Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (977)

Search Parameters:
Keywords = unique metabolic pathways

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 13311 KiB  
Article
A Spatiotemporal Atlas of the Gut Microbiota in Macaca mulatta brevicaudus: Implications for Health and Environment
by Jingli Yuan, Zewen Sun, Ruiping Sun, Jun Wang, Chengfeng Wu, Baozhen Liu, Xinyuan Zhao, Qiang Li, Jianguo Zhao and Keqi Cai
Biology 2025, 14(8), 980; https://doi.org/10.3390/biology14080980 (registering DOI) - 1 Aug 2025
Abstract
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into [...] Read more.
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into human health and disease. This study employs metagenomic sequencing to assess the gut microbiota of wild M. mulatta brevicaudus across various ages, sexes, and physiological states. The results revealed that the dominant bacterial species in various age groups included Segatella copri and Bifidobacterium adolescentis. The predominant bacterial species in various sexes included Alistipes senegalensis and Parabacteroides (specifically Parabacteroides merdae, Parabacteroides johnsonii, and Parabacteroides sp. CT06). The dominant species during lactation and non-lactation periods were identified as Alistipes indistinctus and Capnocytophaga haemolytica. Functional analysis revealed significant enrichment in pathways such as global and overview maps, carbohydrate metabolism and amino acid metabolism. This study enhances our understanding of how age, sex, and physiological states shape the gut microbiota in M. mulatta brevicaudus, offering a foundation for future research on (1) host–microbiome interactions in primate evolution, and (2) translational applications in human health, such as microbiome-based therapies for metabolic or immune-related disorders. Full article
Show Figures

Figure 1

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 (registering DOI) - 1 Aug 2025
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

14 pages, 4194 KiB  
Article
Crystal Structure of Anthranilate Phosphoribosyltransferase from Methanocaldococcus jannaschii
by Jung-Min Choi
Crystals 2025, 15(8), 702; https://doi.org/10.3390/cryst15080702 (registering DOI) - 31 Jul 2025
Abstract
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has [...] Read more.
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has been a central target for metabolic engineering to enhance microbial production. Anthranilate phosphoribosyltransferase (AnPRT) catalyzes the second step of the pathway by transferring a phosphoribosyl group from PRPP to anthranilate, forming phosphoribosyl anthranilate (PRA). AnPRT, the sole member of class IV phosphoribosyltransferases, adopts a unique fold and functions as a homodimer. While the structural basis of AnPRT activity has been elucidated in several organisms, thermostable variants remain underexplored despite their relevance for high-temperature bioprocessing. In this study, the crystal structure of AnPRT from the thermophilic archaeon Methanocaldococcus jannaschii (MjAnPRT) was determined at a 2.16 Å resolution. The enzyme exhibits a conserved dimeric architecture and key catalytic motifs. Comparative structural analysis with mesophilic and hyper thermophilic homologs revealed that MjAnPRT possesses enhanced local stability in catalytically important regions and strengthened inter-subunit interactions. These features likely contribute to its thermostability and provide a valuable framework for the rational design of robust AnPRTs for industrial and synthetic biology applications. Full article
(This article belongs to the Special Issue Crystallography of Enzymes)
Show Figures

Figure 1

21 pages, 9952 KiB  
Article
Exploring Conformational Transitions in Biased and Balanced Ligand Binding of GLP-1R
by Marc Xu, Horst Vogel and Shuguang Yuan
Molecules 2025, 30(15), 3216; https://doi.org/10.3390/molecules30153216 (registering DOI) - 31 Jul 2025
Abstract
The glucagon-like peptide-1 receptor (GLP-1R), which belongs to the class B1 G protein-coupled receptor (GPCR) family, is an important target for treatment of metabolic disorders, including type 2 diabetes and obesity. The growing interest in GLP-1R-based therapies is driven by the development of [...] Read more.
The glucagon-like peptide-1 receptor (GLP-1R), which belongs to the class B1 G protein-coupled receptor (GPCR) family, is an important target for treatment of metabolic disorders, including type 2 diabetes and obesity. The growing interest in GLP-1R-based therapies is driven by the development of various functional agonists as well as the huge commercial market. Thus, understanding the structural details of ligand-induced signaling are important for developing improved GLP-1R drugs. Here, we investigated the conformational dynamics of the receptor in complex with a selection of prototypical functional agonists, including CHU-128 (small molecule-biased), danuglipron (small molecule balanced), and Peptide 19 (peptide balanced), which exhibit unique, distinct binding modes and induced helix packing. Furthermore, our all-atom molecular dynamics (MD) simulations revealed atomic feature how different those ligands led to signaling pathway preference. Our findings offer valuable insights into the mechanistic principle of GLP-1R activation, which are helpful for the rational design of next-generation GLP-1R drug molecules. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

18 pages, 300 KiB  
Review
Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder
by John Jay Gargus
Genes 2025, 16(8), 923; https://doi.org/10.3390/genes16080923 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in [...] Read more.
Background/Objectives: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in ASD, as recently highlighted by insights from the BTBR mouse model of ASD. The rapid brain expansion taking place as Homo sapiens evolved, particularly in the parietal lobe, led to increased energy demands, making the brain vulnerable to such metabolic disruptions as are seen in ASD. Methods: Mitochondrial dysfunction in ASD is characterized by impaired oxidative phosphorylation, elevated lactate and alanine levels, carnitine deficiency, abnormal reactive oxygen species (ROS), and altered calcium homeostasis. These dysfunctions are primarily functional, rather than being due to mitochondrial DNA mutations. Calcium signaling plays a crucial role in neuronal ATP production, with disruptions in inositol 1,4,5-trisphosphate receptor (ITPR)-mediated endoplasmic reticulum (ER) calcium release being observed in ASD patient-derived cells. Results: This impaired signaling affects the ER–mitochondrial calcium axis, leading to mitochondrial energy deficiency, particularly in high-energy regions of the developing brain. The BTBR mouse model, with its unique Itpr3 gene mutation, exhibits core autism-like behaviors and metabolic syndromes, providing valuable insights into ASD pathophysiology. Conclusions: Various interventions have been tested in BTBR mice, as in ASD, but none have directly targeted the Itpr3 mutation or its calcium signaling pathway. This review presents current genetic, biochemical, and neurological findings in ASD and its model systems, highlighting the need for further research into metabolic resilience and calcium signaling as potential diagnostic and therapeutic targets for ASD. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Graphical abstract

18 pages, 2436 KiB  
Article
Integrated Cytotoxicity and Metabolomics Analysis Reveals Cell-Type-Specific Responses to Co-Exposure of T-2 and HT-2 Toxins
by Weihua He, Zuoyin Zhu, Jingru Xu, Chengbao Huang, Jianhua Wang, Qinggong Wang, Xiaohu Zhai and Junhua Yang
Toxins 2025, 17(8), 381; https://doi.org/10.3390/toxins17080381 (registering DOI) - 30 Jul 2025
Abstract
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four [...] Read more.
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four porcine cell types: intestinal porcine epithelial cells (IPEC-J2), porcine Leydig cells (PLCs), porcine ear fibroblasts (PEFs), and porcine hepatocytes (PHs). Cell viability assays revealed a dose-dependent reduction in viability across all cell lines, with relative sensitivities in the order: IPEC-J2 > PLCs > PEFs > PHs. Synergistic cytotoxicity was observed at low concentrations, while antagonistic interactions emerged at higher doses. Untargeted metabolomic profiling identified consistent and significant metabolic perturbations in four different porcine cell lines under co-exposure conditions. Notably, combined treatment with T-2 and HT-2 resulted in a uniform downregulation of LysoPC (22:6), LysoPC (20:5), and LysoPC (20:4), implicating disruption of membrane phospholipid integrity. Additionally, glycerophospholipid metabolism was the most significantly affected pathway across all cell lines. Ether lipid metabolism was markedly altered in PLCs and PEFs, whereas PHs displayed a unique metabolic response characterized by dysregulation of tryptophan metabolism. This study identified markers of synergistic toxicity and common alterations in metabolic pathways across four homologous porcine cell types under the combined exposure to T-2 and HT-2 toxins. These findings enhance the current understanding of the molecular mechanisms underlying mycotoxin-induced the synergistic toxicity. Full article
Show Figures

Graphical abstract

16 pages, 8060 KiB  
Article
Transcriptomic Reprogramming and Key Molecular Pathways Underlying Huanglongbing Tolerance and Susceptibility in Six Citrus Cultivars
by Xiaohong Chen, Fang Fang, Tingting Chen, Jinghua Wu, Zheng Zheng and Xiaoling Deng
Int. J. Mol. Sci. 2025, 26(15), 7359; https://doi.org/10.3390/ijms26157359 - 30 Jul 2025
Viewed by 94
Abstract
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is the most devastating disease threatening global citrus production. Although no commercial citrus varieties exhibit complete HLB resistance, genotype-specific tolerance variations remain underexplored. This study conducted a comparative transcriptomic profiling of six commercially citrus cultivars [...] Read more.
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is the most devastating disease threatening global citrus production. Although no commercial citrus varieties exhibit complete HLB resistance, genotype-specific tolerance variations remain underexplored. This study conducted a comparative transcriptomic profiling of six commercially citrus cultivars in South China, four susceptible cultivars (C. reticulata cv. Tankan, Gongkan, Shatangju, and C. sinensis Osbeck cv. Newhall), and two tolerant cultivars (C. limon cv. Eureka; C. maxima cv Guanxi Yu) to dissect molecular mechanisms underlying HLB responses. Comparative transcriptomic analyses revealed extensive transcriptional reprogramming, with tolerant cultivars exhibiting fewer differentially expressed genes (DEGs) and targeted defense activation compared to susceptible genotypes. The key findings highlighted the genotype-specific regulation of starch metabolism, where β-amylase 3 (BAM3) was uniquely upregulated in tolerant varieties, potentially mitigating starch accumulation. Immune signaling diverged significantly: tolerant cultivars activated pattern-triggered immunity (PTI) via receptor-like kinases (FLS2) and suppressed ROS-associated RBOH genes, while susceptible genotypes showed the hyperactivation of ethylene signaling and oxidative stress pathways. Cell wall remodeling in susceptible cultivars involved upregulated xyloglucan endotransglucosylases (XTH), contrasting with pectin methylesterase induction in tolerant Eureka lemon for structural reinforcement. Phytohormonal dynamics revealed SA-mediated defense and NPR3/4 suppression in Eureka lemon, whereas susceptible cultivars prioritized ethylene/JA pathways. These findings delineate genotype-specific strategies in citrus–CLas interactions, identifying BAM3, FLS2, and cell wall modifiers as critical targets for breeding HLB-resistant cultivars through molecular-assisted selection. This study provides a foundational framework for understanding host–pathogen dynamics and advancing citrus immunity engineering. Full article
(This article belongs to the Special Issue Plant-Microbe Interaction: Current Status and Future Directions)
Show Figures

Figure 1

11 pages, 938 KiB  
Review
Sensory Circumventricular Organ Insulin Signaling in Cardiovascular and Metabolic Regulation
by Han Rae Kim, Jin Kwon Jeong and Colin N. Young
Curr. Issues Mol. Biol. 2025, 47(8), 595; https://doi.org/10.3390/cimb47080595 - 29 Jul 2025
Viewed by 82
Abstract
Central nervous system (CNS) insulin signaling is involved in a broad array of cardiometabolic physiology, including glucose and lipid metabolism, feeding, energy expenditure, and blood pressure regulation. A key role for hypothalamic neuroendocrine and autonomic centers in regulating insulin-associated cardiovascular and metabolic physiology [...] Read more.
Central nervous system (CNS) insulin signaling is involved in a broad array of cardiometabolic physiology, including glucose and lipid metabolism, feeding, energy expenditure, and blood pressure regulation. A key role for hypothalamic neuroendocrine and autonomic centers in regulating insulin-associated cardiovascular and metabolic physiology has been highlighted. However, it is still unclear which CNS site(s) initiate insulin-dependent neural cascades. While some investigations have suggested that circulating insulin can access hypothalamic regions by crossing the blood-brain barrier, other studies point to a necessity of other brain areas upstream of the hypothalamus to initiate central insulin actions. In this context, accumulating evidence points to a possible involvement of the sensory circumventricular organs (CVOs), unique areas located outside of the blood-brain barrier, in insulin-dependent cardiometabolic homeostasis. Here, the multifaceted roles for the sensory CVOs in cardiovascular and metabolic regulation, with a special emphasis on insulin receptor pathways, are discussed. Full article
Show Figures

Graphical abstract

15 pages, 4581 KiB  
Article
Co-Culture with Two Soil Fungal Strains Enhances Growth and Secondary Metabolite Biosynthesis in Cordyceps takaomontana
by Junyi Chen, Minghao Ding, Donglan He, Dengxian Zhang, Ming Wang, Yulan Xiang and Tianya Liu
J. Fungi 2025, 11(8), 559; https://doi.org/10.3390/jof11080559 - 29 Jul 2025
Viewed by 199
Abstract
Cordyceps takaomontana is a medicinal fungus with significant pharmacological value, but how soil microbes promote its growth remains unclear. We established a solid-state co-culture system involving C. takaomontana synnemata and its native soil fungi of Fusarium paeoniae and Bjerkandera minispora. Both F. [...] Read more.
Cordyceps takaomontana is a medicinal fungus with significant pharmacological value, but how soil microbes promote its growth remains unclear. We established a solid-state co-culture system involving C. takaomontana synnemata and its native soil fungi of Fusarium paeoniae and Bjerkandera minispora. Both F. paeoniae and B. minispora significantly promoted synnematal growth and enhanced antioxidant enzyme activities. Total triterpenoid content increased substantially. F. paeoniae markedly elevated levels of ergosterol peroxide, whereas B. minispora boosted accumulation of L-arabinose, ergotamine, and euphol. Metabolomics revealed that both fungi activated key metabolic pathways (including ABC transporters, mineral absorption, and protein digestion/absorption). F. paeoniae uniquely upregulated phenylalanine metabolism. This work elucidates the metabolic mechanisms underlying growth promotion of C. takaomontana mediated by F. paeoniae and B. minispora as well as deciphers potential pharmacologically active metabolites. These findings provide a foundation for strategically improving artificial cultivation and developing functional microbial inoculants. Full article
Show Figures

Figure 1

23 pages, 2663 KiB  
Review
An Updated Perspective on the Aromatic Metabolic Pathways of Plant-Derived Homocyclic Aromatic Compounds in Aspergillus niger
by Ronnie J. M. Lubbers
Microorganisms 2025, 13(8), 1718; https://doi.org/10.3390/microorganisms13081718 - 22 Jul 2025
Viewed by 315
Abstract
Aromatic compounds are vital in both natural and synthetic chemistry, and they are traditionally sourced from non-renewable petrochemicals. However, plant biomass, particularly lignin, offers a renewable alternative source of aromatic compounds. Lignin, a complex polymer found in plant cell walls, is the largest [...] Read more.
Aromatic compounds are vital in both natural and synthetic chemistry, and they are traditionally sourced from non-renewable petrochemicals. However, plant biomass, particularly lignin, offers a renewable alternative source of aromatic compounds. Lignin, a complex polymer found in plant cell walls, is the largest renewable source of aromatic compounds, though its degradation remains challenging. Lignin can be chemically degraded through oxidation, acid hydrolysis or solvolysis. As an alternative, microorganisms, including fungi, could offer a sustainable alternative for breaking down lignin. The aromatic compounds released from lignin, by either microbial, chemical or enzymatic degradation, can be used by microorganisms to produce valuable compounds. Fungi possess unique enzymes capable of converting aromatic compounds derived from lignin or other sources into chemical building blocks that can be used in several industries. However, their aromatic metabolic pathways are poorly studied compared to bacterial systems. In the past, only a handful of genes and enzymes involved in the aromatic metabolic pathways had been identified. Recent advances in genomics, proteomics, and metabolic engineering are helping to reveal these metabolic pathways and identify the involved genes. This review highlights recent progress in understanding fungal aromatic metabolism, focusing on how Aspergillus niger converts plant-derived aromatic compounds into potentially useful products and the versatility of aromatic metabolism within the Aspergillus genus. Addressing the current knowledge gaps in terms of fungal pathways could unlock their potential for use in sustainable technologies, promoting eco-friendly production of chemical building blocks from renewable resources or bioremediation. Full article
(This article belongs to the Special Issue Microbial Metabolism and Application in Biodegradation)
Show Figures

Figure 1

28 pages, 8123 KiB  
Article
Human Metabolism of Sirolimus Revisited
by Baharak Davari, Touraj Shokati, Alexandra M. Ward, Vu Nguyen, Jost Klawitter, Jelena Klawitter and Uwe Christians
Metabolites 2025, 15(7), 489; https://doi.org/10.3390/metabo15070489 - 20 Jul 2025
Viewed by 471
Abstract
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and [...] Read more.
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and intestine, but the diversity, pharmacokinetics, and biological activity of its metabolites have been poorly explored due to the lack of structurally identified standards. Methods: To investigate SRL metabolism, we incubated SRL with pooled human liver microsomes (HLM) and isolated the resulting metabolites. Structural characterization was performed using high-resolution mass spectrometry (HRMS) and ion trap MSn. We also applied Density Functional Theory (DFT) calculations to assess the energetic favorability of metabolic transformations and conducted molecular dynamics (MD) simulations to model metabolite interactions within the CYP3A4 active site. Results: We identified 21 unique SRL metabolites, classified into five major structural groups: O-demethylated, hydroxylated, didemethylated, di-hydroxylated, and mixed hydroxylated/demethylated derivatives. DFT analyses indicated that certain demethylation and hydroxylation reactions were energetically preferred, correlating with metabolite abundance. MD simulations further validated these findings by demonstrating the favorable orientation and accessibility of key sites within the CYP3A4 binding pocket. Conclusions: This study provides a comprehensive structural map of SRL metabolism, offering mechanistic insights into the formation of its metabolites. Our integrated approach of experimental and computational analyses lays the groundwork for future investigations into the pharmacodynamic and toxicodynamic effects of SRL metabolites on the mTOR pathway. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

31 pages, 5952 KiB  
Article
Genome-Wide Characterization of the Phosphofructokinase Gene Family in Arabidopsis thaliana and Functional Analysis of AtPFK2 in Stress Tolerance
by Siyu Liu, Jiheng Gou, Yunni Tang, Yunxiao Wei and Rui Zhang
Int. J. Mol. Sci. 2025, 26(14), 6828; https://doi.org/10.3390/ijms26146828 - 16 Jul 2025
Viewed by 207
Abstract
The phosphofructokinase (PFK) gene family plays a pivotal role in glycolysis and energy metabolism in plants. This study aimed to systematically characterize the PFK gene family in Arabidopsis thaliana at the genome-wide level and to investigate the function of AtPFK2 (ATP-dependent [...] Read more.
The phosphofructokinase (PFK) gene family plays a pivotal role in glycolysis and energy metabolism in plants. This study aimed to systematically characterize the PFK gene family in Arabidopsis thaliana at the genome-wide level and to investigate the function of AtPFK2 (ATP-dependent phosphofructokinase 2) in response to salt and drought stress. Through bioinformatics analysis, 11 AtPFK genes were identified. Phylogenetic analysis revealed that these PFK genes can be classified into two subfamilies: PFK and PFP. Notably, AtPFK2 possesses a unique structure, containing only a single intron, and its promoter is enriched with stress- and hormone-responsive elements, such as ABRE and MBS. T-DNA insertion mutants (pfk2) exhibited slightly shorter roots but slightly higher fresh weight under stress conditions, whereas Arabidopsis lines AtPFK2-overexpressing (OE-PFK2) showed increased stress sensitivity, with inhibited root and leaf growth, leaf wilting, reduced malondialdehyde and chlorophyll content, and enhanced accumulation of proline and soluble sugars. Weighted gene co-expression network analysis (WGCNA) identified 14 stress-related modules, from which six core genes—LBD41, TRP3, PP2-A3, SAUR10, IAA6, and JAZ1—were selected. These genes are involved in glycine metabolism and plant hormone signaling. The results of this study indicate that AtPFK2 mediates stress responses by regulating osmoregulatory substances and hormone signaling pathways, offering new insights into the mechanisms of stress resistance in crops. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

30 pages, 4989 KiB  
Article
Proteomic Analysis of CHIKV-nsP3 Host Interactions in Liver Cells Identifies Novel Interacting Partners
by Nimisha Mishra, Yash Chaudhary, Sakshi Chaudhary, Anjali Singh, Priyanshu Srivastava and Sujatha Sunil
Int. J. Mol. Sci. 2025, 26(14), 6832; https://doi.org/10.3390/ijms26146832 - 16 Jul 2025
Viewed by 372
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, has re-emerged, causing widespread outbreaks and a significant clinical burden. Despite advances in virology, the molecular mechanisms governing CHIKV’s interaction with host cells remain poorly understood. In this study, we aimed to identify novel host protein interactors [...] Read more.
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, has re-emerged, causing widespread outbreaks and a significant clinical burden. Despite advances in virology, the molecular mechanisms governing CHIKV’s interaction with host cells remain poorly understood. In this study, we aimed to identify novel host protein interactors of the CHIKV nonstructural protein 3 (nsP3), a critical component of the viral replication complex, using mass spectrometry-based proteomic profiling in liver-derived Huh7 cells. Co-immunoprecipitation followed by LC-MS/MS identified a wide array of host proteins associated with nsP3, revealing 52 proteins classified as high-confidence (FDR of 1%, and unique peptides > 2) CHIKV-specific interactors. A bioinformatic analysis using STRING and Cytoscape uncovered interaction networks enriched in metabolic processes, RNA processing, translation regulation, cellular detoxification, stress responses, and immune signaling pathways. A subcellular localization analysis showed that many interactors reside in the cytosol, while others localize to the nucleus, nucleolus, and mitochondria. Selected novel host protein interactions were validated through co-immunoprecipitation and immunofluorescence assays. Our findings provide new insights into the host cellular pathways hijacked by CHIKV and highlight potential targets for therapeutic intervention. This is the first report mapping direct nsP3–host protein interactions in Huh7 cells during CHIKV infection. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction, 6th Edition)
Show Figures

Graphical abstract

16 pages, 3601 KiB  
Article
Dynamic Changes in Metabolites and Transformation Pathways in Diqing Tibetan Pig Hams During Fermentation Determined by Widely Targeted Metabolomic Analysis
by Dan Jia, Siqi Jin, Jin Zhang, Shuyuan Luo, Xinpeng Li, Siew-Young Quek, Xinxing Dong and Dawei Yan
Foods 2025, 14(14), 2468; https://doi.org/10.3390/foods14142468 - 14 Jul 2025
Viewed by 252
Abstract
This study investigated the metabolite dynamic changes and transformation pathways in Diqing Tibetan pig (DTP) hams during fermentation (0, 30, 90, 180, 360, 540 d) by widely targeted metabolomics. A total of 873 metabolites in 17 subclasses were detected, with significant changes in [...] Read more.
This study investigated the metabolite dynamic changes and transformation pathways in Diqing Tibetan pig (DTP) hams during fermentation (0, 30, 90, 180, 360, 540 d) by widely targeted metabolomics. A total of 873 metabolites in 17 subclasses were detected, with significant changes in 448 metabolites. Additionally, 65 key metabolites were found to be involved in the top 10 pathways, with the top pathways for metabolite markers in mature hams including protein metabolism (2-oxocarboxylic acid metabolism, tryptophan metabolism and amino acid biosynthesis) and lipid metabolism (unsaturated fatty acid biosynthesis and linoleic acid metabolism). Overall, the unique DTP ham taste, flavor, and nutritional value may be contributed to by the significant accumulation of essential amino acids, MSG-like amino acids, free fatty acids (arachidonic acid, docosahexaenoic acid, and eicosapentaenoic acid), citric acid, oxaloacetic acid, succinic acid, and vitamin B. This study facilitates a comprehensive understanding of metabolic profiling and the transformation pathways of DTP hams during fermentation, providing novel insights into the biochemical mechanisms underlying traditional Tibetan pig hams, bridging traditional knowledge with modern omics technologies. Full article
(This article belongs to the Section Meat)
Show Figures

Graphical abstract

45 pages, 797 KiB  
Review
Non-Celiac Villous Atrophy—A Problem Still Underestimated
by Katarzyna Napiórkowska-Baran, Paweł Treichel, Adam Wawrzeńczyk, Ewa Alska, Robert Zacniewski, Maciej Szota, Justyna Przybyszewska, Amanda Zoń and Zbigniew Bartuzi
Life 2025, 15(7), 1098; https://doi.org/10.3390/life15071098 - 13 Jul 2025
Viewed by 384
Abstract
Non-celiac villous atrophy (NCVA) is a multifaceted and under-recognized clinical entity with an etiology beyond celiac disease. This review critically examines the diverse pathophysiological mechanisms underlying NCVA, including autoimmune enteropathies, immune deficiency-related disorders, infectious processes, drug-induced trauma, and metabolic or environmental influences. A [...] Read more.
Non-celiac villous atrophy (NCVA) is a multifaceted and under-recognized clinical entity with an etiology beyond celiac disease. This review critically examines the diverse pathophysiological mechanisms underlying NCVA, including autoimmune enteropathies, immune deficiency-related disorders, infectious processes, drug-induced trauma, and metabolic or environmental influences. A comprehensive synthesis of peer-reviewed literature, clinical studies, and case reports was conducted, adopting a multidisciplinary perspective that integrates immunologic, infectious, metabolic, and pharmacologic insights. The literature search was performed in three phases: identification of relevant studies, critical assessment of selected publications, and synthesis of key findings. Searches were carried out in PubMed, Scopus, Web of Science, and Google Scholar databases. The final search, completed in June 2025, included international, English-language articles, electronic books, and online reports. Studies were included if they addressed NCVA in the context of pathophysiology, clinical manifestations, or management strategies, with priority given to publications from the last ten years (2015–2025). The search strategy used the primary term “non-celiac villous atrophy” combined with supplementary keywords such as autoimmune enteropathy, common variable immunodeficiency, tropical sprue, drug-related enteropathy, pathophysiology, immunological mechanisms, chronic inflammation, genetic factors, environmental influences, and clinical management. Histopathological evaluations reveal that NCVA often manifests with varying degrees of villous blunting, crypt hypertrophy, and intraepithelial lymphocytosis, albeit without the gliadin-specific immune response seen in celiac disease. Various immune pathways are involved, such as autoimmune deregulation and chronic inflammatory responses, while drug-induced and environmental factors further complicate its clinical picture. These findings highlight significant diagnostic challenges and underscore the need to adapt diagnostic algorithms that combine clinical history, serologic evaluations, and histopathologic analysis. In conclusion, an in-depth understanding of the heterogeneous etiology of NCVA is critical to improving diagnostic accuracy and optimizing therapeutic strategies. Future research should prioritize the identification of specific biomarkers and the development of targeted interventions to address the unique mechanisms underlying NCVA, thereby improving patient management and outcomes. Full article
Show Figures

Figure 1

Back to TopTop