, industrial development growth areas, and mountain forest ecological conservation areas. This result optimizes the current zoning types. These zones closely match governmental sustainable development zoning requirements. Based on these findings, we propose integrated landscape management and conservation strategies, including the cautious expansion of urban areas, leveraging agricultural and cultural tourism, ensuring industrial activities do not impact the natural and village environment adversely, and prioritizing ecological conservation in sensitive areas. This approach integrates spatial and administrative dimensions to enhance landscape connectivity and resource sustainability, providing key guidance for small town development in mountainous regions with unique environmental and cultural contexts. Full article
Show Figures

Figure 1

34 pages, 1087 KiB  
Article
Reconfiguring Urban–Rural Systems Through Agricultural Service Reform: A Socio-Technical Perspective from China
by Yuchen Lu, Chenlu Yang, Yifan Tang and Yakun Chen
Systems 2025, 13(8), 634; https://doi.org/10.3390/systems13080634 - 29 Jul 2025
Viewed by 407
Abstract
The transition toward integrated urban–rural development represents a complex socio-technical challenge in post-poverty alleviation China. This study examines how the reform of agricultural service systems—especially the rollout of full-process socialization services—reshapes urban–rural integration by embedding new institutional, technological, and organizational structures into rural [...] Read more.
The transition toward integrated urban–rural development represents a complex socio-technical challenge in post-poverty alleviation China. This study examines how the reform of agricultural service systems—especially the rollout of full-process socialization services—reshapes urban–rural integration by embedding new institutional, technological, and organizational structures into rural production. Drawing on staggered provincial pilot programs, we apply a double machine learning framework to assess the causal impact of service reform on the urban–rural income gap, labor reallocation, and agricultural productivity. Results show that agricultural socialization services enhance systemic efficiency by reducing labor bottlenecks, increasing technology diffusion, and fostering large-scale coordination in agricultural operations. These effects are most pronounced in provinces with stronger institutional capacity and higher levels of mechanization. The findings highlight agricultural service reform as a systemic intervention that alters resource allocation logics, drives institutional change, and fosters structural convergence across urban and rural domains. This research contributes to the understanding of agricultural modernization as a systems-engineered solution for regional inequality. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

31 pages, 1247 KiB  
Review
A Review of Water Quality Forecasting and Classification Using Machine Learning Models and Statistical Analysis
by Amar Lokman, Wan Zakiah Wan Ismail and Nor Azlina Ab Aziz
Water 2025, 17(15), 2243; https://doi.org/10.3390/w17152243 - 28 Jul 2025
Viewed by 488
Abstract
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models [...] Read more.
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models and statistical methods applied in forecasting and classification of water quality. A particular focus is given to hybrid models that integrate multiple approaches to improve predictive accuracy and robustness. This study also reviews water quality standards and highlights the environmental context that necessitates advanced predictive tools. Statistical techniques such as residual analysis, principal component analysis (PCA), and feature importance assessment are also explored to enhance model interpretability and reliability. Comparative tables of model performance, strengths, and limitations are presented alongside real-world applications. Despite recent advancements, challenges remain in data quality, model interpretability, and integration of spatio-temporal and fuzzy logic techniques. This review identifies key research gaps and proposes future directions for developing transparent, adaptive, and accurate models. The findings can also guide researchers and policymakers towards the development of smart water quality management systems that enhance decision-making and ecological sustainability. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

24 pages, 32703 KiB  
Article
Spatiotemporal Evolution of Carbon Storage and Driving Factors in Major Sugarcane-Producing Regions of Guangxi, China
by Jianing Ma, Jun Wen, Shirui Du, Chuanmin Yan and Chuntian Pan
Agronomy 2025, 15(8), 1817; https://doi.org/10.3390/agronomy15081817 - 27 Jul 2025
Viewed by 231
Abstract
Objectives: The major sugarcane-producing regions of Guangxi represent a critical agricultural zone in China. Investigating the mechanisms of land use change and carbon storage dynamics in this area is essential for optimizing regional ecological security and promoting sustainable development. Methods: Employing the land [...] Read more.
Objectives: The major sugarcane-producing regions of Guangxi represent a critical agricultural zone in China. Investigating the mechanisms of land use change and carbon storage dynamics in this area is essential for optimizing regional ecological security and promoting sustainable development. Methods: Employing the land use transfer matrix, the InVEST model and the Geodetector model to analyze carbon storage changes and identify key driving factors and their interactive effects. Results: (1) From 2011 to 2022, Guangxi’s major sugarcane-producing regions experienced significant land use changes: reductions in cultivated land, grassland and water bodies alongside expansions of forest, bare land and construction land. (2) The total carbon storage in Guangxi’s major sugarcane-producing regions has increased from 2011 to 2018 by 0.99%, representing 1627.03 and 1643.10 million tons, while it has decreased by 0.1% in 2022 (1641.47 million tons) compared to 2018. (3) Cultivated land proportion and forest coverage rate were the primary drivers of spatial heterogeneity, followed by average slope and land urbanization rate. (4) Interaction analysis revealed strong synergistic effects among cultivated land proportion, forest coverage rate, NDVI and average slope, confirming multi-factor control over carbon storage changes. Conclusions: Carbon storage in the Guangxi sugarcane-producing regions is shaped by land use patterns and multi-factor interactions. Future strategies should optimize land use structures and balance urbanization with ecological protection to enhance regional carbon sequestration. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 424
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

Back to TopTop