Recent Advancement in Microwave Photonics

A special issue of Photonics (ISSN 2304-6732).

Deadline for manuscript submissions: 31 May 2025 | Viewed by 2160

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Information Photonics and Optical Communications, School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing 100876, China
Interests: silicon photonic integrated circuits; optical phased array; microwave photonics; miniaturized spectrometer

E-Mail
Guest Editor
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Interests: optoelectronic oscillator; microwave photonics; integrated microwave photonics; microwave photonic signal generation; microwave photonic signal processing

E-Mail Website
Guest Editor
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Interests: optoelectronic oscillator; microwave photonics; integrated microwave photonics; microwave photonic signal generation; microwave photonic signal processing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Microwave photonics is an interdisciplinary subject that brings together the areas of microwave engineering and photonics. It has attracted lots of attention form both the academia and industry word due to its unique advantages such as low loss, high frequency, ultrawide bandwidth and immunity to electromagnetic interference. A variety of novel solutions for microwave photonic signal generation, processing, control and distribution have been achieved in recent years, which propel microwave photonic technology to new heights.

We are pleased to invite you to submit your work to this Special Issue. This Special Issue aims to highlight the recent advancements in microwave photonics. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but not limited to) the following:

  • Microwave photonic signal generation;
  • Microwave photonic signal processing;
  • Microwave photonic signal control and distribution;
  • Microwave photonic radar;
  • Microwave photonic frequency measurement;
  • Integrated microwave photonics;
  • Microwave photonic components and systems;
  • Applications of microwave photonics.

We look forward to receiving your contributions.

Prof. Dr. Lei Zhang
Dr. Lu Wang
Dr. Tengfei Hao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microwave photonics
  • integrated microwave photonics
  • microwave photonic signal generation
  • microwave photonic signal processing
  • microwave photonic signal control and distribution
  • applications of microwave photonics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 5579 KiB  
Article
Frequency Stabilization of Wideband-Tunable Low-Phase-Noise Optoelectronic Oscillator Based on Fundamental and Subharmonic RF Injection Locking
by Zhihao Zhang, Dan Lu, Hao Song, Fei Guo and Lingjuan Zhao
Photonics 2025, 12(4), 383; https://doi.org/10.3390/photonics12040383 - 16 Apr 2025
Viewed by 178
Abstract
A frequency stabilization scheme for a wideband-tunable optoelectronic oscillator (OEO) based on fundamental and subharmonic RF injection locking is proposed, achieving a tuning range of 2–22 GHz with low phase noise. The injection-locked performance of the OEO using the fundamental RF signal and [...] Read more.
A frequency stabilization scheme for a wideband-tunable optoelectronic oscillator (OEO) based on fundamental and subharmonic RF injection locking is proposed, achieving a tuning range of 2–22 GHz with low phase noise. The injection-locked performance of the OEO using the fundamental RF signal and its 1/n subharmonic is investigated. The fundamental injection locking achieves a phase noise of <−130 dBc/Hz @ 10 kHz offset across the entire tuning range. An examination of phase noise behavior at different subharmonic orders reveals that fundamental and subharmonic injection locking achieve a five-order-of-magnitude improvement in Allan variance (0.1 s) and approximately 40 dB phase noise reduction at a 10 Hz offset from the carrier. This approach leverages the low-phase-noise advantage of the OEO while benefiting from the high stability of low-frequency external RF sources, enabling multi-frequency point frequency stabilization optimization. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

13 pages, 3845 KiB  
Article
Ultra-Compact Multimode Micro-Racetrack Resonator Based on Cubic Spline Curves
by Zhen Li, Chuang Cheng, Xin Fu and Lin Yang
Photonics 2025, 12(4), 326; https://doi.org/10.3390/photonics12040326 - 31 Mar 2025
Viewed by 273
Abstract
Micro-racetrack resonators have become one of the key components for realizing signal processing, generation, and integration in microwave photonics, owing to their high Q factor, compact footprint, and tunability. However, most of the reported micro-racetrack resonators are confined to the single-mode regime. In [...] Read more.
Micro-racetrack resonators have become one of the key components for realizing signal processing, generation, and integration in microwave photonics, owing to their high Q factor, compact footprint, and tunability. However, most of the reported micro-racetrack resonators are confined to the single-mode regime. In this paper, we designed an ultra-compact multimode micro-racetrack resonator (MMRR) based on shape-optimized multimode waveguide bends (MWBs). Cubic spline curves were used to represent the MWB boundary and adjoint methods were utilized for inverse optimization, achieving an effective radius of 8 μm. Asymmetric directional couplers (ADCs) were designed to independently couple three modes into a multimode micro-racetrack, according to phase-matching conditions and transmission analysis. The MMRR was successfully fabricated on a commercial platform using a 193 nm dry lithography process. The device exhibited high loaded Q factors of 2.3 × 105, 4.1 × 104, and 2.9 × 104, and large free spectral ranges (FSRs) of 5.4, 4.7, and 4.2 nm for TE0, TE1, and TE2 modes, with about a 19 × 55 μm2 footprint. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

11 pages, 14579 KiB  
Article
Compact Polarization-Insensitive 2 × 2 3 dB Quasi-Adiabatic Coupler Based on Shape Optimization
by Guangchen Su, Hongliang Chen, Xin Fu and Lin Yang
Photonics 2025, 12(3), 208; https://doi.org/10.3390/photonics12030208 - 27 Feb 2025
Viewed by 355
Abstract
In this study, we designed and experimentally demonstrated a compact polarization-insensitive 2 × 2 3 dB quasi-adiabatic coupler based on B-spline curves and shape optimization. By using the supermode to enable the segmented shape optimization of the coupler, we significantly reduced the computational [...] Read more.
In this study, we designed and experimentally demonstrated a compact polarization-insensitive 2 × 2 3 dB quasi-adiabatic coupler based on B-spline curves and shape optimization. By using the supermode to enable the segmented shape optimization of the coupler, we significantly reduced the computational cost of the optimization process. The numerical simulation results exhibited a power imbalance below ±0.46 dB and an insert loss (IL) of less than 0.09 dB over a broad bandwidth of 140 nm, ranging from 1490 nm to 1630 nm for both the TE and TM polarizations, with a compact coupling length of 12 µm. The experimental results showed a power splitting ratio within 3 ± 0.46 dB over the range of 1525 nm–1600 nm for the TM mode and 1576 nm–1610 nm for the TE mode. This broadband and low-loss 3 dB coupler is suitable for microwave photonic (MPW) applications, enabling efficient polarization-independent signal processing in integrated photonic systems. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

13 pages, 10236 KiB  
Article
Silicon Nitride Spot-Size Converter with Coupling Loss < 1.5 dB for Both Polarizations at 1W Optical Input
by Enge Zhang, Yu Zhang, Lei Zhang and Xu Yang
Photonics 2025, 12(1), 5; https://doi.org/10.3390/photonics12010005 - 24 Dec 2024
Viewed by 801
Abstract
Microwave photonics (MWP) applications often require a high optical input power (>100 mW) to achieve an optimal signal-to-noise ratio (SNR). However, conventional silicon spot-size converters (SSCs) are susceptible to high optical power due to the two-photon absorption (TPA) effect. To overcome this, we [...] Read more.
Microwave photonics (MWP) applications often require a high optical input power (>100 mW) to achieve an optimal signal-to-noise ratio (SNR). However, conventional silicon spot-size converters (SSCs) are susceptible to high optical power due to the two-photon absorption (TPA) effect. To overcome this, we introduce a silicon nitride (SiN) SSC fabricated on a silicon-on-insulator (SOI) substrate. When coupled to a tapered fiber with a 4.5 μm mode field diameter (MFD), the device exhibits low coupling losses of <0.9 dB for TE modes and <1.4 dB for TM modes at relatively low optical input power. Even at a 1W input power, the additional loss is minimal, at approximately 0.1 dB. The versatility of the SSC is further demonstrated by its ability to efficiently couple to fibers with MFDs of 2.5 μm and 6.5 μm, maintaining coupling losses below 1.5 dB for both polarizations over the entire C-band. This adaptability to different mode diameters makes the SiN SSC a promising candidate for future electro-optic chiplets that integrate heterogeneous materials such as III-V for gain and lithium niobate for modulation with the SiN-on-SOI for all other functions using advanced packaging techniques. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

Back to TopTop