Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = turbine blade cooling system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3564 KiB  
Article
Surface Ice Detection Using Hyperspectral Imaging and Machine Learning
by Steve Vanlanduit, Arnaud De Vooght and Thomas De Kerf
Sensors 2025, 25(14), 4322; https://doi.org/10.3390/s25144322 - 10 Jul 2025
Viewed by 324
Abstract
Ice formation on critical infrastructure such as wind turbine blades can lead to severe performance degradation and safety hazards. This study investigates the use of hyperspectral imaging (HSI) combined with machine learning to detect and classify ice on various coated and uncoated surfaces. [...] Read more.
Ice formation on critical infrastructure such as wind turbine blades can lead to severe performance degradation and safety hazards. This study investigates the use of hyperspectral imaging (HSI) combined with machine learning to detect and classify ice on various coated and uncoated surfaces. Hyperspectral reflectance data were acquired using a push-broom HSI system under controlled laboratory conditions, with ice and rime ice generated using a thermoelectric cooling setup. Support Vector Machine (SVM) and Random Forest (RF) classifiers were trained on uncoated aluminum samples and evaluated on surfaces with different coatings to assess model generalization. Both models achieved high classification accuracy, though performance declined on black-coated surfaces due to increased absorbance by the coating. The study further examined the impact of spectral band reduction to simulate different sensor types (e.g., NIR vs. SWIR), revealing that model performance is sensitive to wavelength range, with SVM performing optimally in a reduced band set and RF benefiting from the full spectral range. A multiclass classification approach using RF successfully distinguished between glaze and rime ice, offering insights into more targeted mitigation strategies. The results confirm the potential of HSI and machine learning as robust tools for surface ice monitoring in safety-critical environments. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 2702 KiB  
Article
Real-Time Depth Monitoring of Air-Film Cooling Holes in Turbine Blades via Coherent Imaging During Femtosecond Laser Machining
by Yi Yu, Ruijia Liu, Chenyu Xiao and Ping Xu
Photonics 2025, 12(7), 668; https://doi.org/10.3390/photonics12070668 - 2 Jul 2025
Viewed by 362
Abstract
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, [...] Read more.
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, thereby effectively preventing backside damage. To tackle this issue, a spectrum-domain coherent imaging technique has been developed. This innovative approach adapts the fundamental principle of fiber-based Michelson interferometry by integrating the air-film hole into a sample arm configuration. A broadband super-luminescent diode with a 830 nm central wavelength and a 26 nm spectral bandwidth serves as the coherence-optimized illumination source. An optimal normalized reflectivity of 0.2 is established to maintain stable interference fringe visibility throughout the drilling process. The system achieves a depth resolution of 11.7 μm through Fourier transform analysis of dynamic interference patterns. With customized optical path design specifically engineered for through-hole-drilling applications, the technique demonstrates exceptional sensitivity, maintaining detection capability even under ultralow reflectivity conditions (0.001%) at the hole bottom. Plasma generation during laser processing is investigated, with plasma density measurements providing optical thickness data for real-time compensation of depth measurement deviations. The demonstrated system represents an advancement in non-destructive in-process monitoring for high-precision laser machining applications. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

28 pages, 11218 KiB  
Article
Transient Temperature Evaluation and Thermal Management Optimization Strategy for Aero-Engine Across the Entire Flight Envelope
by Weilong Gou, Shiyu Yang, Kehan Liu, Yuanfang Lin, Xingang Liang and Bo Shi
Aerospace 2025, 12(6), 562; https://doi.org/10.3390/aerospace12060562 - 19 Jun 2025
Viewed by 619
Abstract
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering [...] Read more.
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering fluid–solid coupling heat transfer on both the main flow path and fuel systems. Firstly, the impact of heat transfer on the acceleration and deceleration performance of a low-bypass-ratio turbofan engine was analyzed. The results indicate that, compared to the conventional adiabatic model, the improved model predicts metal components absorb 4.5% of the total combustor energy during cold-state acceleration, leading to a maximum reduction of 1.42 kN in net thrust and an increase in specific fuel consumption by 1.18 g/(kN·s). Subsequently, a systematic evaluation of engine thermal management performance throughout the complete flight mission was conducted, revealing the limitations of the existing thermal management design and proposing targeted optimization strategies, including employing Cooled Cooling Air technology to improve high-pressure turbine blade cooling efficiency, dynamically adjusting low-pressure turbine bleed air to minimize unnecessary losses, optimizing fuel heat sink utilization for enhanced cooling performance, and replacing mechanical pumps with motor pumps for precise fuel supply control. Full article
(This article belongs to the Special Issue Aircraft Thermal Management Technologies)
Show Figures

Figure 1

64 pages, 3370 KiB  
Review
Review of Film Cooling Techniques for Aerospace Vehicles
by Edidiong Michael Umana and Xiufeng Yang
Energies 2025, 18(12), 3058; https://doi.org/10.3390/en18123058 - 10 Jun 2025
Cited by 1 | Viewed by 1734
Abstract
Film cooling, a vital method for controlling surface temperatures in components subjected to intense heat, strives to enhance efficiency through innovative technological advancements. Over the last several decades, considerable advancements have been made in film cooling technologies for applications such as liquid rocket [...] Read more.
Film cooling, a vital method for controlling surface temperatures in components subjected to intense heat, strives to enhance efficiency through innovative technological advancements. Over the last several decades, considerable advancements have been made in film cooling technologies for applications such as liquid rocket engines, combustion chambers, nozzle sections, gas turbine components, and hypersonic vehicles, all of which operate under extreme temperatures. This review presents an in-depth investigation of film cooling, its applications, and its key mechanisms and performance characteristics. The review also explores design optimization for combustion chamber components and examines the role of gaseous film cooling in nozzle systems, supported by experimental and numerical validation. Gas turbine cooling relies on integrated methods, including internal and external cooling, material selection, and coolant treatment to prevent overheating. Notably, the cross-flow jet in blade cooling improves heat transfer and reduces thermal fatigue. Film cooling is an indispensable technique for addressing the challenges of high-speed and hypersonic flight, aided by cutting-edge injection methods and advanced transpiration coolants. Special attention is given to factors influencing film cooling performance, as well as state-of-the-art developments in the field. The challenges related to film cooling are reviewed and presented, along with the difficulties in resolving them. Suggestions for addressing these problems in future research are also provided. Full article
(This article belongs to the Special Issue Heat and Mass Transfer: Theory, Methods, and Applications)
Show Figures

Figure 1

18 pages, 11288 KiB  
Article
Quality Evaluation of Micro-Holes Processed by Efficient One-Step Femtosecond Laser Helical Drilling Method in Nickel-Based Superalloy
by Mingquan Li, Yiyu Chen, Li Dong, Dan Liu and Xudong Sun
Appl. Sci. 2025, 15(8), 4384; https://doi.org/10.3390/app15084384 - 16 Apr 2025
Viewed by 363
Abstract
This research work details the main factors affecting the orifice and profile morphology of micro-holes processed by the one-step femtosecond laser helical drilling method. Cylindrical holes or even inverted cone holes can be obtained with the appropriate deflection angle and translation distance. The [...] Read more.
This research work details the main factors affecting the orifice and profile morphology of micro-holes processed by the one-step femtosecond laser helical drilling method. Cylindrical holes or even inverted cone holes can be obtained with the appropriate deflection angle and translation distance. The orifice morphology of the micro-hole is mainly influenced by the rotation speed of the Dove prism installed inside the hollow motor, laser output power, and laser repetition frequency. A higher instantaneous power density can improve the outlet morphology and produce sharper cutting edges and thinner recast layers, although it may increase the splashing around the inlet to some extent. Subsequent to the experiment, it was determined that in order to enhance the quality of the holes, it was necessary to select a higher laser power and a lower repetition frequency, such as 10 W and 100 kHz, according to the experiments. A recast layer thickness of less than 5 µm and a surface roughness value of less than 0.8 µm were obtained within 3–5 s processing time, which can satisfy the requirements for aircraft application of efficiency and quality. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

22 pages, 3671 KiB  
Article
AI-Powered Very-High-Cycle Fatigue Control: Optimizing Microstructural Design for Selective Laser Melted Ti-6Al-4V
by Mustafa Awd and Frank Walther
Materials 2025, 18(7), 1472; https://doi.org/10.3390/ma18071472 - 26 Mar 2025
Cited by 1 | Viewed by 648
Abstract
Integrating machine learning into additive manufacturing offers transformative opportunities to optimize material properties and design high-performance, fatigue-resistant structures for critical applications in aerospace, biomedical, and structural engineering. This study explores mechanistic machine learning techniques to tailor microstructural features, leveraging data from ultrasonic fatigue [...] Read more.
Integrating machine learning into additive manufacturing offers transformative opportunities to optimize material properties and design high-performance, fatigue-resistant structures for critical applications in aerospace, biomedical, and structural engineering. This study explores mechanistic machine learning techniques to tailor microstructural features, leveraging data from ultrasonic fatigue tests where very high cycle fatigue properties were assessed up to 1×1010 cycles. Machine learning models predicted critical fatigue thresholds, optimized process parameters, and reduced design iteration cycles by over 50%, leading to faster production of safer, more durable components. By refining grain orientation and phase uniformity, fatigue crack propagation resistance improved by 20–30%, significantly enhancing fatigue life and reliability for mission-critical aerospace components, such as turbine blades and structural airframe parts, in an industry where failure is not an option. Additionally, the machine learning-driven design of metamaterials enabled structures with a 15% weight reduction and improved yield strength, demonstrating the feasibility of bioinspired geometries for lightweight applications in space exploration, medical implants, and high-performance automotive components. In the area of titanium and aluminum alloys, machine learning identified key process parameters such as temperature gradients and cooling rates, which govern microstructural evolution and enable fatigue-resistant designs tailored for high-stress environments in aircraft, biomedical prosthetics, and high-speed transportation. Combining theoretical insights and experimental validations, this research highlights the potential of machine learning to refine microstructural properties and establish intelligent, adaptive manufacturing systems, ensuring enhanced reliability, performance, and efficiency in cutting-edge engineering applications. Full article
Show Figures

Graphical abstract

22 pages, 21431 KiB  
Article
Investigation of Flow Characteristics in Rotating Distributary and Confluence Cavities
by Kuan Zheng, Huan Ma, Hongchuang Sun and Jiang Qin
Energies 2025, 18(5), 1287; https://doi.org/10.3390/en18051287 - 6 Mar 2025
Cited by 1 | Viewed by 591
Abstract
Power generation is an important part of air vehicle energy management when developing long-endurance and reusable hypersonic aircraft. In order to utilize an air turbine power generation system on board, fuel-based rotating cooling has been researched to cool the turbine’s rotor blades. For [...] Read more.
Power generation is an important part of air vehicle energy management when developing long-endurance and reusable hypersonic aircraft. In order to utilize an air turbine power generation system on board, fuel-based rotating cooling has been researched to cool the turbine’s rotor blades. For fuel-cooling air turbines, each blade corresponds to a separate cooling channel. All the separate cooling channels cross together and form a distributary cavity and a confluence cavity in the center of the disk. In order to determine the flow characteristics in the distributary and confluence cavities, computational fluid dynamics (CFD) simulations using the shear–stress–transport turbulence model were carried out under the conditions of different rotating speeds and different mass flow rates. The results showed great differences between non-rotating flow and rotating flow conditions in the distributary and confluence cavities. The flow in the distributary and confluence cavities has rotational velocity, with obvious layering distribution regularity. Moreover, a high-speed rotational flow surface is formed in the confluence cavity of the original structure, due to the combined functions of centrifugal force, inertia, and the Coriolis force. Great pressure loss occurs when fluid passes through the high-speed rotational flow surface. This pressure loss increases with the increase in rotating speed and mass flow rate. Finally, four structures were compared, and an optimal structure with a separated outlet channel was identified as the best structure to eliminate this great pressure loss. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

15 pages, 6404 KiB  
Article
Modeling and Performance Analysis of Variable Cycle Engine with Ceramic Matrix Composite Turbine Blades
by Baokuo Li, Sheng Huang, Huaixu Yan, Xiaobo Zhang, Kun Du and Zhanxue Wang
Aerospace 2024, 11(11), 886; https://doi.org/10.3390/aerospace11110886 - 28 Oct 2024
Cited by 1 | Viewed by 1896
Abstract
To meet the requirements of future aircraft for power systems, the turbine inlet temperatures of aero engines are gradually increasing. Ceramic matrix composite (CMC), with its higher thermal limit, has become the preferred material for the turbine blades of variable cycle engines (VCEs). [...] Read more.
To meet the requirements of future aircraft for power systems, the turbine inlet temperatures of aero engines are gradually increasing. Ceramic matrix composite (CMC), with its higher thermal limit, has become the preferred material for the turbine blades of variable cycle engines (VCEs). However, the impact of CMC turbine blades on the performance of a VCE is still unknown. In this research project, the comprehensive cooling-efficiency characteristics of CMC are determined through a fluid–solid coupling calculation; a cooling calculation model for turbine blades is established, and cooling airflow solution and control technology (CSCT) for an air system is developed. Additionally, a VCE simulation model is established to analyze the influence of CMC turbine blades on the cooling airflow of the air system and the overall performance of the engine. The results show that, for the design condition, the CMC turbine blade can reduce the cooling airflow of the air system by approximately 10%, and the net thrust is increased by 6.07–7.98%. For the off-design conditions, with the CSCT, the specific fuel consumption can be reduced by 3.06–5.73% while ensuring that the engine net thrust remains unchanged. A comprehensive analysis of the performance for both the design point and off-design points indicates that the use of CMC for high-pressure turbine (HPT) guide vanes and rotor blades yields significant performance benefits, while the performance improvement from the use of CMC for low-pressure turbine (LPT) rotor blades is minimal. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 9968 KiB  
Article
Experimental and CFD Analysis of Hydrodynamics in Dual-Impeller Crystallizer at Different Off-Bottom Clearances
by Antonija Čelan, Marija Ćosić, Željko Penga and Nenad Kuzmanić
Processes 2024, 12(10), 2183; https://doi.org/10.3390/pr12102183 - 8 Oct 2024
Viewed by 1523
Abstract
Producing tailor-made crystals demands knowledge of the influence of hydrodynamics and nucleation kinetics. In this paper, the hydrodynamic conditions in a dual-impeller crystallizer and their influence on the key nucleation parameters of the batch cooling crystallization of borax at different impeller off-bottom clearances [...] Read more.
Producing tailor-made crystals demands knowledge of the influence of hydrodynamics and nucleation kinetics. In this paper, the hydrodynamic conditions in a dual-impeller crystallizer and their influence on the key nucleation parameters of the batch cooling crystallization of borax at different impeller off-bottom clearances were investigated. Two different impeller configurations were used—a dual pitched-blade turbine (2 PBT) and a dual straight-blade turbine (2 SBT). Hydrodynamics was analyzed in depth based on the developed computational fluid dynamics model. The experimental results on mixing time and power input were used to validate the numerical model. The results show that the properties of the final product are affected by the impeller position in both dual-impeller configurations. An increase in the impeller off-bottom clearance in both systems results in a decrease in the mean crystal size. The hydrodynamic conditions generated at C/D = 1 in the 2 PBT impeller system and at C/D = 0.6 in the 2 SBT impeller system favored an earlier onset of nucleation compared to other impeller positions. It was found that the eddy dissipation rate and the Kolmogorov length scale correlate highly with the mean crystal size, suggesting that the size is affected by the shear stress in the vessel, rather than the overall convective flow. Full article
Show Figures

Figure 1

25 pages, 7184 KiB  
Article
Furnace Testing and Validation of a Hybrid Cooling Approach for Enhanced Turbine Blade Protection with a Thermal Barrier Coating in Advanced Gas Turbines
by Salmi Mohd Yunus, Abreeza Manap, Meenaloshini Satgunam, Savisha Mahalingam and Nurfanizan Mohd Afandi
Ceramics 2024, 7(4), 1340-1364; https://doi.org/10.3390/ceramics7040088 - 27 Sep 2024
Viewed by 1220
Abstract
Hybrid turbine blade protection systems, which combine thermal barrier coatings (TBCs) and cooling mechanisms, are essential for safeguarding turbine blades in advanced gas turbine applications. However, conventional furnace evaluation methods are inadequate for accurately simulating the complex thermal conditions experienced by TBCs in [...] Read more.
Hybrid turbine blade protection systems, which combine thermal barrier coatings (TBCs) and cooling mechanisms, are essential for safeguarding turbine blades in advanced gas turbine applications. However, conventional furnace evaluation methods are inadequate for accurately simulating the complex thermal conditions experienced by TBCs in these environments. Initial testing revealed substantial degradation of TBCs when subjected to high temperatures without the necessary cooling support. To address this limitation, the furnace setup was modified to incorporate a cooling air system. This system channeled 400 °C air to the back surface of the TBC while subjecting the front to 1400 °C furnace air, effectively replicating the thermal gradient encountered in hybrid protection systems. The modified furnace setup demonstrated a remarkable improvement in the performance of yttria-stabilized zirconia TBCs. By cooling the back surface of the TBC, the metal substrate temperature decreased, thereby improving the thermal gradient on the coating and its durability. The thermal gradient achieved by the modified furnace was verified to simulate accurately the conditions experienced by TBCs in advanced gas turbines. The conventional furnace setup, lacking a cooling mechanism, overestimated the heat transfer on the TBCs, leading to inaccurate results. The modified furnace, with its integrated cooling system, more accurately simulated the conditions experienced by TBCs in real-world advanced gas turbine applications and more reliably assessed their performance. Full article
Show Figures

Figure 1

14 pages, 5033 KiB  
Article
Experimental Investigation of the Sensitivity of Forced Response to Cold Streaks in an Axial Turbine
by Lennart Stania, Felix Ludeneit and Joerg R. Seume
Int. J. Turbomach. Propuls. Power 2024, 9(3), 24; https://doi.org/10.3390/ijtpp9030024 - 2 Jul 2024
Viewed by 1785
Abstract
In turbomachinery, geometric variances of the blades, due to manufacturing tolerances, deterioration over a lifetime, or blade repair, can influence overall aerodynamic performance as well as aeroelastic behaviour. In cooled turbine blades, such deviations may lead to streaks of high or low temperature. [...] Read more.
In turbomachinery, geometric variances of the blades, due to manufacturing tolerances, deterioration over a lifetime, or blade repair, can influence overall aerodynamic performance as well as aeroelastic behaviour. In cooled turbine blades, such deviations may lead to streaks of high or low temperature. It has already been shown that hot streaks from the combustors lead to inhomogeneity in the flow path, resulting in increased blade dynamic stress. However, not only hot streaks but also cold streaks occur in modern aircraft engines due to deterioration-induced widening of cooling holes. This work investigates this effect in an experimental setup of a five-stage axial turbine. Cooling air is injected through the vane row of the fourth stage at midspan, and the vibration amplitudes of the blades in rotor stage five are measured with a tip-timing system. The highest injected mass flow rate is 2% of the total mass flow rate for a low-load operating point. The global turbine parameters change between the reference case without cooling air and the cold streak case. This change in operating conditions is compensated such that the corrected operating point is held constant throughout the measurements. It is shown that the cold streak is deflected in the direction of the hub and detected at 40% channel height behind the stator vane of the fifth stage. The averaged vibration amplitude over all blades increases by 20% for the cold streak case compared to the reference during low-load operating of the axial turbine. For operating points with higher loads, however, no increase in averaged vibration amplitude exceeding the measurement uncertainties is observed because the relative cooling mass flow rate is too low. It is shown that the cold streak only influences the pressure side and leads to a widening of the wake deficit. This is identified as the reason for the increased forcing on the blade. The conclusion is that an accurate prediction of the blade’s lifetime requires consideration of the cooling air within the design process and estimation of changes in cooling air mass flow rate throughout the blade’s lifetime. Full article
Show Figures

Figure 1

18 pages, 7690 KiB  
Article
Conjugate Heat Transfer Advancements and Applications in Aerospace Engine Technology
by Hao Zha, Yaqian Xu, Zhigong Tang, Bin Li and Dongzhi Wang
Appl. Sci. 2024, 14(9), 3556; https://doi.org/10.3390/app14093556 - 23 Apr 2024
Cited by 2 | Viewed by 2515
Abstract
Over the past few decades, conjugate heat transfer (CHT) technology has been instrumental in predicting temperature fields within aerospace engines, guiding engine design with its predictive capabilities. This paper comprehensively surveys the foundational technologies of CHT and their applications in engine design, backed [...] Read more.
Over the past few decades, conjugate heat transfer (CHT) technology has been instrumental in predicting temperature fields within aerospace engines, guiding engine design with its predictive capabilities. This paper comprehensively surveys the foundational technologies of CHT and their applications in engine design, backed by an extensive literature review. A novel coupling iteration methodology, su-F-TFTB, was proposed. Following this, it introduced grid splicing technology tailored for heat flux conservation, which significantly enhances the adaptability of CHT grids. Ultimately, this study employed the self-developed Aerospace Engine Numerical Simulation (AENS v4.0.1) software to perform CHT analyses on NASA-C3X turbine blades equipped with ten radial cooling systems. A comparative analysis of pressure distributions across various density meshes was undertaken to affirm mesh independence. Furthermore, the impacts of the Spalart–Allmaras (SA) one-equation model and k–ω Shear Stress Transport (SST) two-equation model on the temperature distribution in conjugate heat transfer were investigated. The results indicated that the k–ω SST model exhibited superior performance, aligning closely with NASA experimental data. This validation confirmed the effectiveness of the software. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

18 pages, 6706 KiB  
Article
Effect of Impellers on the Cooling Performance of a Radial Pre-Swirl System in Gas Turbine Engines
by Wenjie Shen, Suofang Wang and Xiaodi Liang
Aerospace 2024, 11(3), 187; https://doi.org/10.3390/aerospace11030187 - 26 Feb 2024
Cited by 5 | Viewed by 2661
Abstract
Impellers are utilized to increase pressure to ensure that a radial pre-swirl system can provide sufficient cooling airflow to the turbine blades. In the open literature, the pressurization mechanism of the impellers was investigated. However, the effect of impellers on the cooling performance [...] Read more.
Impellers are utilized to increase pressure to ensure that a radial pre-swirl system can provide sufficient cooling airflow to the turbine blades. In the open literature, the pressurization mechanism of the impellers was investigated. However, the effect of impellers on the cooling performance of the radial pre-swirl system was not clear. To solve the aforementioned problem, tests were carried out to assess the temperature drop in a radial pre-swirl system with various impeller configurations (impeller lengths l/b ranging from 0 to 0.333). Furthermore, numerical simulations were used to investigate the flow and heat transfer characteristics of the radial pre-swirl system at high rotating Reynolds numbers. Theoretical and experimental investigations revealed that the pre-swirl jet and output power generate a significant temperature drop, but the impellers have no obvious effect on the system temperature drop. By increasing the swirl ratio, the impellers reduce the field synergy angle and thus improve convective heat transfer on the turbine disk. In addition, increasing the impeller length can reduce the volume-averaged field synergy angle and improve heat transfer, but the improvement effectiveness decreases as the impeller length increases. Thus, the study concluded that impellers could improve the cooling performance of the radial pre-swirl system by enhancing disk cooling. Full article
(This article belongs to the Special Issue New Insights into Aerodynamics and Cooling in Gas Turbine Engines)
Show Figures

Figure 1

16 pages, 4850 KiB  
Article
Genetic Algorithm-Based Optimisation of a Double-Wall Effusion Cooling System for a High-Pressure Turbine Nozzle Guide Vane
by Michael van de Noort and Peter T. Ireland
Int. J. Turbomach. Propuls. Power 2024, 9(1), 6; https://doi.org/10.3390/ijtpp9010006 - 2 Feb 2024
Cited by 1 | Viewed by 2711
Abstract
Double-Wall Effusion Cooling schemes present an opportunity for aeroengine designers to achieve high overall cooling effectiveness and convective cooling efficiency in High-Pressure Turbine blades with reduced coolant usage compared to conventional cooling technologies. This is accomplished by combining impingement, pin-fin and effusion cooling. [...] Read more.
Double-Wall Effusion Cooling schemes present an opportunity for aeroengine designers to achieve high overall cooling effectiveness and convective cooling efficiency in High-Pressure Turbine blades with reduced coolant usage compared to conventional cooling technologies. This is accomplished by combining impingement, pin-fin and effusion cooling. Optimising these cooling schemes is crucial to ensuring that cooling is achieved sufficiently at high-heat-flux regions and not overused at low-heat-flux ones. Due to the high number of design variables employed in these systems, optimisation through the use of Computational Fluid Dynamics (CFD) simulations can be a computationally costly and time-consuming process. This study makes use of a Low-Order Flow Network Model (LOM), developed, validated and presented previously, which quickly assesses the pressure, temperature, mass flow and heat flow distributions through a Double-Wall Effusion Cooling scheme. Results generated by the LOM are used to rapidly produce an ideal cooling system design through the use of an Evolutionary Genetic Algorithm (GA) optimisation process. The objective is to minimise the coolant mass flow whilst maintaining acceptable metal cooling effectiveness around the external surface of the blade and ensuring that the Backflow Margin for all film holes is above a selected threshold. For comparison, a Genetic Aggregation model-based optimisation using CFD simulations in ANSYS Workbench is also conducted. Results for both the reduction of coolant mass flow and the total optimisation runtime are analysed alongside those from the LOM, demonstrating the benefit of rapid low-order solving techniques. Full article
Show Figures

Figure 1

19 pages, 13504 KiB  
Article
Hydrocarbon Fuel Flow and Heat Transfer Investigation in Rotating Channels
by Mengqiang Dong and Hongyan Huang
Energies 2023, 16(13), 5020; https://doi.org/10.3390/en16135020 - 28 Jun 2023
Cited by 2 | Viewed by 1195
Abstract
Ram air turbines are used in the power generation systems of hypersonic vehicles, which can address the problem of the high power consumption of weapon systems. However, high incoming air temperatures can cause the turbine blades of power generation to ablate. At this [...] Read more.
Ram air turbines are used in the power generation systems of hypersonic vehicles, which can address the problem of the high power consumption of weapon systems. However, high incoming air temperatures can cause the turbine blades of power generation to ablate. At this point, the incoming air can no longer be used as a cooling source to cool the turbine blades. To prevent the ablation of the turbine blades of the hypersonic vehicle power generation, hydrocarbon fuel carried by the hypersonic vehicle itself is used to cool the turbine blades. Hence, hydrocarbon fuels under rotating conditions are investigated. The results show that the rotation leads to a strong pressure gradient that causes the density and dynamic viscosity of hydrocarbon fuel to increase dramatically. Compared to the static condition, the density and dynamic viscosity of the hydrocarbon fuel increase by a maximum of 65.1% and 405%, respectively, under the rotating condition. This leads to an obvious reduction in velocity. The comprehensive influence of the physical properties of the fuel, centrifugal force, and Coriolis force causes the convective heat transfer coefficient and Nusselt number of the channel to first increase and then decrease with the increase in the rotational speed. Compared to the static condition, the convective heat transfer coefficient and Nusselt number increase by a maximum of 69.7% and 45.6%, respectively, under the rotating condition. The critical rotational speed of the Nusselt number from rise to fall is 20,000 rpm for different inlet temperature conditions. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

Back to TopTop