Optimizing High-Power Performance of [001]-Oriented Pb(Mg1/3Nb2/3)-PbTiO3 Through Combined DC and AC Polarization Above Curie Temperature
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PMN-PT | Pb(Mg1/3Nb2/3)O3-PbTiO3 |
PIN-PMN-PT | Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 |
PZT | Pb(Zr1−xTix)O3 |
PT | PbTiO3 |
SCs | single crystals |
AC | alternating current |
ACP | alternating current polarization |
DC | direct current |
DCP | direct current polarization |
FC | field cooling |
FCP | field-cooling polarization |
UFC | ultrahigh-temperature field cooling |
UFCP | ultrahigh-temperature field-cooling polarization |
FOM | piezoelectric figure of merit |
MEMSs | micro-electromechanical systems |
MPB | morphotropic phase boundary |
RT | room temperature |
R | rhombohedral |
T | tetragonal |
C | cubic |
M | monoclinic |
RMS | root mean square |
FWHM | full width at half maximum |
Appendix A
References
- Zhou, S.; Gao, X.; Park, G.; Yang, X.; Qi, B.; Lin, M.; Huang, H.; Bian, Y.; Hu, H.; Chen, X.; et al. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 2024, 629, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.Y.; Chen, J.Q.; Yang, P.; Liu, Z.Q.; Tao, X.L.; Dong, X.Y.; Hu, J.; Chu, X.C.; Wang, Z.L.; Chen, X.Y. A Piezo-Tribovoltaic Nanogenerator with Ultrahigh Output Power Density and Dynamic Sensory Functions. Adv. Energy Mater. 2024, 14, 2303080. [Google Scholar] [CrossRef]
- Song, Y.; Tang, Z.K.; Shi, R.C.; Wang, S.J.; Lin, D.; Luo, C.T. Design of PMN-PT-based dual-resonance acoustic emission sensor for partial discharge detection. Sens. Actuators A-Phys. 2024, 373, 115432. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Zhu, Y.; Luo, B.; Luo, C.; Han, T. A Piezoelectric-Piezoresistive Coupled Electric Field Sensor for Large Dynamic Range Measurement from DC to 1.5 kHz. IEEE Sens. J. 2024, 24, 902. [Google Scholar] [CrossRef]
- Zheng, G.B.; Chen, Z.J.; Chen, X.; Liu, S.Q.; Cao, W.W. High-field complex parameters characterization of PMN-PT single crystal/epoxy 1-3 composites (φ = 0.4) under a high AC electric field with a varied intensity. Ultrasonics 2024, 144, 107447. [Google Scholar] [CrossRef]
- Li, J.; Torelló, A.; Kovacova, V.; Prah, U.; Aravindhan, A.; Granzow, T.; Usui, T.; Hirose, S.; Defay, E. High cooling performance in a double-loop electrocaloric heat pump. Science 2023, 382, 801–805. [Google Scholar] [CrossRef]
- Wu, J.; Wu, L.J.; Song, R.; Niu, J.Y.; Xie, M.L.; Cao, M.Y.; Zhang, Q.; Liu, Y.X.; Li, Y.B. A Two-DOF Linear Ultrasonic Motor with High Thrust Force Density and High Power Density Utilizing Torsional/Centrosymmetric-Bending/Symmetric-Bending Modes. IEEE Trans. Ind. Electron. 2022, 69, 8220–8230. [Google Scholar] [CrossRef]
- Yang, L.Y.; Huang, H.B.; Xi, Z.Z.; Zheng, L.M.; Xu, S.Q.; Tian, G.; Zhai, Y.Z.; Guo, F.F.; Kong, L.P.; Wang, Y.G.; et al. Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals. Nat. Commun. 2022, 13, 2444. [Google Scholar] [CrossRef]
- Tang, W.B.; Wang, Y.Q.; Xiang, G.L.; Zhao, X.F.; Pan, Z.Y.; Wang, Y.P.; Yang, Y.; Wang, Y.J.; Yuan, G.L. Enhanced high-power performance of Fe-doped PZMNZT piezoelectric ceramics. J. Am. Ceram. Soc. 2023, 106, 6868–6878. [Google Scholar] [CrossRef]
- Kong, S.Y.; Hong, C.H.; Zhang, W.J.; Liu, Y.; Wang, Z.J.; Yang, X.M.; Su, R.B.; Long, X.F.; He, C. Performance enhancement of soft-PZT5 piezoelectric ceramics using poling technique. J. Am. Ceram. Soc. 2022, 105, 4744–4750. [Google Scholar] [CrossRef]
- Kuwata, J.; Uchino, K.; Nomura, S. Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single Crystals. Jpn. J. Appl. Phys. 1982, 21, 1298. [Google Scholar] [CrossRef]
- Kuwata, J.; Uchino, K.; Nomura, S. Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics 1981, 37, 579–582. [Google Scholar] [CrossRef]
- Shrout, T.R.; Chang, Z.P.; Kim, N.; Markgraf, S. Dielectric behavior of single crystals near the (1−X) Pb(Mg1/3Nb2/3)O3-(x) PbTiO3 morphotropic phase boundary. Ferroelectr. Lett. Sect. 1990, 12, 63–69. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Uchino, K.; Viehland, D. Substituent Effects in 0.65Pb(Mg1/3Nb2/3O30.35PbTiO3 Piezoelectric Ceramics. J. Electroceram. 2001, 6, 13–19. [Google Scholar] [CrossRef]
- Sun, E.W.; Cao, W.W. Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci. 2014, 65, 124–210. [Google Scholar] [CrossRef]
- Hu, M.; Chang, Z.C.; Nie, N.; Wan, Z.J.; Dong, W.; Fu, Q.Y. La-doped PMN-PT transparent ceramics with ultra-high electro-optic effect and its application in optical devices. J. Adv. Ceram. 2023, 12, 1441–1453. [Google Scholar] [CrossRef]
- Negi, A.; Kim, H.P.; Hua, Z.L.; Timofeeva, A.; Zhang, X.Y.; Zhu, Y.; Peters, K.; Kumah, D.; Jiang, X.N.; Liu, J. Ferroelectric Domain Wall Engineering Enables Thermal Modulation in PMN-PT Single Crystals. Adv. Mater. 2023, 35, 2211286. [Google Scholar] [CrossRef]
- Kim, H.P.; Wan, H.; Luo, C.; Sun, Y.; Yamashita, Y.; Karaki, T.; Lee, H.Y.; Jiang, X. A Review on Alternating Current Poling for Perovskite Relaxor-PbTiO3 Single Crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3037–3047. [Google Scholar] [CrossRef]
- Yamamoto, N.; Yamashita, Y.; Hosono, Y.; Itsumi, K.; Higuchi, K. Ultrasonic Probe, Piezoelectric Transducer, Method of Manufacturing Ultrasonic Probe, and Method of Manufacturing Piezoelectric Transducer. U.S. Patent No. US 2014/0062261 A1, 6 March 2014. [Google Scholar]
- Guo, L.; Su, B.; Wang, C.X.; He, X.; Wang, Z.J.; Yang, X.M.; Long, X.F.; He, C. Orientation dependence of dielectric and piezoelectric properties of tetragonal relaxor ferroelectric single crystals by alternate current poling. J. Appl. Phys. 2020, 127, 184104. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Han, L.; Yang, X.; Zhang, X.; Li, X.; Liu, L.; Karpinsky, D.; Lookman, T.; Luo, H.; et al. Mesophase induced by alternating-current poling in relaxor ferroelectric single crystals. Acta Mater. 2024, 268, 119782. [Google Scholar] [CrossRef]
- Wu, H.; Han, S.; Liu, J.; Zhu, X.; Wang, J.; Sha, H.; Xu, G. Enhanced high-power behaviors of Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric crystals through combining direct and alternating current polarization. J. Alloys Compd. 2024, 989, 174370. [Google Scholar] [CrossRef]
- Wan, H. Study on Alternating Current Poling of Relaxor-PbTiO3 Single Crystals. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2022. [Google Scholar]
- Sun, Y.Q.; Karaki, T.; Fujii, T.; Yamashita, Y. Enhanced electric property of relaxor ferroelectric crystals with low AC voltage high-temperature poling. Jpn. J. Appl. Phys. 2020, 59, SPPD08. [Google Scholar] [CrossRef]
- Luo, C.; Karaki, T.; Yamashita, Y.; Xu, J.Y. High temperature and low voltage AC poling for 0.24Pb(1/2Nb1/2)O-0.46Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 piezoelectric single crystals manufactured by continuous-feeding Bridgman method. J. Mater. 2021, 7, 621–628. [Google Scholar] [CrossRef]
- Xiong, J.J.; Wang, Z.J.; Yang, X.M.; Long, X.F.; He, C. Optimizing the Piezoelectric and Dielectric Properties of Pb(In1/2Nb1/2)O-3-PbTiO3 Ferroelectric Crystals via Alternating Current Poling Waveform. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2775–2780. [Google Scholar] [CrossRef]
- Qiu, C.R.; Wang, B.; Zhang, N.; Zhang, S.J.; Liu, J.F.; Walker, D.; Wang, Y.; Tian, H.; Shrout, T.R.; Xu, Z.; et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020, 577, 350–354. [Google Scholar] [CrossRef]
- Yamashita, Y.; Yamagata, Y.; Xiang, Y.; Maiwa, H.; Xu, Z.Z.; Jiang, X.N. Comparison of field-cooling DC poling and AC poling for lead perovskite relaxor-PbTiO3 single crystals grown by a continuous feeding Bridgman process. Jpn. J. Appl. Phys. 2024, 63, 04SP37. [Google Scholar] [CrossRef]
- Luo, C.; Karaki, T.; Wang, Z.K.; Sun, Y.Q.; Yamashita, Y.; Xu, J.Y. High piezoelectricity after field cooling AC poling in temperature stable ternary single crystals manufactured by continuous-feeding Bridgman method. J. Adv. Ceram. 2022, 11, 57–65. [Google Scholar] [CrossRef]
- Shibiru, A.T.; Fujii, I.; Nam, H.; Sapkota, P.; Khanal, G.P.; Wang, Z.K.; Ueno, S.; Wada, S. Optimization of conditions for AC plus DC poling above Curie temperature of barium titanate ceramic for piezoelectric property enhancement. J. Ceram. Soc. Jpn. 2024, 132, 346–349. [Google Scholar] [CrossRef]
- Shibiru, A.T.; Fujii, I.; Sapkota, P.; Nam, H.; Khanal, G.P.; Ueno, S.; Wada, S. Advancing piezoelectric properties of barium titanate ceramic through AC plus DC field poling over Curie temperature. Jpn. J. Appl. Phys. 2024, 63, 08SP10. [Google Scholar] [CrossRef]
- Chen, Z.J.; Song, L.J.; Cao, W.W. Characterization of high-power mechanical quality factor of piezoelectric ceramic discs under self-heating condition. J. Mater. Res. Technol. 2023, 23, 5040–5049. [Google Scholar] [CrossRef]
- Song, H.C.; Kim, S.W.; Kim, H.S.; Lee, D.G.; Kang, C.Y.; Nahm, S. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning. Adv. Mater. 2020, 32, 2002208. [Google Scholar] [CrossRef] [PubMed]
- Adoukatl, C.; Ntamack, G.E.; Azrar, L. High order analysis of a nonlinear piezoelectric energy harvesting of a piezo patched cantilever beam under parametric and direct excitations. Mech. Adv. Mater. Struct. 2023, 30, 4835–4861. [Google Scholar] [CrossRef]
- Yu, J.W.; Xu, L. Nonlinear Equivalent Circuit of High-Power Sandwich Piezoelectric Ultrasonic Transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3126–3136. [Google Scholar] [CrossRef]
- Li, G.; Tian, F.H.; Gao, X.Y.; Tian, H.; Qiao, L.; Liu, J.F.; Li, F.; Xu, Z. Investigation of High-Power Properties of PIN-PMN-PT Relaxor-Based Ferroelectric Single Crystals and PZT-4 Piezoelectric Ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1641–1646. [Google Scholar] [CrossRef]
- Luan, P.; Liu, X.; Du, H.L.; Wu, W.H.; Hu, H.L.; Li, F.; Wei, X.Y.; Xu, Z. High second-order nonlinearity in single-domain tetragonal PMN-PT single crystal. Appl. Phys. Lett. 2024, 125, 042901. [Google Scholar] [CrossRef]
- Xu, G.S.; Luo, H.S.; Guo, Y.P.; Gao, Y.Q.; Xu, H.Q.; Qi, Z.Y.; Zhong, W.Z.; Yin, Z.W. Growth and piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals by the modified Bridgman technique. Solid State Commun. 2001, 120, 321–324. [Google Scholar] [CrossRef]
- IEEE Std 1859-2017; IEEE Standard for Relaxor-Based Single Crystals for Transducer and Actuator Applications. IEEE: New York, NY, USA, 2017. [CrossRef]
- IEEE Std 176-1987; IEEE Standard on Piezoelectricity. IEEE: New York, NY, USA, 1988. [CrossRef]
- Xue, W.; Wang, X.; Zhu, Y.; Luo, C. Studies on the High-Power Piezoelectric Property Measurement Methods and Decoupling the Power and Temperature Effects on PZT-5H. Sensors 2025, 25, 349. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Karaki, T.; Fujii, T.; Yamashita, Y.J. Spurious-mode vibrations caused by alternating current poling and their solution process for Pb(Mg1/3Nb2/3)O-3-PbTiO3 single crystals. J. Mater. 2022, 8, 96–103. [Google Scholar] [CrossRef]
- Kim, H.P.; Wan, H.; Lee, H.Y.; Yamashita, Y.; Jo, W.; Jiang, X. Thermal stability studies of alternating current poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals grown by solid-state crystal growth. Mater. Res. Lett. 2023, 11, 383–390. [Google Scholar] [CrossRef]
- Wang, Z.K.; Fujii, I.; Saito, S.; Nam, H.; Shibiru, A.T.; Ueno, S.; Wada, S. Enhanced piezoelectric properties of ⟨110⟩ grain-oriented 0.50(BiNa)TiO-0.50BaTiO ceramics by domain engineering above Curie temperature. J. Ceram. Soc. Jpn. 2024, 132, 350–357. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wang, X.; Xue, W.; Wen, X.; Luo, C. Optimizing High-Power Performance of [001]-Oriented Pb(Mg1/3Nb2/3)-PbTiO3 Through Combined DC and AC Polarization Above Curie Temperature. Actuators 2025, 14, 53. https://doi.org/10.3390/act14020053
Zhu Y, Wang X, Xue W, Wen X, Luo C. Optimizing High-Power Performance of [001]-Oriented Pb(Mg1/3Nb2/3)-PbTiO3 Through Combined DC and AC Polarization Above Curie Temperature. Actuators. 2025; 14(2):53. https://doi.org/10.3390/act14020053
Chicago/Turabian StyleZhu, Yuliang, Xiaobo Wang, Wenchao Xue, Xinran Wen, and Chengtao Luo. 2025. "Optimizing High-Power Performance of [001]-Oriented Pb(Mg1/3Nb2/3)-PbTiO3 Through Combined DC and AC Polarization Above Curie Temperature" Actuators 14, no. 2: 53. https://doi.org/10.3390/act14020053
APA StyleZhu, Y., Wang, X., Xue, W., Wen, X., & Luo, C. (2025). Optimizing High-Power Performance of [001]-Oriented Pb(Mg1/3Nb2/3)-PbTiO3 Through Combined DC and AC Polarization Above Curie Temperature. Actuators, 14(2), 53. https://doi.org/10.3390/act14020053