Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = ultra-high Q factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4763 KiB  
Article
Multi-Band Terahertz Metamaterial Absorber Integrated with Microfluidics and Its Potential Application in Volatile Organic Compound Sensing
by Liang Wang, Bo Zhang, Xiangrui Dong, Qi Lu, Hao Shen, Yi Ni, Yuechen Liu and Haitao Song
Electronics 2025, 14(13), 2731; https://doi.org/10.3390/electronics14132731 - 7 Jul 2025
Viewed by 260
Abstract
In this study, a terahertz microfluidic multi-band sensor was designed. Unlike previous microfluidic absorption sensors that rely on dipole resonance, the proposed sensor uses a physical mechanism for absorption by exciting higher-order lattice resonances in microfluidic structures. With a Fabry–Perot cavity, the sensor [...] Read more.
In this study, a terahertz microfluidic multi-band sensor was designed. Unlike previous microfluidic absorption sensors that rely on dipole resonance, the proposed sensor uses a physical mechanism for absorption by exciting higher-order lattice resonances in microfluidic structures. With a Fabry–Perot cavity, the sensor can form an absorption peak with a high quality factor (Q) and narrow full width at half maximum (FWHM). A high Q value and a narrow FWHM are valuable in the field of sensing and provide strong support for high-precision sensing. On this basis, the sensing performance of the device was investigated. The simulation results clearly show that the absorption sensor has ultra-high sensitivity, which reaches 400 GHz/Refractive Index Unit (RIU). In addition, the sensor generates three absorption peaks, overcoming the limitations of a single frequency band in a composite resonance mode and multidimensional frequency response, which has potential application value in the field of volatile organic compound (VOC) sensing. Full article
Show Figures

Figure 1

21 pages, 2666 KiB  
Article
Metabolites from the Dendrobium Endophyte Pseudomonas protegens CM-YJ44 Alleviate Insulin Resistance in HepG2 Cells via the IRS1/PI3K/Akt/GSK3β/GLUT4 Pathway
by Luqi Qin, Yixia Zhou, Bei Fan, Jiahuan Zheng, Rao Diao, Jiameng Liu and Fengzhong Wang
Pharmaceuticals 2025, 18(6), 817; https://doi.org/10.3390/ph18060817 - 29 May 2025
Viewed by 475
Abstract
Background/Objectives: Endophytes can produce bioactive metabolites similar to their host plants. CM-YJ44 (Pseudomonas protegens CHA0, 99.24% similarity), an endophyte from Dendrobium officinale, has not yet validated hypoglycemic potential. This study aimed to evaluate its anti-insulin resistance (IR) activity and metabolite profile. [...] Read more.
Background/Objectives: Endophytes can produce bioactive metabolites similar to their host plants. CM-YJ44 (Pseudomonas protegens CHA0, 99.24% similarity), an endophyte from Dendrobium officinale, has not yet validated hypoglycemic potential. This study aimed to evaluate its anti-insulin resistance (IR) activity and metabolite profile. Methods: The fermentation broth of CM-YJ44 was separated into three fractions (CM-YJ44-1, -2, and -3) using semi-preparative high-performance liquid chromatography (pre-HPLC). An IR HepG2 cell model was constructed to evaluate their glucose uptake capacity. CM-YJ44-3 was further tested for oxidative stress, inflammatory, and insulin signaling pathway activation. Metabolites in CM-YJ44-3 were preliminarily identified using the Q Exactive Focus LC-MS system (QE), and the dendrobine content was quantified by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Molecular docking was performed to predict the binding affinities between dendrobine and target proteins. Results: Among the three fractions, CM-YJ44-3 significantly reduced nitric oxide (NO) and reactive oxygen species (ROS) levels in IR cells, enhanced glycogen synthesis, upregulated the activities of pyruvate kinase (PK) and hexokinase (HK), and suppressed the expression of inflammatory factors. Its mechanism of action was mainly through activation of the IRS1/PI3K/Akt/GSK3β/GLUT4 signaling pathway. QE analysis preliminarily identified 24 metabolites in CM-YJ44-3. Quantitative analysis by UPLC-MS/MS showed that the dendrobine content was 78.73 ± 4.29 ng/mL. Molecular docking results indicated that dendrobine exhibited binding energies below −5 kcal/mol with multiple target proteins involved in this signaling pathway, suggesting it may be a key bioactive component responsible for the anti-IR effect. Conclusions: This study provides the first evidence of hypoglycemic bioactive metabolite production by strain CM-YJ44, indicating its potential as a novel microbial candidate for alleviating IR. Full article
Show Figures

Graphical abstract

53 pages, 1226 KiB  
Review
Global Occurrence of Cyanotoxins in Drinking Water Systems: Recent Advances, Human Health Risks, Mitigation, and Future Directions
by Jerikias Marumure, Willis Gwenzi, Zakio Makuvara, Tinoziva T. Simbanegavi, Richwell Alufasi, Marvelous Goredema, Claudious Gufe, Rangarirayi Karidzagundi, Piotr Rzymski and Dariusz Halabowski
Life 2025, 15(5), 825; https://doi.org/10.3390/life15050825 - 21 May 2025
Cited by 1 | Viewed by 1208
Abstract
This paper applies a semi-quantitative approach to review the diversity, environmental controls, detection methods, human health risks, and mitigation of cyanotoxins in drinking water systems (DWSs). It discusses the environmental factors controlling the occurrence of cyanotoxins, presents the merits and limitations of emerging [...] Read more.
This paper applies a semi-quantitative approach to review the diversity, environmental controls, detection methods, human health risks, and mitigation of cyanotoxins in drinking water systems (DWSs). It discusses the environmental factors controlling the occurrence of cyanotoxins, presents the merits and limitations of emerging methods of their detection (qPCR, liquid chromatography–mass spectrometry, and electrochemical biosensors), and outlines the human exposure pathways and health outcomes with identification of high-risk groups and settings. High-risk groups include (1) communities relying on untreated drinking water from unsafe, polluted water sources and (2) low-income countries where cyanotoxins are not routinely monitored in DWSs. The fate and behavior processes are discussed, including removing cyanotoxins in DWSs based on conventional and advanced treatment processes. The available methods for cyanotoxin removal presented in this paper include (1) polymer-based adsorbents, (2) coagulation/flocculation, (3) advanced oxidation processes, (4) ultra- and nanofiltration, and (5) multi-soil layer systems. Future research should address (1) detection and fate in storage and conveyance facilities and at the point of consumption, (2) degradation pathways and toxicity of by-products or metabolites, (3) interactive health effects of cyanotoxins with legacy and emerging contaminants, (4) removal by low-cost treatment techniques (e.g., solar disinfection, boiling, bio-sand filtration, and chlorination), (5) quantitative health risk profiling of high-risk groups, and (6) epidemiological studies to link the prevalence of human health outcomes (e.g., cancer) to cyanotoxins in DWSs. Full article
Show Figures

Figure 1

25 pages, 4439 KiB  
Article
Genetic Diversity and Metabolic Profile of Tibetan Medicinal Plant Saussurea obvallata
by Shengnan Zhang, Sujuan Wang, Shiyan Wang, Hao Su and Ji De
Genes 2025, 16(5), 593; https://doi.org/10.3390/genes16050593 - 17 May 2025
Viewed by 560
Abstract
Background/Objectives: Saussurea obvallata (DC.) Edgew., Asteraceae, is a traditional medicinal herbnative to the Qinghai–Tibet Plateau (QTP). Pharmacological investigationshave validated its pharmacological effects in anti-tumor, anti-inflammatory, heat-clearing, detoxifying, and analgesia. S. obv is presently facing habitat fragmentation and population decline. Therefore, we analyzed its [...] Read more.
Background/Objectives: Saussurea obvallata (DC.) Edgew., Asteraceae, is a traditional medicinal herbnative to the Qinghai–Tibet Plateau (QTP). Pharmacological investigationshave validated its pharmacological effects in anti-tumor, anti-inflammatory, heat-clearing, detoxifying, and analgesia. S. obv is presently facing habitat fragmentation and population decline. Therefore, we analyzed its genetic and chemical diversity to provide a scientific basis for the conservation and sustainable use of S. obv. Methods: Seven populations of S. obv were sampled from Xizang, China. The genetic diversity was analyzed using inter-simple sequence repeat (ISSR) markers, and metabolites were identified by ultra-high-performance liquid chromatography-tandem-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). Correlation analysis among genetic diversity, differential metabolites, and climatic factors were performed by R. Results: The genetic diversity among and within populations were both lowly and significantly correlated with geographical distance, showing a decreasing trend from east to west of the QTP. A total of 110 compounds were identified, including flavonoids, phenylpropanoids, lipids, fatty acids, terpenoids, alkaloids, etc. The metabolite contents among populations varied greatly and were related to environmental factors, mainly annual mean temperature and temperature fluctuation. The genetic diversity had little effect on the metabolic differences. Conclusions: These findings provided valuable baseline information for the conservation and pharmacological utilization of S. obv. Meanwhile, further research is necessary for the efficacy evaluation of anti-inflammatory, anti-tumor, radiation protection, and scar removal both in vitro and in vivo. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3565 KiB  
Article
Extraction of Bound Polyphenols from Elaeagnus angustifolia L. by Ultrasonic-Assisted Enzymatic Hydrolysis and Evaluation of Its Antioxidant Activity In Vitro
by Jingjing Lv, Lu Li, Zilong Liang, Wenyue Wu, Na Zhang and Qinghua Jia
Foods 2025, 14(9), 1567; https://doi.org/10.3390/foods14091567 - 29 Apr 2025
Viewed by 571
Abstract
Herein, Elaeagnus angustifolia L. was utilized as a raw material to extract bound polyphenols using an ultrasound-assisted complex enzyme method for the first time. The effects of enzyme ratio, ultrasonic time, liquid-to-solid ratio, and pH value on the bound polyphenol yield were investigated [...] Read more.
Herein, Elaeagnus angustifolia L. was utilized as a raw material to extract bound polyphenols using an ultrasound-assisted complex enzyme method for the first time. The effects of enzyme ratio, ultrasonic time, liquid-to-solid ratio, and pH value on the bound polyphenol yield were investigated using single-factor experiments. The key parameters were subsequently optimized using the Box–Behnken design. The optimal conditions identified were as follows: enzyme ratio (α-amylase/cellulase = 5:1 mg/mg), ultrasonic time of 50 min, liquid-to-solid ratio of 12:1 mL/g, and pH value of 5. Under these conditions, the bound polyphenol yield was measured at 13.970 ± 0.3 mg/g. A total of 27 phenolic compounds were identified using ultrahigh-performance liquid chromatography–ion mobility quadrupole time-of-flight mass spectrometry (UPLC–IMS-QTOF-MS), including two coumarins, five lignins, 10 polyphenols, nine flavonoids, and one tannin, and specifically containing Angeloylgomisin Q, Yakuchinone A, Furosin, 6-Dehydrogingerdione, and 4′-Methylpinosylvin, and so on. Antioxidant activity was assessed using the 1,1-diphenyl-2-picryl-hydrazil (DPPH) and 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) methods, revealing significant antioxidant potential. This study introduced a novel extraction process for bound polyphenols from E. angustifolia L. and provided the first qualitative analysis of bound polyphenols in this species, establishing a scientific foundation for its development and application in the functional food, medicine, and cosmetics industries. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

10 pages, 5727 KiB  
Article
Dual-Band Topological Valley Cavity in Mid-Infrared Range
by Chen Kang, Jinling Yu, Can Chen, Yunfeng Lai, Shuying Cheng, Yonghai Chen, Yuan Li, Shuman Liu, Jinchuan Zhang and Fengqi Liu
Photonics 2025, 12(5), 420; https://doi.org/10.3390/photonics12050420 - 28 Apr 2025
Viewed by 427
Abstract
Topological edge states, emerging at boundaries between regions with distinct topological properties, enable unidirectional transmission with robustness against defects and disorder. However, achieving dual-band operation with high performance remains challenging. Here, we integrate dual-band topological edge states into a valley photonic crystal cavity [...] Read more.
Topological edge states, emerging at boundaries between regions with distinct topological properties, enable unidirectional transmission with robustness against defects and disorder. However, achieving dual-band operation with high performance remains challenging. Here, we integrate dual-band topological edge states into a valley photonic crystal cavity operating in the mid-infrared region, leveraging triangular scatterers. A key contribution of this work is the simultaneous realization of ultra-high Q-factors (up to 6.1593 × 109) and uniform mode distribution (inverse participation ratio < 2) across both bands. Moreover, the dual-band cavity exhibits exceptional defect tolerance. These findings provide a promising platform for mid-infrared photonic integration, paving the way for high-performance optical cavities in multifunctional photonic systems. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

20 pages, 5401 KiB  
Article
Detection of Cereibacter azotoformans-YS02 as a Novel Source of Coenzyme Q10 and Its Metabolic Analysis
by Meijie Song, Qianqian Xu, Rifat Nowshin Raka, Chunhua Yin, Xiaolu Liu and Hai Yan
Antioxidants 2025, 14(4), 429; https://doi.org/10.3390/antiox14040429 - 1 Apr 2025
Viewed by 718
Abstract
Coenzyme Q10 (CoQ10), a high-value-added nutraceutical antioxidant, exhibits an excellent ability to prevent cardiovascular disease. Here, a novel Cereibacter azotoformans strain, designated YS02, was isolated for its ability to produce CoQ10 and genetically characterized by whole genome sequencing (WGS). The CoQ10 biosynthesis and [...] Read more.
Coenzyme Q10 (CoQ10), a high-value-added nutraceutical antioxidant, exhibits an excellent ability to prevent cardiovascular disease. Here, a novel Cereibacter azotoformans strain, designated YS02, was isolated for its ability to produce CoQ10 and genetically characterized by whole genome sequencing (WGS). The CoQ10 biosynthesis and metabolism differences of YS02 under various culture conditions were also systematically investigated. Phylogenetic analysis based on 16 S rRNA genes, along with taxonomic verification using average nucleotide identity (ANI) analysis, confirmed its classification as C. azotoformans. Enzymatic genes dxs, dxr, idi, ubiA, and ubiG were annotated in YS02, which are critical genetic hallmarks for CoQ10 biosynthesis. Under aerobic–dark cultivation, YS02 grows well, and CoQ10 production can reach 201 mg/kg. A total of 542 small-molecule metabolites were identified from YS02 in aerobic–dark and anaerobic–light cultivation via ultra-high performance liquid chromatography–coupled quadrupole orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive Orbitrap MS). Additionally, 40 differential metabolites were screened through multivariate statistical analysis. Metabolic pathway analysis revealed that the biosynthesis of phenylalanine, tyrosine, and tryptophan might be latent factors influencing CoQ10 production discrepancies within YS02 under both cultural modes. These findings represent new insights into the metabolic mechanism of YS02 and underscore its potential as an alternative strain source for industrial CoQ10 production, enriching the existing resources. Full article
Show Figures

Figure 1

13 pages, 3845 KiB  
Article
Ultra-Compact Multimode Micro-Racetrack Resonator Based on Cubic Spline Curves
by Zhen Li, Chuang Cheng, Xin Fu and Lin Yang
Photonics 2025, 12(4), 326; https://doi.org/10.3390/photonics12040326 - 31 Mar 2025
Viewed by 483
Abstract
Micro-racetrack resonators have become one of the key components for realizing signal processing, generation, and integration in microwave photonics, owing to their high Q factor, compact footprint, and tunability. However, most of the reported micro-racetrack resonators are confined to the single-mode regime. In [...] Read more.
Micro-racetrack resonators have become one of the key components for realizing signal processing, generation, and integration in microwave photonics, owing to their high Q factor, compact footprint, and tunability. However, most of the reported micro-racetrack resonators are confined to the single-mode regime. In this paper, we designed an ultra-compact multimode micro-racetrack resonator (MMRR) based on shape-optimized multimode waveguide bends (MWBs). Cubic spline curves were used to represent the MWB boundary and adjoint methods were utilized for inverse optimization, achieving an effective radius of 8 μm. Asymmetric directional couplers (ADCs) were designed to independently couple three modes into a multimode micro-racetrack, according to phase-matching conditions and transmission analysis. The MMRR was successfully fabricated on a commercial platform using a 193 nm dry lithography process. The device exhibited high loaded Q factors of 2.3 × 105, 4.1 × 104, and 2.9 × 104, and large free spectral ranges (FSRs) of 5.4, 4.7, and 4.2 nm for TE0, TE1, and TE2 modes, with about a 19 × 55 μm2 footprint. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

9 pages, 4292 KiB  
Article
High-Quality-Factor Electromagnetically Induced Transparency in All-Dielectric Metasurfaces Supporting Quasi-Bound States in the Continuum
by Lei Zhang, Zeyang Chu and Suxia Xie
Photonics 2025, 12(3), 291; https://doi.org/10.3390/photonics12030291 - 20 Mar 2025
Viewed by 563
Abstract
Electromagnetically induced transparency based on bound states in the continuum (EIT-BIC) has emerged as a significant research focus in photonics due to its exceptionally high quality factor (Q-factor). This study investigates a periodic dielectric metasurface composed of silicon bar–square ring resonators, [...] Read more.
Electromagnetically induced transparency based on bound states in the continuum (EIT-BIC) has emerged as a significant research focus in photonics due to its exceptionally high quality factor (Q-factor). This study investigates a periodic dielectric metasurface composed of silicon bar–square ring resonators, with a comparative analysis of both monolayer and bilayer configurations. Through systematic examination of transmission spectra, electric field distributions, and Q-factors, we have identified the existence of EIT-BIC and quasi-BIC phenomena in these structures. The experimental results demonstrate distinct characteristics between monolayer and bilayer systems. In the monolayer configuration, a single BIC is observed in the low-frequency region, with its quasi-BIC state generating an EIT window. In contrast, the bilayer structure exhibits dual BICs and dual EIT phenomena in the same spectral range, demonstrating enhanced spectral modulation capabilities. Notably, in the high-frequency region, both configurations maintain a single BIC, with the number remaining independent of structural layer count. The number and spectral positions of BICs can be effectively modulated through variations in incident angle and structural symmetry. In particular, the bilayer configuration demonstrates superior modulation characteristics under oblique incidence conditions, where the quasi-BIC linewidth broadens with increasing incident angle, forming a broader high-Q transparency window. This comparative study between monolayer and bilayer systems not only elucidates the influence of structural layers on BIC characteristics but also provides new insights for flexible spectral control. These findings hold significant implications for artificial linear modulation and play a crucial role in the design of future ultra-high-sensitivity sensors, particularly in optimizing performance through structural layer engineering. Full article
(This article belongs to the Special Issue Terahertz Advancements in Fibers, Waveguides and Devices)
Show Figures

Figure 1

16 pages, 5309 KiB  
Article
Optimizing High-Power Performance of [001]-Oriented Pb(Mg1/3Nb2/3)-PbTiO3 Through Combined DC and AC Polarization Above Curie Temperature
by Yuliang Zhu, Xiaobo Wang, Wenchao Xue, Xinran Wen and Chengtao Luo
Actuators 2025, 14(2), 53; https://doi.org/10.3390/act14020053 - 24 Jan 2025
Viewed by 716
Abstract
Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals (PMN-PT SCs) are widely utilized in high-performance piezoelectric devices due to their exceptional piezoelectric properties. Among the various post-processing techniques for domain engineering in PMN-PT SCs, alternating current polarization (ACP) has become a [...] Read more.
Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals (PMN-PT SCs) are widely utilized in high-performance piezoelectric devices due to their exceptional piezoelectric properties. Among the various post-processing techniques for domain engineering in PMN-PT SCs, alternating current polarization (ACP) has become a widely adopted method for enhancing piezoelectric performance. This study proposes a new ultrahigh-temperature field-cooling polarization (UFCP) technique, combining direct current polarization (DCP) and ACP with field cooling above the Curie temperature. Dielectric spectra indicate that the UFCP method promotes electric field-induced phase transitions above the Curie point, forming a stable multiphase configuration. The transverse piezoelectric coefficient d31 of UFCP SCs is 1126 pC/N, and the electromechanical coupling factor k31 is 0.559. Compared with traditional DCP, UFCP increases d31 by 68.6%, the mechanical quality factor Qm by 16.7%, and the piezoelectric figure of merit (FOM) by 98.3%. Furthermore, under high-power excitation with a root-mean-square voltage of 15 V, UFCP achieves a 343% increase in power and a 130.5% improvement in the FOM compared with DCP, demonstrating its potential for enhancing high-power performance in practical applications. Full article
(This article belongs to the Special Issue Ultrasonic Transducers for Biomedical Applications)
Show Figures

Figure 1

22 pages, 9142 KiB  
Article
Ethyl Acetate Extract of Cichorium glandulosum Activates the P21/Nrf2/HO-1 Pathway to Alleviate Oxidative Stress in a Mouse Model of Alcoholic Liver Disease
by Shuwen Qi, Chunzi Zhang, Junlin Yan, Xiaoyan Ma, Yewei Zhong, Wenhui Hou, Juan Zhang, Tuxia Pang and Xiaoli Ma
Metabolites 2025, 15(1), 41; https://doi.org/10.3390/metabo15010041 - 10 Jan 2025
Viewed by 1380
Abstract
Background: Alcoholic liver disease (ALD) is a significant global health concern, primarily resulting from chronic alcohol consumption, with oxidative stress as a key driver. The ethyl acetate extract of Cichorium glandulosum (CGE) exhibits antioxidant and hepatoprotective properties, but its detailed mechanism of action [...] Read more.
Background: Alcoholic liver disease (ALD) is a significant global health concern, primarily resulting from chronic alcohol consumption, with oxidative stress as a key driver. The ethyl acetate extract of Cichorium glandulosum (CGE) exhibits antioxidant and hepatoprotective properties, but its detailed mechanism of action against ALD remains unclear. This study investigates the effects and mechanisms of CGE in alleviating alcohol-induced oxidative stress and liver injury. Methods: Ultra-Performance Liquid Chromatography coupled with Quadrupole-Orbitrap Mass Spectrometry (UPLC-Q-Orbitrap-MS) was used to identify CGE components. A C57BL/6J mouse model of ALD was established via daily oral ethanol (56%) for six weeks, with CGE treatment at low (100 mg/kg) and high doses (200 mg/kg). Silibinin (100 mg/kg) served as a positive control. Liver function markers, oxidative stress indicators, and inflammatory markers were assessed. Transcriptomic and network pharmacology analyses identified key genes and pathways, validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Results: UPLC-Q-Orbitrap-MS identified 81 CGE compounds, mainly including terpenoids, flavonoids, and phenylpropanoids. CGE significantly ameliorated liver injury by reducing alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels and enhancing antioxidative markers such as total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD) while lowering hepatic malondialdehyde (MDA) levels. Inflammation was mitigated through reduced levels of Tumor Necrosis Factor Alpha (TNF-α), Interleukin-1 Beta (IL-1β), and C-X-C Motif Chemokine Ligand 10 (CXCL-10). Transcriptomic and network pharmacology analysis revealed seven key antioxidant-related genes, including HMOX1, RSAD2, BCL6, CDKN1A, THBD, SLC2A4, and TGFβ3, validated by RT-qPCR. CGE activated the P21/Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) signaling axis, increasing P21, Nrf2, and HO-1 protein levels while suppressing Kelch-like ECH-associated Protein 1 (Keap1) expression. Conclusions: CGE mitigates oxidative stress and liver injury by activating the P21/Nrf2/HO-1 pathway and regulating antioxidant genes. Its hepatoprotective effects and multi-target mechanisms highlight CGE’s potential as a promising therapeutic candidate for ALD treatment. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Graphical abstract

17 pages, 4369 KiB  
Review
Metasurface-Enabled Microphotonic Biosensors via BIC Modes
by Francesco Dell’Olio
Photonics 2025, 12(1), 48; https://doi.org/10.3390/photonics12010048 - 8 Jan 2025
Cited by 3 | Viewed by 1837
Abstract
Photonic biosensors based on bound states in the continuum (BIC) resonant modes exhibit a transformative potential for high-sensitivity, label-free detection across various diagnostic applications. BIC-enabled metasurfaces, utilizing dielectric, plasmonic, and hybrid structures, achieve ultra-high Q-factors and amplify target molecule interactions on functionalized sensor [...] Read more.
Photonic biosensors based on bound states in the continuum (BIC) resonant modes exhibit a transformative potential for high-sensitivity, label-free detection across various diagnostic applications. BIC-enabled metasurfaces, utilizing dielectric, plasmonic, and hybrid structures, achieve ultra-high Q-factors and amplify target molecule interactions on functionalized sensor surfaces. These unique properties result in increased refractive index sensitivity and low detection limits, essential for monitoring biomolecules in clinical diagnostics, environmental analysis, and food safety. Recent advancements in BIC-enabled metasurfaces have demonstrated ultra-low detection limits in the zeptomolar range, making these devices highly promising for real-world applications. This review paper critically discusses the design principles of BIC-based biosensors, emphasizing key factors such as material selection, structural asymmetry, and functionalization strategies that enhance both sensitivity and specificity. Additionally, recent advancements in fabrication techniques that enable precise BIC control with scalable approaches for practical biosensing applications are examined. Case studies demonstrate the effectiveness of BIC metasurfaces for real-time, low-concentration detection, highlighting their versatility and adaptability. Finally, the review discusses future challenges and opportunities, such as integration with microfluidics for point-of-care testing and multiplexed sensing, underscoring the potential of BIC-based platforms to revolutionize the field of biosensing. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

11 pages, 3029 KiB  
Article
Laterally Excited Resonators Based on Single-Crystalline LiTaO3 Thin Film for High-Frequency Applications
by Chongrui Guan and Xingli He
Micromachines 2024, 15(12), 1416; https://doi.org/10.3390/mi15121416 - 26 Nov 2024
Cited by 1 | Viewed by 951
Abstract
High-performance acoustic resonators based on single-crystalline piezoelectric thin films have great potential in wireless communication applications. This paper presents the modeling, fabrication, and characterization of laterally excited bulk resonators (XBARs) utilizing the suspended ultra-thin (~420 nm) LiTaO3 (LT, with 42° YX-cut) film. [...] Read more.
High-performance acoustic resonators based on single-crystalline piezoelectric thin films have great potential in wireless communication applications. This paper presents the modeling, fabrication, and characterization of laterally excited bulk resonators (XBARs) utilizing the suspended ultra-thin (~420 nm) LiTaO3 (LT, with 42° YX-cut) film. The finite element analysis (FEA) was performed to model the LT-based XBARs precisely and to gain further insight into the physical behaviors of the acoustic waves and the loss mechanisms. In addition, the temperature response of the devices was numerically calculated, showing relatively low temperature coefficients of frequency (TCF) of ~−38 ppm/K for the primary resonant mode. The LT-based XBARs were fabricated and characterized, which presents a multi-resonant mode over a wide frequency range (0.1~10 GHz). For the primary resonance around 4.1 GHz, the fabricated devices exhibited a high-quality factor (Bode-Q) ~ 600 and piezoelectric coupling (kt2) ~ 2.84%, while the higher-harmonic showed a greater value of kt2 ~ 3.49%. To lower the resonant frequency of the resonator, the thin SiO2 film (~20 nm) was sputtered on the suspended device, which created a frequency offset between the series and shunt resonators. Finally, a ladder-type narrow band filter employing five XBARs was developed and characterized. This work effectively demonstrates the performance and application potential of micro-acoustic resonators employing high-quality LT films. Full article
Show Figures

Figure 1

23 pages, 3688 KiB  
Article
Ecklonia cava Ameliorates Cognitive Impairment on Amyloid β-Induced Neurotoxicity by Modulating Oxidative Stress and Synaptic Function in Institute of Cancer Research (ICR) Mice
by Hyo Lim Lee, Min Ji Go, Han Su Lee and Ho Jin Heo
Antioxidants 2024, 13(8), 951; https://doi.org/10.3390/antiox13080951 - 6 Aug 2024
Cited by 4 | Viewed by 2774
Abstract
This study investigated the neuroprotective effect of 70% ethanol extract of Ecklonia cava (EE) in amyloid beta (Aβ)-induced cognitive deficit mice. As a result of analyzing the bioactive compounds in EE, nine compounds were identified using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). [...] Read more.
This study investigated the neuroprotective effect of 70% ethanol extract of Ecklonia cava (EE) in amyloid beta (Aβ)-induced cognitive deficit mice. As a result of analyzing the bioactive compounds in EE, nine compounds were identified using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In particular, the diekcol content was quantified by high-performance liquid chromatography with diode-array detection (DAD-HPLC). Biochemical analysis was performed on brain tissue to determine the mechanism of the cognitive function improvement effect of EE. The result showed that EE ameliorated learning and memory decline in behavioral tests on Aβ-induced mice. EE also attenuated oxidative stress by regulating malondialdehyde (MDA) content, reduced glutathione (GSH), and superoxide dismutase (SOD) levels. Similarly, EE also improved mitochondrial dysfunction as mitochondrial membrane potential, ATP production, and reactive oxygen species (ROS) levels. In addition, EE enhanced synapse function by modulating acetylcholine-related enzymes and synaptic structural proteins in the whole brain, hippocampus, and cerebral cortex tissues. Also, EE regulated Aβ-induced apoptosis and inflammation through the c-Jun N-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways. Furthermore, EE protected neurotoxicity by increasing brain-derived neurotrophic factor (BDNF) production. These results suggest that EE may be used as a dietary supplement for the prevention and treatment of Alzheimer’s disease (AD). Full article
(This article belongs to the Special Issue Oxidative Stress as a Therapeutic Target of Alzheimer’s Disease)
Show Figures

Figure 1

19 pages, 2571 KiB  
Article
Comprehensive Comparison of Three Different Medicinal Parts of Eupatorium lindleyanum DC. Using the RRLC-Q-TOF-MS-Based Metabolic Profile and In Vitro Anti-Inflammatory Activity
by Jiaojiao Lu, Chengbo Zheng, Simin Xue, Ye Gao, Guijin Chen, Chenxiao Shan, Ning Ding, Guoping Peng, Cunyu Li and Yunfeng Zheng
Molecules 2024, 29(15), 3551; https://doi.org/10.3390/molecules29153551 - 28 Jul 2024
Viewed by 1589
Abstract
Eupatorium lindleyanum DC. (EL) is a traditional Chinese herb known for its phlegm-reducing, cough-relieving and asthma-calming properties. It is widely used for treating cough and bronchitis. However, preliminary experiments have revealed wide variations in the composition of its different medicinal parts (flowers, leaves [...] Read more.
Eupatorium lindleyanum DC. (EL) is a traditional Chinese herb known for its phlegm-reducing, cough-relieving and asthma-calming properties. It is widely used for treating cough and bronchitis. However, preliminary experiments have revealed wide variations in the composition of its different medicinal parts (flowers, leaves and stems), and the composition and efficacy of its different medicinal parts remain largely underexplored at present. In this study, non-targeted rapid resolution liquid chromatography coupled with a quadruple time-of-flight mass spectrometry (RRLC-Q-TOF-MS)-based metabolomics approach was developed to investigate the differences in the chemical composition of different medicinal parts of EL. We identified or tentatively identified 9 alkaloids, 11 flavonoids, 14 sesquiterpene lactones, 3 diterpenoids and 24 phenolic acids. In addition, heatmap visualization, quantitative analysis by high-performance liquid chromatography (HPLC-PDA) and ultra-high-performance liquid chromatography–triple quadrupole tandem mass spectrometry (UPLC-MS/MS) showed particularly high levels of sesquiterpene lactones, flavonoids and phenolic acids in the flowers, such as eupalinolide A and B and chlorogenic acid, among others. The leaves also contained some flavonoid sesquiterpene lactones and phenolic acids, while the stems were almost absent. The findings of in vitro activity studies indicated that the flowers exhibited a notable inhibitory effect on the release of the inflammatory factors TNF-α and IL-6, surpassing the anti-inflammatory efficacy observed in the leaves. Conversely, the stems demonstrated negligible anti-inflammatory activity. The variations in anti-inflammatory activity among the flowers, leaves and stems of EL can primarily be attributed to the presence of flavonoids, phenolic acids and sesquiterpene lactones in both the flowers and leaves. Additionally, the flowers contain a higher concentration of these active components compared to the leaves. These compounds mediate their anti-inflammatory effects through distinct biochemical pathways. The results of this study are anticipated to provide a scientific basis for the rational and effective utilization of EL resources. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

Back to TopTop