Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (160)

Search Parameters:
Keywords = triterpene saponins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2352 KiB  
Article
Saponins from Oxybasis rubra (L.) S.Fuentes, Uotila & Borsh: Comparative Assessment of Cytotoxic Potential Against a Wide Panel of Cancer Cell Lines
by Karolina Grabowska, Adam Mynarski, Agnieszka Galanty, Dagmara Wróbel-Biedrawa, Paweł Żmudzki and Irma Podolak
Molecules 2025, 30(15), 3126; https://doi.org/10.3390/molecules30153126 - 25 Jul 2025
Viewed by 155
Abstract
Two triterpene saponins, hederagenin glucosides, including a novel monodesmoside: 3-O-β-D-glucopyranosyl(1→3)-β-D-glucopyranosyl] hederagenin (compound 1), were isolated from the fruits of Oxybasis rubra (L.) S.Fuentes, Uotila & Borsh (Amaranthaceae). These compounds, together with hederagenin itself (compound 4) and a commercially available [...] Read more.
Two triterpene saponins, hederagenin glucosides, including a novel monodesmoside: 3-O-β-D-glucopyranosyl(1→3)-β-D-glucopyranosyl] hederagenin (compound 1), were isolated from the fruits of Oxybasis rubra (L.) S.Fuentes, Uotila & Borsh (Amaranthaceae). These compounds, together with hederagenin itself (compound 4) and a commercially available 28-O-β-D-glucopyranosyl hederagenin ester (compound 3), were evaluated for cytotoxicity and selectivity across a wide panel of human cancer cell lines (skin, prostate, gastrointestinal, thyroid, and lung). All four compounds exhibited dose- and time-dependent effects, with varying potency depending on the specific cancer type. The isolated bidesmosidic saponin (3-O-β-D-glucopyranosyl(1→3)-β-D-glucopyranosyl] hederagenin 28-O-β-D-glucopyranosyl ester—compound 2) showed the strongest activity and selectivity, with an IC50 = 6.52 μg/mL after 48 h incubation against WM793 melanoma, and almost no effect on normal HaCaT skin cells (IC50 = 39.94 μg/mL). Multivariate analysis of the obtained data using principal component analysis (PCA) and hierarchical cluster analysis (HCA) supported the assumption that cytotoxicity is influenced by the type of compound, its concentration, and the intrinsic sensitivity of the cell line. Structure-activity observations between closely related hederagenin derivatives are also briefly presented. Full article
Show Figures

Graphical abstract

16 pages, 776 KiB  
Article
Phytochemical Profile and Functional Properties of the Husk of Argania spinosa (L.) Skeel
by Antonietta Cerulli, Natale Badalamenti, Francesco Sottile, Maurizio Bruno, Sonia Piacente, Vincenzo Ilardi, Rosa Tundis, Roberta Pino and Monica Rosa Loizzo
Plants 2025, 14(15), 2288; https://doi.org/10.3390/plants14152288 - 24 Jul 2025
Viewed by 260
Abstract
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total [...] Read more.
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total of 43 compounds, including hydroxycinnamic acid and flavonoid derivatives, saponins, and triterpenic acids, were identified, some of which have not been previously reported in this species. The total phenols (TPC) and flavonoids (TFC) content were spectrophotometrically determined. A multi-target approach was applied to investigate the antioxidant potential using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), β-carotene bleaching, and Ferric Reducing Ability Power (FRAP) tests. Carbohydrate hydrolyzing enzymes and lipase inhibitory activities were also assessed. The acetone extract exhibited the highest TPC and TFC values, resulting in being the most active in β-carotene bleaching test with IC50 values of 26.68 and 13.82 µg/mL, after 30 and 60 min of incubation, respectively. Moreover, it was the most active against both α-glucosidase and α-amylase enzymes with IC50 values of 12.37 and 18.93 µg/mL, respectively. These results pointed out that this by-product is a rich source of bioactive phytochemicals potentially useful for prevention of type 2 diabetes and obesity. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

27 pages, 891 KiB  
Review
The Antidiabetic Activity of Wild-Growing and Cultivated Medicinal Plants Used in Romania for Diabetes Mellitus Management: A Phytochemical and Pharmacological Review
by Diana Maria Trasca, Dalia Dop, George-Alin Stoica, Niculescu Stefan Adrian, Niculescu Elena Carmen, Renata Maria Văruț and Cristina Elena Singer
Pharmaceuticals 2025, 18(7), 1035; https://doi.org/10.3390/ph18071035 - 11 Jul 2025
Viewed by 667
Abstract
Diabetes mellitus is a chronic metabolic disease that has a significant impact on public health and is becoming more and more common worldwide. Although effective, conventional therapies are often limited by high cost, adverse effects, and issues with patient compliance. As a result, [...] Read more.
Diabetes mellitus is a chronic metabolic disease that has a significant impact on public health and is becoming more and more common worldwide. Although effective, conventional therapies are often limited by high cost, adverse effects, and issues with patient compliance. As a result, there is growing interest in complementary and alternative therapies. Medicinal plants have played an essential role in diabetes treatment, especially in regions such as Romania, where biodiversity is high and traditional knowledge is well preserved. The pathophysiology, risk factors, and worldwide burden of diabetes are examined in this review, with an emphasis on the traditional use of medicinal plants for glycemic control. A total of 47 plant species were identified based on ethnopharmacological records and recent biomedical research, including both native flora and widely cultivated species. The bioactive compounds identified, such as flavonoids, triterpenic saponins, polyphenols, and alkaloids, have hypoglycemic effects through diverse mechanisms, including β-cell regeneration, insulin-mimetic action, inhibition of α-glucosidase and α-amylase, and oxidative stress reduction. A systematic literature search was conducted, including in vitro, in vivo, and clinical studies relevant to antidiabetic activity. Among the species reviewed, Urtica dioica, Silybum marianum, and Momordica charantia exhibited the most promising antidiabetic activity based on both preclinical and clinical evidence. Despite promising preclinical results, clinical evidence remains limited, and variability in phytochemical content poses challenges to reproducibility. This review highlights the potential of Romanian medicinal flora as a source of adjunctive therapies in diabetes care and underscores the need for standardization and clinical validation. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

18 pages, 599 KiB  
Article
Progress in the Study of Chemical Constituents of Actaea cimicifuga and Actaea erythrocarpa and Their Biological Potential
by Andrey S. Erst, Natalia V. Petrova, Alexander A. Chernonosov, Olga A. Kaidash, Vladimir V. Sheikin, Tatiana V. Leonova, Tatiana M. Shaldaeva, Anastasiia S. Gusar, Vladimir V. Koval, Elena V. Udut, Kunli Xiang, Yuan-Yuan Ling, Wei Wang and Vera A. Kostikova
Int. J. Mol. Sci. 2025, 26(10), 4768; https://doi.org/10.3390/ijms26104768 - 16 May 2025
Viewed by 489
Abstract
For the first time, hydroethanolic extracts from Actaea cimicifuga and Actaea erythrocarpa were analyzed using LC-HRMS, HPLC, and spectrometry in this study. Extracts from the above-ground parts of Actaea species exhibited higher concentrations of saponins (up to 248 mg/g of DE), coumarins (up [...] Read more.
For the first time, hydroethanolic extracts from Actaea cimicifuga and Actaea erythrocarpa were analyzed using LC-HRMS, HPLC, and spectrometry in this study. Extracts from the above-ground parts of Actaea species exhibited higher concentrations of saponins (up to 248 mg/g of DE), coumarins (up to 162 mg/g of DE), flavonols (up to 32 mg/g of DE), and catechins (up to 11 mg/g of DE) compared to extracts from the underground parts. The concentrations of phenolic acids (up to 112 mg/g of DE) and tannins (up to 202 mg/g of DE) in the underground parts were comparable to or even higher than those in the above-ground parts of the two analyzed species. The concentration of the main metabolites detected was higher in the extract of A. erythrocarpa than that of A. cimicifuga. The metabolite profile of the extracts from both species showed 66 compounds, including chromones, coumarins, phenolic and nitrogenous compounds, fatty acids, and triterpenes. The HPLC analysis of the four extracts revealed that the concentration of caffeic acid (0.74 mg/g of the dry extract [DE]) was the highest in the extract from the underground part of A. erythrocarpa, whereas the extract from the above-ground part of this species showed the highest levels of ferulic (1.16 mg/g of DE) and isoferulic acids (1.49 mg/g of DE) and of hyperoside (13.05 mg/g of DE). The study of biological activity showed that A. erythrocarpa is most promising for further research, with the highest antioxidant activity found in the underground parts of this species (IC50 = 79.7 μg/mL) compared to the above-ground parts (IC50 = 85.8 μg/mL). In addition, the extract from the above-ground part of A. erythrocarpa was found to exhibit the greatest cytotoxic activity among the studied specimens against 3T3-L1, HepG2, and MDA-MB-231 cells. Full article
(This article belongs to the Special Issue Characterization and Biological Functions of Plant Extracts)
Show Figures

Figure 1

32 pages, 1556 KiB  
Review
Success and Controversy of Natural Products as Therapeutic Modulators of Wnt Signaling and Its Interplay with Oxidative Stress: Comprehensive Review Across Compound Classes and Experimental Systems
by Alexey Koval, Nilufar Z. Mamadalieva, Rano Mamadalieva, Fazliddin Jalilov and Vladimir L. Katanaev
Antioxidants 2025, 14(5), 591; https://doi.org/10.3390/antiox14050591 - 14 May 2025
Cited by 1 | Viewed by 926
Abstract
The highly conserved Wnt signaling pathway, a complex network critical for embryonic development and adult tissue homeostasis, regulates diverse cellular processes, ultimately influencing tissue organization and organogenesis; its dysregulation is implicated in numerous diseases, and it is known to be affected by oxidative [...] Read more.
The highly conserved Wnt signaling pathway, a complex network critical for embryonic development and adult tissue homeostasis, regulates diverse cellular processes, ultimately influencing tissue organization and organogenesis; its dysregulation is implicated in numerous diseases, and it is known to be affected by oxidative pathways. This report reviews the recent literature on major classes of natural products with pronounced anti-oxidant properties, such as cardiac glycosides, steroid saponins, ecdysteroids, withanolides, cucurbitacins, triterpenes, flavonoids, and iridoids, that modulate its activity in various pathological conditions, summarizing and critically analyzing their effects on the Wnt pathway in various therapeutically relevant experimental models and highlighting the role of ROS-mediated crosstalk with Wnt signaling in these studies. Models reviewed include not only cancer but also stroke, ischemia, bone or kidney diseases, and regenerative medicine, such as re-epithelialization, cardiac maintenance, and hair loss. It highlights the paramount importance of modulating this signaling by natural products to define future research directions. We also discuss controversies identified in the mode of action of several compounds in different models and directions on how to further improve the quality and depth of such studies. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Phytochemical Characterization and Anti-Biofilm Activity of Primula veris L. Roots
by Antoaneta Trendafilova, Desislava Raykova, Viktoria Ivanova, Miroslav Novakovic, Paraskev Nedialkov, Tsvetelina Paunova-Krasteva, Ralitsa Veleva and Tanya Topouzova-Hristova
Molecules 2025, 30(8), 1702; https://doi.org/10.3390/molecules30081702 - 10 Apr 2025
Viewed by 622
Abstract
In this study, three new undescribed triterpene saponins named primulasaponin III–V (1921) were isolated from the roots of Primula veris L. of Bulgarian origin together with the known primulasaponin I. Their structures were elucidated via 1D and 2D NMR [...] Read more.
In this study, three new undescribed triterpene saponins named primulasaponin III–V (1921) were isolated from the roots of Primula veris L. of Bulgarian origin together with the known primulasaponin I. Their structures were elucidated via 1D and 2D NMR spectroscopy and HR-ESI-MS. In addition, 17 known phenolic compounds (six flavones, three acetophenones, four bisbibenzyls, and four phenolic glycosides) were identified in the chloroform and methanol extracts. Among them, flavone, 2′-methoxyflavone, 3′-methoxyflavone, 3′-hydroxy-4′,5′-dimethoxyflavone, 2′,5′-dimethoxyflavone, 3′-methoxy-4′,5′-methylendioxyflavone, paeonol, 2-primeverosyl-5-methoxy-acetophenone, and paeonolide were detected for the first time in the roots of P. veris. The minimum inhibitory and minimum bactericidal concentrations of the chloroform and methanol extracts of P. veris roots and the saponin-enriched fraction were determined, with MIC values ranging between 0.5 and 1 mg/mL. Additionally, the tested samples were evaluated for their ability to inhibit biofilm formation in the presence of sub-MICs. All tested samples showed better biofilm inhibition of Gram-negative strains compared to Gram-positive strains. The strongest effect was observed for the chloroform extract against the biofilm formation of Pseudomonas aeruginosa, while the saponin-enriched fraction showed the highest percentage of biofilm inhibition of Escherichia coli, Staphylococcus aureus, and Staphylococcus mutans. At the same time, chloroform extract showed lower cytotoxicity against human keranocyte cell line HaCaT, as compared with methanol extract and the saponin-enriched fraction. Full article
(This article belongs to the Special Issue Discovery, Isolation, and Mechanisms of Bioactive Natural Products)
Show Figures

Graphical abstract

25 pages, 3114 KiB  
Article
Hypoglycemic and Hypolipidemic Effects of Triterpenoid Standardized Extract of Agave durangensis Gentry
by Juan David Bermudes-Contreras, Marcela Verónica Gutiérrez-Velázquez, Eli Amanda Delgado-Alvarado, René Torres-Ricario and Jorge Cornejo-Garrido
Plants 2025, 14(6), 894; https://doi.org/10.3390/plants14060894 - 13 Mar 2025
Viewed by 1488
Abstract
Diabetes mellitus is a chronic, degenerative, and multifactorial disease characterized by hyperglycemia, and at least 537 million people suffered from diabetes in 2021. Agave durangensis Gentry, a species of agave native to the state of Durango, reports phenolic compounds, flavonols, flavonoids, and saponins [...] Read more.
Diabetes mellitus is a chronic, degenerative, and multifactorial disease characterized by hyperglycemia, and at least 537 million people suffered from diabetes in 2021. Agave durangensis Gentry, a species of agave native to the state of Durango, reports phenolic compounds, flavonols, flavonoids, and saponins and could be an alternative for the treatment of diabetes. The aim of this work was to identify the compounds in the leaves of Agave durangensis Gentry and their potential activity in diabetes. The leaf extract of Agave durangensis Gentry (EAD) was characterized by ultra-performance liquid chromatography–mass spectrometry (UPLC-MS), and different families of bioactive compounds were quantified by analytical methods. Probable pharmacological targets were identified in silico, and the inhibition of dipeptidyl peptidase-4 (DPP4) was validated in vitro. A model of hyperglycemia was established with streptozotocin in male Wistar rats, and we administered EAD intragastrically at a dose of 300 mg/kg, as well as combinations of the extract with metformin and sitagliptin over 30 days. Biochemical and histological parameters were analyzed. We identified thirty-six major compounds, where triterpenes represented 30% of the extract. Molecular docking showed that the extract could interact with α-glucosidases and DPP4 since a large number of compounds in the extract have a Δ G lower than that reported for the controls, and DPP4 inhibition was confirmed by in vitro assays. In vivo assays demonstrated that the administration of the extract was able to significantly decrease glucose levels by 56.75% and glycosylated hemoglobin by 52.28%, which is higher than that reported for sitagliptin with a decrease of 35.22%. In addition, the extract decreased triglycerides by 59.28% and very-low-density lipoprotein (VLDL) cholesterol by 60.27%, and when administered in combination with metformin, it decreased them more than when metformin was administered alone. For all the above reasons, Agave durangensis Gentry extract could be used for the development of phytomedicine for the treatment of diabetes. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

27 pages, 16635 KiB  
Article
Revealing the Role of Beesioside O from Actaea vaginata for the Treatment of Breast Cancer Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
by Shuyang Li, Juan Lu, Hongwei Xue, Yang Lou, Jia Liu, Yutian Wang, Haifeng Wu and Xi Chen
Int. J. Mol. Sci. 2025, 26(5), 2283; https://doi.org/10.3390/ijms26052283 - 4 Mar 2025
Viewed by 1224
Abstract
Breast cancer remains a leading cause of malignancy-related mortality among women, with rising global incidence. While surgical intervention is effective for early-stage breast cancer, drug therapy is indispensable, particularly for triple-negative breast cancer, where treatment options are still limited. Actaea vaginata, a [...] Read more.
Breast cancer remains a leading cause of malignancy-related mortality among women, with rising global incidence. While surgical intervention is effective for early-stage breast cancer, drug therapy is indispensable, particularly for triple-negative breast cancer, where treatment options are still limited. Actaea vaginata, a traditional Chinese medicinal herb, has been historically applied for inflammatory conditions, including pharyngitis and stomatitis. However, its antitumor potential remains under-reported. In this study, a cycloartane triterpene saponin, beesioside O (BO), was isolated from this plant. Its antitumor activity was evaluated in vitro. Its potential therapeutic mechanisms were elucidated through network pharmacology. BO exhibited substantial potency in inhibiting breast cancer cells. Network pharmacology analysis uncovered 179 potential pharmacological targets of BO, which were predominantly concentrated in pathways, such as pathways in cancer, the PI3K-Akt signaling pathway, and chemical carcinogenesis receptor activation. Molecular docking analysis indicated that STAT3 exhibited minimal binding energy with BO. Additionally, molecular dynamics simulations verified the conformational stability of the BO-STAT3 complex. Western blot analysis demonstrated that STAT3 was downregulated following administration. These results imply that BO may exhibit a multi-target, synergistic therapeutic effect against breast cancer, with STAT3 recognized as a pivotal target. This study demonstrates the potential of BO for development as a chemotherapeutic agent for breast cancer treatment. It lays the groundwork for further exploration of BO’s bioactivity and provides valuable insights into its molecular mechanisms in breast cancer therapy. Full article
(This article belongs to the Special Issue Molecular Modeling: Latest Advances and Applications)
Show Figures

Figure 1

22 pages, 2106 KiB  
Article
Simultaneous Quantification of Bioactive Triterpene Saponins Calenduloside E and Chikusetsusaponin IVa in Different Plant Parts of Ten Amaranthaceae Species by UPLC-ESI-MS/MS Method
by Karolina Grabowska, Paweł Żmudzki, Agnieszka Galanty and Irma Podolak
Molecules 2025, 30(5), 1088; https://doi.org/10.3390/molecules30051088 - 27 Feb 2025
Cited by 4 | Viewed by 761
Abstract
Calenduloside E (CE) and chikusetsusaponin IVa (ChIVa) are triterpene saponins with multidirectional bioactivity. In this study, the contents of CE and ChIVa were determined in the roots, stems, leaves, and fruits of ten wild-growing species of Amaranthaceae. To achieve optimal extraction conditions for [...] Read more.
Calenduloside E (CE) and chikusetsusaponin IVa (ChIVa) are triterpene saponins with multidirectional bioactivity. In this study, the contents of CE and ChIVa were determined in the roots, stems, leaves, and fruits of ten wild-growing species of Amaranthaceae. To achieve optimal extraction conditions for both saponins, maceration, shaking-assisted maceration, and ultrasound-assisted and heat reflux extraction were compared. A sensitive, specific, and rapid UPLC-MS/MS method was developed and validated for the simultaneous quantification of CE and ChIVa. The results showed that CE and ChIVa coexisted in most of the species analyzed, except for Ch. hybridum. For the first time, the presence of CE and ChIVa was noted in L. polysperma, A. patula, B. bonus-henricus, O. rubra, and O. glauca. Of the species analyzed, the highest ChIVa content was found in the fruit of A. sagittata (13.15 mg/g dw), L. polysperma (12.20 mg/g dw), and Ch. album (10.0 mg/g dw), and in the fruit and roots of Ch. strictum (5.52 and 7.77 mg/g dw, respectively). The highest amount of CE was determined in the fruit of A. sagittata (7.84 mg/g dw) and Ch. strictum (6.54 mg/g dw). These saponin-abundant plant parts of Amaranthaceae spp. may be considered convenient sources of these bioactive saponins. Full article
(This article belongs to the Special Issue Terpenes, Steroids and Their Derivatives (2nd Edition) )
Show Figures

Graphical abstract

20 pages, 7669 KiB  
Article
The Phytochemical Profile and Antioxidant and Gastroprotective Effects of Three Varieties of Chenopodium quinoa Willd. Sprouts Cultivated in Peru
by Edwin Carlos Enciso-Roca, Jorge Luis Arroyo-Acevedo, Pablo Williams Común-Ventura, Johnny Aldo Tinco-Jayo, Enrique Javier Aguilar-Felices, Mahomi Bertha Ramos-Meneses, Rosa Elizabeth Carrera-Palao and Oscar Herrera-Calderon
Sci. Pharm. 2025, 93(1), 10; https://doi.org/10.3390/scipharm93010010 - 13 Feb 2025
Cited by 1 | Viewed by 2233
Abstract
Chenopodium quinoa sprouts possess a superior nutritional profile relative to conventional quinoa seeds, which is mainly attributable to their germination process. Sprouting quinoa is able to preserve its substantial nutritional value while enhancing its bioavailability and digestibility. The aim of this study was [...] Read more.
Chenopodium quinoa sprouts possess a superior nutritional profile relative to conventional quinoa seeds, which is mainly attributable to their germination process. Sprouting quinoa is able to preserve its substantial nutritional value while enhancing its bioavailability and digestibility. The aim of this study was to evaluate the gastroprotective effects of hydroalcoholic extracts of three varieties of quinoa sprouts (pasankalla, yellow maranganí, and black coito). The chemical compounds were determined using LC-MS (Liquid Chromatography–Mass Spectrometry). Antioxidant activity was determined using two analytical methods, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). To evaluate the gastroprotective effects of these hydroalcoholic extracts in Holtzman male rats, a gastric lesion was induced with 96% ethanol after the administration of the hydroalcoholic extract of the three varieties of C. quinoa sprouts. Our phytochemical analysis results reveal the presence of amino acids (valine, leucine, isoleucine, phenylalanine, tryptophane, proline, tyrosine, and arginine, among others) and their derivatives, organic acids, monosaccharides, lipids, nucleobases/nucleosides, steroids, triterpene saponins, and coumarins. The pasankalla, yellow maranganí, and black coito varieties exhibited antioxidant capacities of 36.70, 32.32, and 34.63 µmol Trolox equivalent (TE)/mg of extract for the DPPH radical and 56.61, 41.56, and 52.09 µmol TE/mg of extract for the ABTS radical, respectively. The percentage of antisecretory efficiency at a dose of 500 mg/kg for the pasankalla, yellow maranganí, and black coito varieties was 34.13%, 30.67%, and 26.67%, respectively, and the anti-ulcer effect, expressed as a percentage of inhibition of ulcer formation, was 74.7%, 67.4%, and 69.5%, respectively. In contrast, the groups treated with ranitidine and sucralfate exhibited percentages of 59.0% and 67.4%, respectively. The pasankalla quinoa exhibits more significant antioxidant activity and a stronger gastroprotective effect compared to the other varieties examined in this study. In conclusion, the hydroalcoholic extracts of the three varieties of C. quinoa sprouts exhibited a gastroprotective effect, and the pasankalla variety at a dose of 500 mg/kg exhibited a stronger protective effect on the gastric mucosa of the rats. Full article
Show Figures

Figure 1

17 pages, 3323 KiB  
Article
“Radix Saniculae”: Phytochemical Characterization and Potential Adulteration of an Austrian Traditional Wound-Healing Agent
by Elisabeth Eichenauer, Christina Sykora, Karin Ortmayr and Sabine Glasl
Plants 2025, 14(2), 266; https://doi.org/10.3390/plants14020266 - 18 Jan 2025
Viewed by 760
Abstract
The aerial parts (Herba Saniculae) and the underground parts (Radix Saniculae) of Sanicula europaea (sanicle) have been used traditionally in Austrian folk medicine to treat wounds. Interestingly, in the Austrian vernacular, “Radix Saniculae” can also refer to the underground parts of Cardamine enneaphyllos [...] Read more.
The aerial parts (Herba Saniculae) and the underground parts (Radix Saniculae) of Sanicula europaea (sanicle) have been used traditionally in Austrian folk medicine to treat wounds. Interestingly, in the Austrian vernacular, “Radix Saniculae” can also refer to the underground parts of Cardamine enneaphyllos. This ambiguity can lead to mistakes in using these two plants and, importantly, adulterations. The present work aims to shed light on using Radix Saniculae as a wound-healing agent. Thus, the main components in the aerial and the scarcely investigated underground parts of Sanicula europaea were identified and compared to the underground parts of Cardamine enneaphyllos. For this purpose, different analytical techniques were employed: TLC, HPLC-DAD/ELSD, UHPLC-ESI-MS, and GC-MS. The main components in both Sanicula and Cardamine plant extracts were saccharides. Both parts of Sanicula europaea showed similar compositions: hydroxycinnamic acid derivatives and triterpene saponins. In contrast, the underground parts of Cardamine enneaphyllos contain two glucosinolates and their breakdown products. These findings suggest the same wound-healing activity for the underground parts of Sanicula europaea as was already found for its aerial parts. The glucosinolates detected in Cardamine enneaphyllos substantiate its use in wound healing. Nevertheless, the presented analytical methods allow for easy discovery of adulterations. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

27 pages, 1239 KiB  
Review
Therapeutic Capabilities of Triterpenes and Triterpenoids in Immune and Inflammatory Processes: A Review
by Martha Mantiniotou, Vassilis Athanasiadis, Dimitrios Kalompatsios, Eleni Bozinou and Stavros I. Lalas
Compounds 2025, 5(1), 2; https://doi.org/10.3390/compounds5010002 - 3 Jan 2025
Cited by 3 | Viewed by 3976
Abstract
Plant-derived secondary metabolites such as triterpenes and triterpenoids are present in a wide range of plant species. These compounds are particularly attractive due to their extensive range of biological properties and potential applications as intermediates in the synthesis of novel pharmacologically promising medications. [...] Read more.
Plant-derived secondary metabolites such as triterpenes and triterpenoids are present in a wide range of plant species. These compounds are particularly attractive due to their extensive range of biological properties and potential applications as intermediates in the synthesis of novel pharmacologically promising medications. Saponins, which are glycosylated triterpenoids found in nature, exhibit the same properties. At this point, the effectiveness of saponins as an anti-inflammatory medication has been verified. This review article examines the primary connections between immune responses and anti-inflammatory activity, focusing specifically on the correlation between triterpenes and triterpenoids. These connections have been investigated in various cell models, as well as in vitro and in vivo studies. The present research provides a comprehensive overview of the current understanding of the therapeutic capabilities of triterpenes and triterpenoids in immune and inflammatory processes. It also highlights emerging standards and their potential utilization in pharmaceutical and clinical settings. Full article
(This article belongs to the Special Issue Organic Compounds with Biological Activity)
Show Figures

Figure 1

13 pages, 2216 KiB  
Article
Mathematical Modeling of Inhibitory Microbial Lethality Synergistic: Secondary Phytocompounds from Purple Toronjil, Temperature, and Harvest Stress Effects on Escherichia coli
by AyslethSacar Celis-Segura, Juan Reséndiz-Muñoz, Edgar Jesús Delgado-Nuñez, Víctor Manuel Zamora-Gasa, José Luis Fernández-Muñoz, Blas Cruz-Lagunas, Flaviano Godinez-Jaimes, Miguel Angel Gruintal-Santos and Romeo Urbieta-Parrazales
Stresses 2024, 4(4), 870-882; https://doi.org/10.3390/stresses4040058 - 9 Dec 2024
Viewed by 1164
Abstract
This research investigated the inhibition of *Escherichia coli* ATCC 25922 (E. coli) bacterial growth in situ, specifically on the stems and aerial parts of *Agastache mexicana* subsp. mexicana (Amm) or “purple toronjil” and on food-grade paper, [...] Read more.
This research investigated the inhibition of *Escherichia coli* ATCC 25922 (E. coli) bacterial growth in situ, specifically on the stems and aerial parts of *Agastache mexicana* subsp. mexicana (Amm) or “purple toronjil” and on food-grade paper, both contained within Kraft paper bags with a plastic window. The qualitative phytochemical profile of an aqueous extract of Amm revealed the presence of various compounds including alkaloids, coumarins, tannins, flavonoids, saponins, triterpenes, and sterols. The results indicate that these secondary metabolites exhibit a synergistic bactericidal effect, especially when combined with temperature and starvation stress. This was quantified using a decay equation referred to as the bacterial growth inhibition profile of E. coli (BGIPEc). Calculations, which included first derivatives, gradients based on substrate effects and temperature as well as the area under the curve of BGIPEc, demonstrated that higher temperatures led to the greater inhibition of colony forming units (CFUs), further enhanced by the presence of secondary metabolites. Additionally, a shorter half-life corresponded to a faster change rate and a lower area under the curve, indicating a reduced survival rate over time. At lower temperatures, E. coli exhibited a survival effect, which was corroborated by the preceding calculations. Full article
(This article belongs to the Section Animal and Human Stresses)
Show Figures

Figure 1

11 pages, 1586 KiB  
Article
Three New Triterpene Glycosides from the Roots of Deutzia x Hybrida “Strawberry Fields” (Hydrangeaceae)
by Efstathia Karachaliou, David Pertuit, Antoine Bruguière, Marie-José Penouilh, Michel Picquet, Christine Belloir, Loïc Briand and Anne-Claire Mitaine-Offer
Molecules 2024, 29(23), 5781; https://doi.org/10.3390/molecules29235781 - 6 Dec 2024
Viewed by 1005
Abstract
Three new triterpene glycosides were isolated from Deutzia x hybrida “Strawberry Fields” cultivar via aqueous–ethanolic extraction of the roots, including one derivative of sumaresinolic acid and two of echinocystic acid: 3-O-β-D-glucuronopyranosylsumaresinolic acid 28-O-β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl ester, 3-O-β-D-glucuronopyranosylechinocystic acid 28- [...] Read more.
Three new triterpene glycosides were isolated from Deutzia x hybrida “Strawberry Fields” cultivar via aqueous–ethanolic extraction of the roots, including one derivative of sumaresinolic acid and two of echinocystic acid: 3-O-β-D-glucuronopyranosylsumaresinolic acid 28-O-β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl ester, 3-O-β-D-glucuronopyranosylechinocystic acid 28-O-β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl ester, and 3-O-α-L-arabinopyranosyl-(1→3)-β-D-glucuronopyranosylechinocystic acid 28-O-β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl ester. As none of the isolated saponins were previously documented in the literature, their structural elucidation required extensive 1D and homo- and heteronuclear 2D NMR spectroscopy, as well as mass spectrometry analysis. All three glycosides were tested for their stimulatory activity of the sweet taste receptor TAS1R2/TAS1R3. It is the first chemical and biological investigation of Deutzia x hybrida “Strawberry Fields” as well as the first report of sumaresinolic acid glycosides in Deutzia genus. Full article
Show Figures

Graphical abstract

14 pages, 1177 KiB  
Article
Genome-Wide Identification and Characterization of OSC Gene Family in Gynostemma pentaphyllum (Cucurbitaceae)
by Xiao Zhang, Huan Yang, Xuan Wang, Xiaoting Wang and Chen Chen
Life 2024, 14(12), 1599; https://doi.org/10.3390/life14121599 - 4 Dec 2024
Viewed by 1173
Abstract
Gynostemma pentaphyllum is a traditional Chinese medicinal plant of considerable application value and commercial potential, primarily due to its production of various bioactive compounds, particularly dammarane-type triterpenoid saponins that are structurally analogous to ginsenosides. Oxidosqualene cyclase (OSC), a pivotal enzyme in the biosynthesis [...] Read more.
Gynostemma pentaphyllum is a traditional Chinese medicinal plant of considerable application value and commercial potential, primarily due to its production of various bioactive compounds, particularly dammarane-type triterpenoid saponins that are structurally analogous to ginsenosides. Oxidosqualene cyclase (OSC), a pivotal enzyme in the biosynthesis of triterpenoid metabolites in plants, catalyzes the conversion of oxidosqualene into triterpenoid precursors, which are essential components of the secondary metabolites found in G. pentaphyllum. To elucidate the role of OSC gene family members in the synthesis of gypenosides within G. pentaphyllum, this study undertook a comprehensive genome-wide identification and characterization of OSC genes within G. pentaphyllum and compared their expression levels across populations distributed over different geographical regions by both transcriptome sequencing and qRT-PCR experimental validation. The results identified a total of 11 members of the OSC gene family within the genome of G. pentaphyllum. These genes encode proteins ranging from 356 to 767 amino acids, exhibiting minor variations in their physicochemical properties, and are localized in peroxisomes, cytoplasm, plasma membranes, and lysosomes. All GpOSCs contain highly conserved DCTAE and QW sequences that are characteristic of the OSC gene family. A phylogenetic analysis categorized the GpOSCs into four distinct subfamilies. A cis-element analysis of the GpOSC promoters revealed a substantial number of abiotic stress-related elements, indicating that these genes may respond to drought conditions, low temperatures, and anaerobic environments, thus potentially contributing to the stress resistance observed in G. pentaphyllum. Expression analyses across different G. pentaphyllum populations demonstrated significant variability in OSC gene expression among geographically diverse samples of G. pentaphyllum, likely attributable to genetic variation or external factors such as environmental conditions and soil composition. These differences may lead to the synthesis of various types of gypenosides within geographically distinct G. pentaphyllum populations. The findings from this study enhance our understanding of both the evolutionary history of the OSC gene family in G. pentaphyllum and the biosynthetic mechanisms underlying triterpenoid compounds. This knowledge is essential for investigating molecular mechanisms involved in forming dammarane-type triterpenoid saponins as well as comprehending geographical variations within G. pentaphyllum populations. Furthermore, this research lays a foundation for employing plant genetic engineering techniques aimed at increasing gypenoside content. Full article
(This article belongs to the Special Issue The Genomics of Medicinal Plants)
Show Figures

Figure 1

Back to TopTop