Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (223)

Search Parameters:
Keywords = ultralow concentrations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2858 KiB  
Article
Reactive Aerosol Jet Printing of Ag Nanoparticles: A New Tool for SERS Substrate Preparation
by Eugenio Gibertini, Lydia Federica Gervasini, Jody Albertazzi, Lorenzo Maria Facchetti, Matteo Tommasini, Valentina Busini and Luca Magagnin
Coatings 2025, 15(8), 900; https://doi.org/10.3390/coatings15080900 (registering DOI) - 1 Aug 2025
Viewed by 146
Abstract
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman [...] Read more.
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool, offering improved sensitivity through the enhancement of Raman scattering by plasmonic nanostructures. While noble metals such as Ag and Au are currently the reference choices for SERS substrates, fabrication methods should balance enhancement efficiency, reproducibility and scalability. In this study, we propose a novel approach for SERS substrate fabrication using reactive Aerosol Jet Printing (r-AJP) as an innovative additive manufacturing technique. The r-AJP process enables in-flight Ag seed reduction and nucleation of Ag nanoparticles (NPs) by mixing silver nitrate and ascorbic acid aerosols before deposition, as suggested by computational fluid dynamics (CFD) simulations. The resulting coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, revealing the formation of nanoporous crystalline Ag agglomerates partially covered by residual matter. The as-prepared SERS substrates exhibited remarkable SERS activity, demonstrating a high enhancement factor (106) for rhodamine (R6G) detection. Our findings highlight the potential of r-AJP as a scalable and cost-effective fabrication strategy for next-generation SERS sensors, paving the way for the development of a new additive manufacturing tool for noble metal material deposition. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

16 pages, 1892 KiB  
Article
Evolutionary Characteristics of Sulphate Ions in Condensable Particulate Matter Following Ultra-Low Emissions from Coal-Fired Power Plants During Low Winter Temperatures
by Yun Xu, Haixiang Lu, Kai Zhou, Ke Zhuang, Yaoyu Zhang, Chunlei Zhang, Liu Yang and Zhongyi Sheng
Sustainability 2025, 17(14), 6342; https://doi.org/10.3390/su17146342 - 10 Jul 2025
Viewed by 299
Abstract
Coal-fired power plants exacerbate hazy weather under low winter temperatures, while sulphate ions (SO42−) in condensable particulate matter (CPM) emitted from ultra-low emission coal-fired power plants accelerate sulphate formation. The transformation of gaseous precursors (SO2, NOx, NH3 [...] Read more.
Coal-fired power plants exacerbate hazy weather under low winter temperatures, while sulphate ions (SO42−) in condensable particulate matter (CPM) emitted from ultra-low emission coal-fired power plants accelerate sulphate formation. The transformation of gaseous precursors (SO2, NOx, NH3) is the main pathway for sulphate formation by homogeneous or non-homogeneous reactions. For the sustainability of the world, in this paper, the effects of condensation temperature, H2O, NOX and NH3 on the SO42− generation characteristics under low-temperature rapid condensation conditions are investigated. With lower temperatures, especially from 0 °C cooling to −20 °C, the concentration of SO42− was as high as 26.79 mg/m3. With a greater proportion of H2SO4 in the aerosol state, and a faster rate of sulphate formation, H2O vapour condensation can provide a reaction site for sulphuric acid aerosol generation. SO42− in CPM is mainly derived from the non-homogeneous reaction of SO2. SO3 is an important component of CPM and provides a reaction site for the formation of SO42−. SO2 and SO3, in combination with Stefan flow, jointly play a synergistic role in the generation of SO42−. The content of SO42− was as high as 36.18 mg/m3. While NOX sometimes inhibits the formation of SO42−, NH3 has a key role in the nucleation process of CPM. NH3, SO2 and NOX have been found to rapidly form sulphate with particle sizes up to 5 µm at sub-zero temperatures and promote the formation of sulphuric acid aerosols. Full article
Show Figures

Graphical abstract

17 pages, 3528 KiB  
Article
Polyunsaturated Fatty Acid-Rich Waste Vegetable Oil-Derived Bio-Based Zwitterionic Surfactants with High Interfacial Activity for Enhanced Oil Recovery
by Xue-Mei Zhang, Shi-Zhong Yang, Homely Isaya Mtui and Bo-Zhong Mu
Processes 2025, 13(7), 2159; https://doi.org/10.3390/pr13072159 - 7 Jul 2025
Viewed by 371
Abstract
Recently, vegetable oil-derived monounsaturated fatty acids (MUFAs) have predominantly been utilized in producing bio-based surfactants, resulting in low bioresource utilization and high separation costs. Although polyunsaturated fatty acids (PUFAs) are abundant and often co-exist with MUFAs, bio-based surfactants synthesized from PUFA-rich feedstocks have [...] Read more.
Recently, vegetable oil-derived monounsaturated fatty acids (MUFAs) have predominantly been utilized in producing bio-based surfactants, resulting in low bioresource utilization and high separation costs. Although polyunsaturated fatty acids (PUFAs) are abundant and often co-exist with MUFAs, bio-based surfactants synthesized from PUFA-rich feedstocks have been less researched due to concerns regarding their interfacial performance. In this study, a novel series of PUFA-based zwitterionic surfactants with strong interfacial activity was synthesized from waste vegetable oils via an eco-friendly three-step process, optimized through an orthogonal experimental design. The structures and conversion rates of the surfactants were confirmed using GC-MS, LC-MS, and ESI-MS. At 0.5 g/L and 3.0 g/L (typical concentrations often used in most oil fields), the bio-based surfactants derived from waste soybean oil (PUFA-to-MUFA ratio ≈ 2.11, C18:2, and C18:1 in large contents) could reduce the interfacial tension between Daqing crude oil and simulated formation groundwater to an ultra-low level of ~10−3 mN/m. These results confirm our hypothesis that bio-based zwitterionic surfactants derived from PUFA-rich feedstocks possess excellent interfacial activity, providing a potential sustainable option to be considered for chemically enhanced oil recovery. Full article
(This article belongs to the Special Issue Green Chemistry: From Wastes to Value-Added Products (2nd Edition))
Show Figures

Graphical abstract

22 pages, 7787 KiB  
Article
Impact Mechanism Analysis of DFIG with Inertia Control on the Ultra-Low Frequency Oscillation of the Power System
by Wei Fan, Yang Yi, Donghai Zhu, Bilin Zhang, Bo Bao and Yibo Zhang
Energies 2025, 18(13), 3365; https://doi.org/10.3390/en18133365 - 26 Jun 2025
Viewed by 303
Abstract
Amid the global transition toward sustainable energy, regional power grids with high wind power penetration are increasingly emerging. The implementation of frequency control is critically essential for enhancing the frequency support capability of grid-connected devices. However, existing studies indicate this may induce ULFOs [...] Read more.
Amid the global transition toward sustainable energy, regional power grids with high wind power penetration are increasingly emerging. The implementation of frequency control is critically essential for enhancing the frequency support capability of grid-connected devices. However, existing studies indicate this may induce ULFOs (ultra-low frequency oscillations). Current research on ULFOs have been predominantly concentrated on hydro-dominated power systems, with limited exploration into systems where thermal power serves as synchronous sources—let alone elucidation of the underlying mechanisms. This study focuses on regional power grids where wind and thermal power generation coexist. Eigenvalue analysis reveals that frequency regulation control of doubly-fed induction generators (DFIGs) can trigger ULFOs. Leveraging common-mode oscillation theory, an extended system frequency response (ESFR) model incorporating DFIG frequency control is formulated and rigorously validated across a range of operational scenarios. Moreover, frequency-domain analysis uncovers the mechanism by which inertia control affects ULFO behavior, and time-domain simulations are conducted to validate the influence of DFIG control parameters on ULFOs. Full article
Show Figures

Figure 1

13 pages, 2748 KiB  
Article
Polyaniline/Tungsten Disulfide Composite for Room-Temperature NH3 Detection with Rapid Response and Low-PPM Sensitivity
by Kuo Zhao, Yunbo Shi, Haodong Niu, Qinglong Chen, Jinzhou Liu, Bolun Tang and Canda Zheng
Sensors 2025, 25(13), 3948; https://doi.org/10.3390/s25133948 - 25 Jun 2025
Viewed by 383
Abstract
Polyaniline (PANI) is an important conductive-polymer gas-sensing material with working temperature and mechanical flexibilities superior to those of conventional metal oxide sensing materials. However, its applicability is limited by its low sensitivity, high detection limits, and long response/recovery times. In this study, we [...] Read more.
Polyaniline (PANI) is an important conductive-polymer gas-sensing material with working temperature and mechanical flexibilities superior to those of conventional metal oxide sensing materials. However, its applicability is limited by its low sensitivity, high detection limits, and long response/recovery times. In this study, we prepared PANI/WS2 composites via chemical oxidative polymerization and mechanical blending. A multilayer sensor structure—sequentially printed silver-paste heating electrodes, fluorene polyester insulating layer, silver interdigitated electrodes, and sensing material layer—was fabricated on a polyimide substrate via flexible microelectronic printing and systematically characterized using scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The optimized 5 wt% WS2 composite showed enhanced gas-sensing performance, with 219.1% sensitivity to 100 ppm ammonia (2.4-fold higher than that of pure PANI) and reduced response and recovery times of 24 and 91 s, respectively (compared to 81 and 436 s for pure PANI, respectively). Notably, the PANI/WS2 sensor detected an ultralow ammonia concentration (100 ppb) with 0.104% sensitivity. The structural characterization and performance analysis results were used to deduce a mechanism for the enhanced sensing capability. These findings highlight the application potential of PANI/WS2 composites in flexible gas sensors and provide fundamental insights for PANI-based sensing materials research. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

14 pages, 12010 KiB  
Article
A Highly Sensitive Formaldehyde Gas Sensor Based on Ag2O and PtO2 Co-Decorated LaFeO3 Nanofibers Prepared by Electrospinning
by Xin Wang, Fei Song, Huai’an Fu, Shanshan Yu, Kai Zhang, Zhipeng Tang, Qingkuan Meng, Qiang Jing and Bo Liu
Sensors 2025, 25(13), 3848; https://doi.org/10.3390/s25133848 - 20 Jun 2025
Viewed by 451
Abstract
The widespread use of formaldehyde in both industrial and household products has raised significant health concerns, emphasizing the need for highly sensitive sensors to monitor formaldehyde concentrations in the environment in real time. In this study, we report the fabrication of a highly [...] Read more.
The widespread use of formaldehyde in both industrial and household products has raised significant health concerns, emphasizing the need for highly sensitive sensors to monitor formaldehyde concentrations in the environment in real time. In this study, we report the fabrication of a highly sensitive formaldehyde gas sensor based on Ag2O and PtO2 co-decorated LaFeO3 nanofibers, prepared by electrospinning, with an ultra-low detection limit of 10 ppb. Operating at an optimal temperature of 210 °C, the sensor exhibits high sensitivity, with a response value of 283 to 100 ppm formaldehyde—nearly double the response of the Ag-only decorated LaFeO3 sensor. Additionally, the sensor demonstrated good selectivity, repeatability, and long-term stability over 80 days. The enhanced sensitivity is attributed to the strong adsorption ability of Ag towards both oxygen and formaldehyde, Ag’s catalytic oxidation of formaldehyde, PtO2’s catalytic action on oxygen, and the spillover effect of PtO2 on oxygen. This sensor holds significant potential for environmental monitoring due to its ultrahigh sensitivity and ease of fabrication. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

19 pages, 8053 KiB  
Article
Room-Temperature Environmental Gas Detection: Performance Comparison of Nanoparticle-Based Sensors Fabricated by Electrospray, Drop-Casting, and Dry Printing Based on Spark Ablation
by Carlos Sánchez-Vicente, José Pedro Santos, Isabel Sayago, Vincent Mazzola and Leandro Sacco
Chemosensors 2025, 13(6), 219; https://doi.org/10.3390/chemosensors13060219 - 17 Jun 2025
Viewed by 646
Abstract
Chemical nanosensors based on tin dioxide (SnO2) and zinc oxide (ZnO) nanoparticles (NPs) were developed and characterized for the detection of low concentrations of atmospheric pollutants, such as nitrogen dioxide (NO2) and carbon monoxide (CO). The sensing layers were [...] Read more.
Chemical nanosensors based on tin dioxide (SnO2) and zinc oxide (ZnO) nanoparticles (NPs) were developed and characterized for the detection of low concentrations of atmospheric pollutants, such as nitrogen dioxide (NO2) and carbon monoxide (CO). The sensing layers were prepared using three fabrication methods: drop-casting, electrospray, and spark ablation coupled with an inertial impaction printer, to compare their performance. Multiple surface characterization techniques were carried out to investigate the surface morphology and elemental composition of the deposited layers such as SEM (scanning electron microscopy) and XPS (X-ray photoelectron spectroscopy) analyses. UV light photoactivation enabled the sensors to detect ultra-low concentrations of the target gases at room temperature (100 ppb NO2 and 1 ppm CO). The measurements were conducted at 50% relative humidity to simulate real environmental conditions. All sensors were capable of detecting the target gases. Drop-casting is the simplest and most cost-effective technique, but it is also the least reproducible. In contrast, sensors based on the spark ablation technique achieved more homogeneous sensing layers, with practically no nanoparticle agglomeration, resulting in devices with lower noise and drift in their electrical response. Full article
Show Figures

Graphical abstract

13 pages, 687 KiB  
Review
Low LDL-Cholesterol and Hemorrhagic Risk: Mechanistic Insights and Clinical Perspectives
by Carmine Siniscalchi, Manuela Basaglia, Tiziana Meschi, Egidio Imbalzano, Francesca Futura Bernardi, Alessandro Perrella, Ugo Trama, Angelica Passannanti, Pierpaolo Di Micco and Concetta Schiano
Int. J. Mol. Sci. 2025, 26(12), 5612; https://doi.org/10.3390/ijms26125612 - 11 Jun 2025
Viewed by 701
Abstract
Low-density lipoprotein cholesterol (LDL-C) plays a central role in lipid metabolism and is a well-established therapeutic target for the prevention of atherosclerotic cardiovascular diseases (CVDs). In recent years, increasingly aggressive lipid-lowering strategies have been adopted to achieve ultra-low LDL-C concentrations (<55 mg/dL or [...] Read more.
Low-density lipoprotein cholesterol (LDL-C) plays a central role in lipid metabolism and is a well-established therapeutic target for the prevention of atherosclerotic cardiovascular diseases (CVDs). In recent years, increasingly aggressive lipid-lowering strategies have been adopted to achieve ultra-low LDL-C concentrations (<55 mg/dL or even <30 mg/dL) in high-risk patients. While the benefits of LDL-C reduction in lowering the incidence of myocardial infarction and ischemic stroke are well documented, emerging clinical evidence has raised concerns about a potential association between very low LDL-C levels and an increased risk of bleeding, particularly hemorrhagic stroke and gastrointestinal hemorrhage. This review critically examines the molecular mechanisms by which reduced LDL-C levels may influence the hemostatic system and vascular integrity. It explores the complex interplay between cholesterol availability and platelet function, endothelial barrier stability, and coagulation pathways. In addition, we assess experimental and clinical studies supporting this association and discuss how these findings may inform risk stratification and personalized lipid-lowering strategies. A deeper understanding of the biological basis of this paradoxical risk is essential for achieving a safe, balanced, and effective approach to cardiovascular prevention. Full article
(This article belongs to the Special Issue New Cardiovascular Risk Factors: 2nd Edition)
Show Figures

Graphical abstract

15 pages, 2683 KiB  
Article
Study on Mechanism of Surfactant Adsorption at Oil–Water Interface and Wettability Alteration on Oil-Wet Rock Surface
by Xinyu Tang, Yaoyao Tong, Yuhui Zhang, Pujiang Yang, Chuangye Wang and Jinhe Liu
Molecules 2025, 30(12), 2541; https://doi.org/10.3390/molecules30122541 - 10 Jun 2025
Viewed by 766
Abstract
With the depletion of conventional light crude oil reserves in China, the demand for heavy oil exploitation has grown, highlighting the increasing significance of enhanced heavy oil recovery. Surfactants reduce oil–water interfacial tension, modify the wettability of reservoir rocks, and facilitate the emulsification [...] Read more.
With the depletion of conventional light crude oil reserves in China, the demand for heavy oil exploitation has grown, highlighting the increasing significance of enhanced heavy oil recovery. Surfactants reduce oil–water interfacial tension, modify the wettability of reservoir rocks, and facilitate the emulsification of heavy oil. Consequently, investigating the adsorption behavior of surfactants at oil–water interfaces and the underlying mechanisms of wettability alteration is of considerable importance. In this study, the surface tension of four surfactants and their interfacial tension with Gudao heavy oil were measured. Among these, BS-12 exhibited a critical micelle concentration (CMC) of 6.26 × 10−4 mol·dm−3, a surface tension of 30.15 mN·m−1 at the CMC, and an adsorption efficiency of 4.54. In low-salinity systems, BS-12 achieved an ultralow interfacial tension on the order of 10−3 mN·m−1, demonstrating excellent surface activity. Therefore, BS-12 was selected as the preferred emulsifier for Gudao heavy oil recovery. Additionally, FT-IR, SEM, and contact angle measurements were used to elucidate the interfacial adsorption mechanism between BS-12 and aged cores. The results indicate that hydrophobic interactions between the hydrophobic groups of BS-12 and the adsorbed crude oil fractions play a key role. Core flooding experiments, simulating the formation of low-viscosity oil-in-water (O/W) emulsions under reservoir conditions, showed that at low flow rates, crude oil and water interact more effectively within the pores. The extended contact time between heavy oil and the emulsifier led to significant changes in rock wettability, enhanced interfacial activity, improved oil recovery efficiency, and increased oil content in the emulsion. This study analyzes the role of surfactants in interfacial adsorption and the multiphase flow behavior of emulsions, providing a theoretical basis for surfactant-enhanced oil recovery. Full article
Show Figures

Figure 1

15 pages, 1941 KiB  
Article
The High Interfacial Activity of Betaine Surfactants Triggered by Nonionic Surfactant: The Vacancy Size Matching Mechanism of Hydrophobic Groups
by Guoqiao Li, Jinyi Zhao, Lu Han, Qingbo Wu, Qun Zhang, Bo Zhang, Rushan Yue, Feng Yan, Zhaohui Zhou and Wei Ding
Molecules 2025, 30(11), 2413; https://doi.org/10.3390/molecules30112413 - 30 May 2025
Viewed by 473
Abstract
Alkyl sulfobetaine shows a strong advantage in the compounding of surfactants due to the defects in the size matching of hydrophilic and hydrophobic groups. The interfacial tensions (IFTs) of alkyl sulfobetaine (ASB) and xylene-substituted alkyl sulfobetaine (XSB) with oil-soluble (Span80) and water-soluble (Tween80) [...] Read more.
Alkyl sulfobetaine shows a strong advantage in the compounding of surfactants due to the defects in the size matching of hydrophilic and hydrophobic groups. The interfacial tensions (IFTs) of alkyl sulfobetaine (ASB) and xylene-substituted alkyl sulfobetaine (XSB) with oil-soluble (Span80) and water-soluble (Tween80) nonionic surfactants on a series of n-alkanes were studied using a spinning drop tensiometer to investigate the mechanism of IFT between nonionic and betaine surfactants. The two betaine surfactants’ IFTs are considerably impacted differently by Span80 and Tween80. The results demonstrate that Span80, through mixed adsorption with ASB and XSB, can create a relatively compacted interfacial film at the n-alkanes–water interface. The equilibrium IFT can be reduced to ultra-low values of 5.7 × 10−3 mN/m at ideal concentrations by tuning the fit between the size of the nonionic surfactant and the size of the oil-side vacancies of the betaine surfactant. Nevertheless, Tween80 has minimal effect on the IFT of betaine surfactants, and the betaine surfactant has no vacancies on the aqueous side. The present study provides significant research implications for screening betaine surfactants and their potential application in enhanced oil recovery (EOR) processes. Full article
Show Figures

Figure 1

15 pages, 6161 KiB  
Article
Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection
by Duygu Yilmaz Aydin, Jie Jayne Wu and Jiangang Chen
Biosensors 2025, 15(5), 315; https://doi.org/10.3390/bios15050315 - 14 May 2025
Viewed by 492
Abstract
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive [...] Read more.
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive biosensor for the ultralow concentration detection of hydrogen peroxide (H2O2). The detection mechanism leverages a Fenton-like reaction, where H2O2 interacts with Cu-Cys-GSH nanoparticles to generate hydroxyl radicals (·OH) through redox cycling between Cu2+ and Cu+ ions. These redox processes induce changes in the sensor’s surface charge and dielectric properties, enabling highly sensitive capacitive sensing at gold interdigitated electrodes (IDEs). The influence of chirality on sensing performance was investigated by synthesizing nanoparticles with both L- and D-cysteine enantiomers. Comparative analysis revealed that the stereochemistry of cysteine impacts the catalytic activity and sensor response, with Cu-L-Cys-GSH nanoparticles exhibiting superior performance. Specifically, the biosensor achieved a linear detection range from 1.0 fM to 1.0 pM and demonstrated an ultra-sensitive detection limit of 21.8 aM, outperforming many existing methods for H2O2 detection. The sensor’s practical performance was further validated using milk and saliva samples, yielding high recovery rates and confirming its robustness and accuracy for real-world applications. This study offers a disposable, low-cost sensing platform compatible with sustainable healthcare practices and facilitates easy integration into point-of-care diagnostic systems. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

24 pages, 5625 KiB  
Review
A Review of High-Temperature Resistant Silica Aerogels: Structural Evolution and Thermal Stability Optimization
by Zhenyu Zhu, Wanlin Zhang, Hongyan Huang, Wenjing Li, Hao Ling and Hao Zhang
Gels 2025, 11(5), 357; https://doi.org/10.3390/gels11050357 - 13 May 2025
Cited by 1 | Viewed by 1604
Abstract
Silica aerogels exhibit exceptionally low thermal conductivity and a low apparent density, as they are unique porous nanomaterials. They are extensively used in thermal insulation in terms of aerospace and building construction, adsorption processes for environmental applications, concentrating solar power systems, and so [...] Read more.
Silica aerogels exhibit exceptionally low thermal conductivity and a low apparent density, as they are unique porous nanomaterials. They are extensively used in thermal insulation in terms of aerospace and building construction, adsorption processes for environmental applications, concentrating solar power systems, and so on. However, the degradation of the silica aerogel’s nanoporous structure at high temperatures seriously restricts their practical applications. Through a comprehensive review of the high-temperature structural evolution and sintering mechanisms of silica aerogels, this paper introduces two strategies to enhance their thermal stability, including heteroatom doping and surface heterogeneous structure construction. In particular, atomic layer deposition (ALD) of ultra-thin coatings on silica aerogel holds significant potential for enhancing thermal stability, while preserving its ultra-low thermal conductivity. Full article
(This article belongs to the Special Issue Advanced Aerogels: From Design to Application)
Show Figures

Graphical abstract

17 pages, 3745 KiB  
Article
Core–Shell Magnetic Gold Nanoparticles with Chitosan Coating as a SERS Substrate: A Rapid Detection Strategy for Malachite Green Contamination in Aquatic Foods
by Yihui Yang, Tao Huang, Sijia Hu, Hang Ye, Jiali Xing and Shengnan Zhan
Fishes 2025, 10(5), 221; https://doi.org/10.3390/fishes10050221 - 11 May 2025
Viewed by 473
Abstract
In this study, we developed a novel SERS-active magnetic substrate (MBs@CS@AuNPs) for detecting malachite green (MG) in aquatic products, including shrimp, cod, and aquaculture water. The substrate combines chitosan-functionalized magnetic nanobeads with dense gold nanoparticles. It efficiently enriches MG through electrostatic and π–π [...] Read more.
In this study, we developed a novel SERS-active magnetic substrate (MBs@CS@AuNPs) for detecting malachite green (MG) in aquatic products, including shrimp, cod, and aquaculture water. The substrate combines chitosan-functionalized magnetic nanobeads with dense gold nanoparticles. It efficiently enriches MG through electrostatic and π–π interactions, generates high-density plasmonic hotspots for stable signals, and utilizes a superparamagnetic core to concentrate MG molecules. This design achieved an ultralow detection limit of 10−9 M for MG in aquaculture samples, with a linear range spanning from 10−3 to 10−10 M (R2 = 0.999). The substrate demonstrated superior performance in untreated, complex food matrices (e.g., shrimp, cod), outperforming conventional magnetic mass spectrometry systems that are prone to matrix interference. This work introduces an innovative approach for detecting harmful residues in food during environmental safety monitoring. Full article
Show Figures

Figure 1

13 pages, 5903 KiB  
Article
Assembled Carbon Nanostructure Prepared by Spray Freeze Drying for Si-Based Anodes
by Wanxiong Zhu, Liewen Guo, Kairan Li, Mengxue Shen, Chang Lu, Zipeng Jiang, Huaihe Song and Ang Li
Nanomaterials 2025, 15(9), 661; https://doi.org/10.3390/nano15090661 - 26 Apr 2025
Viewed by 522
Abstract
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a [...] Read more.
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a modified spray freeze drying technique to construct multidimensional carbon nanostructures. The continuous morphological transition from carbon nanowires to carbon nanosheets was facilitated by the inducement of ultralow-temperature phase separation and the effect of polymer self-assembly. The unique wrinkled carbon nanosheet encapsulation effectively mitigated the stress concentration induced by the aggregation of silicon nanoparticles, while the open two-dimensional structure buffered the volume changes of silicon. As expected, the SSC-5M composite retained a reversible capacity of 1279 mAh g−1 after 100 cycles at 0.2 C (1 C = 1700 mAh g−1) and exhibited a capacity retention of 677.1 mAh g−1 after 400 cycles at 1 C, demonstrating excellent cycling stability. This study offers a new strategy for the development of silicon-based energy storage devices. Full article
(This article belongs to the Special Issue Nanoscale Carbon Materials for Advanced Energy-Related Applications)
Show Figures

Figure 1

22 pages, 15221 KiB  
Article
Effects of Benzo[k]fluoranthene at Two Temperatures on Viability, Structure, and Detoxification-Related Genes in Rainbow Trout RTL-W1 Cell Spheroids
by Telma Esteves, Fernanda Malhão, Eduardo Rocha and Célia Lopes
Toxics 2025, 13(4), 302; https://doi.org/10.3390/toxics13040302 - 12 Apr 2025
Cited by 2 | Viewed by 703
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and global warming impact aquatic ecosystems, eventually interacting. Monolayer (2D) cultures of cell lines, such as the rainbow trout liver RTL-W1, are employed for unveiling toxicological effects in fish. Nonetheless, three-dimensional (3D) models constitute an alternate paradigm, better emulating [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) and global warming impact aquatic ecosystems, eventually interacting. Monolayer (2D) cultures of cell lines, such as the rainbow trout liver RTL-W1, are employed for unveiling toxicological effects in fish. Nonetheless, three-dimensional (3D) models constitute an alternate paradigm, better emulating in vivo responses. Here, ultra-low attachment (ULA) plates were used to generate ten-day-old RTL-W1 spheroids for exposure to a control, a solvent control (0.1% DMSO) and the model PAH benzo[k]fluoranthene (BkF) at 10 and 100 nM and at 18 and 23 °C (thermal stress). After a 4-day exposure, spheroids were analyzed for viability (alamarBlue and lactate dehydrogenase), biometry (area, diameter and sphericity), histocytology (optical and electron microscopy), and mRNA levels of the detoxification-related genes cytochrome P450 (CYP)1A, CYP3A27, aryl hydrocarbon receptor (AhR), glutathione S-transferase (GST), uridine diphosphate–glucuronosyltransferase (UGT), catalase (CAT), multidrug resistance-associated protein 2 (MRP2) and bile salt export protein (BSEP). Immunocytochemistry (ICC) was used to assess CYP1A protein expression. Neither temperature nor BkF exposure altered the spheroids’ viability or biometry. BkF modified the cell’s ultrastructure. The expression of CYP1A was augmented with both BkF concentrations, while AhR’s increased at the higher concentration. The CYP1A protein showed a dose-dependent increase. Temperature and BkF concurrently modelled UGT’s expression, which increased in the 100 nM condition at 23 °C. Conversely, CYP3A27, MRP2, and BSEP expressions lowered at 23 °C. CAT and GST mRNA levels were uninfluenced by either stressor. Overall, BkF and temperature impacted independently or interactively in RTL-W1 spheroids. These seem to be useful novel tools for studying the liver-related effects of temperature and PAHs. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

Back to TopTop