Mathematical Modeling of Inhibitory Microbial Lethality Synergistic: Secondary Phytocompounds from Purple Toronjil, Temperature, and Harvest Stress Effects on Escherichia coli
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Procedure to Obtain Plants of Amm
4.2. Obtaining Aqueous Extracts and Phytochemical Tests of Amm
Phytochemical Analysis of the Aqueous Extract
4.3. Microbiological Tests
4.3.1. Inoculum Preparation
4.3.2. Inoculation of Amm and Food-Grade Paper
4.3.3. Measurement of E. coli ATCC 25922 CFU on Substrates
4.4. Mathematical Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garre Pérez, A.; Egea Larrosa, J.A.; Fernández Escámez, P.S. Modelos Matemáticos Para la Descripción del Crecimiento de Microorganismos Patógenos en Alimentos; Polytechnic University of Cartagena: Cartagena, Spain, 2016. [Google Scholar]
- Bravo Ramos, C.L.; Saravia Chaiña, M. Efecto Antimicrobiano In Vitro del Extracto de Lessonia Nigrescens (Aracanto) Frente a Staphylococcus aureus, Escherichia coli y Cándida albicans; Catholic University of Santa María: Arequipa, Peru, 2019. [Google Scholar]
- Lima Diaz, D. Evaluación de la Actividad Antimicrobiana de los Aceites Esenciales Clinopodium mexicanum y Agastache mexicana ssp. mexicana. Benemérita Universidad Autónoma de Puebla. 2023. Available online: https://hdl.handle.net/20.500.12371/20069 (accessed on 13 October 2024).
- Valenzuela, A.P.I. Evaluación de la Actividad Antimicrobiana de dos Envases Activos con Aceite Esencial de Azahar (Citrus aurantium) en la Vida de Anaquel de la Tortilla de Maíz. 2019. Available online: http://ciad.repositorioinstitucional.mx/jspui/handle/1006/1374 (accessed on 13 October 2024).
- Al-Majedy, Y.K.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Coumarins: The Antimicrobial agents. Syst. Rev. Pharm. 2017, 8, 62–70. [Google Scholar] [CrossRef]
- Yasunaka, K.; Abe, F.; Nagayama, A.; Okabe, H.; Lozada-Pérez, L.; López-Villafranco, E.; Muñiz, E.E.; Aguilar, A.; Reyes-Chilpa, R. Antibacterial activity of crude extracts from Mexican medicinal plants and purified coumarins and xanthones. J. Ethnopharmacol. 2005, 97, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Min, B.R.; Pinchak, W.E.; Anderson, R.C.; Callaway, T.R. Effect of tannins on the in vitro growth of Escherichia coli O157: H7 and in vivo growth of generic Escherichia coli excreted from steers. J. Food Prot. 2007, 70, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Neumann, N.; Honke, M.; Povydysh, M.; Guenther, S.; Schulze, C. Evaluating tannins and flavonoids from traditionally used medicinal plants with biofilm inhibitory effects against MRGN E. coli. Molecules 2022, 27, 2284. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Ahhmed, A.; Shin, J.H.; Baek, J.S.; Kim, M.Y.; Kim, J.D. Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and gram-negative bacteria, a comprehensive study in vitro and in vivo. Evid.-Based Complement. Altern. Med. 2018, 2018, 3486106. [Google Scholar] [CrossRef] [PubMed]
- Primananda, A.Z.; Anggun, L.; Murhayati, R. Test of antibacterial activity 70% ethanol extract of seeds black pepper (Piper Nigrum L.) against bacteria Escherichia coli ATCC 25922. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1764, p. 012024. [Google Scholar]
- Ramirez, L.S.; Castaño, D.M. Metodologías para evaluar in vitro la actividad antibacteriana de compuestos de origen vegetal. Sci. Tech. 2009, 15, 263–268. [Google Scholar]
- Signorini, M.L. Modelo matemático predictivo del crecimiento de Escherichia coli O157 en carne vacuna. InVet 2008, 10, 47–57. [Google Scholar]
- Cayre, M.; Vignolo, G.; Garro, O. Validación y Comparación de Modelos de Crecimiento Microbiano; Universidad Nacional Del Nordeste, Comunicaciones Científicas y Tecnológicas: Corrientes, Argentina, 2001. [Google Scholar]
- Lima Jácome, S. Determinación de Cinéticas de Inactivación de Escherichia Coli CECT433 Inoculada en Medio de Referencia por Tratamientos con Altas Presiones Hidrostáticas. Ajuste a un Modelo Matemático, Predicción y Validación de un Modelo Experimental No-Lineal; Universitat Politècnica de València: Valencia, Spain, 2011. [Google Scholar]
- Salas, J.R.; Jaberi-Douraki, M.; Wen, X.; Volkova, V.V. Mathematical modeling of the ‘inoculum effect’: Six applicable models and the MIC advancement point concept. FEMS Microbiol. Lett. 2020, 367, fnaa012. [Google Scholar] [CrossRef] [PubMed]
- Bhagunde, P.; Chang, K.T.; Singh, R.; Singh, V.; Garey, K.W.; Nikolaou, M.; Tam, V.H. Mathematical modeling to characterize the inoculum effect. Antimicrob. Agents Chemother. 2010, 54, 4739–4743. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Echeverría, K. Sobrevivencia de Escherichia coli y Candida albicans Presente en Agua Potable Frente a Zeolite Natural Modificada con Ag-Zn. 2020. Available online: http://ri.uaemex.mx/bitstream/handle/20.500.11799/109577/TESIS%20KAREN%20ROSAS%20ECHEVERRIA.pdf?sequence=4 (accessed on 20 September 2024).
- Roddick, J.G.; Rijnenberg, A.L.; Weissenberg, M. Alterations to the Permeability of Liposome Membranes by the Solasodine-Based Glycoalkaloids Solasonine and Solamargine. Phytochemistry 1992, 31, 1951–1954. [Google Scholar] [CrossRef]
- Yuan, G.; Guan, Y.; Yi, H.; Lai, S.; Sun, Y.; Cao, S. Antibac-terial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci. Rep. 2021, 11, 10471. [Google Scholar] [CrossRef] [PubMed]
- Cuca, L.E.; Coy, C.A. Metabolites Isolated from Esenbeckia alata (Karst & Triana) Rutaceae. Biochem. Syst. Ecol. 2007, 35, 386–388. [Google Scholar]
- He, M.; Wu, T.; Pan, S.; Xu, X. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study. Appl. Surf. Sci. 2014, 305, 515–521. [Google Scholar] [CrossRef]
- Souza, S.M.D.; Monache, F.D.; Smânia, A., Jr. Antibacterial activity of coumarins. Z. Naturforschung C 2005, 60, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Bang, W.; Drake, M.A. Stress response of Escherichia coli. Compr. Rev. Food Sci. Food Saf. 2006, 5, 52–64. [Google Scholar] [CrossRef]
- Beltran, M.O.; Kaberdin, V.R.; Basabe, I.A. Respuesta bacteriana al estrés. SEM@oro 2016, 24–25. Available online: https://www.semicrobiologia.org/wp-content/uploads/2021/04/11_RespBactEstres.pdf (accessed on 20 September 2024).
- Zhang, X.; Li, N.; Chen, C.; Zhou, Z.A.; Li, K. Characteristics of natural corn starch/waste paper fiber composite foams treated by organic-inorganic hybrid hydrophobic coating technology. Int. J. Biol. Macromol. 2024, 136432. [Google Scholar] [CrossRef] [PubMed]
- Manchego, P.G.M. Estudio de las variables operacionales del encolado con mezclas de almidón y. J. Renew. Sustain. Energy 2018, 10, 033104. [Google Scholar]
- Morales-Barrera, J.; Reséndiz-Muñoz, J.; Cruz-Lagunas, B.; Fernández-Muñoz, J.L.; Godínez-Jaimes, F.; de Jesús Adame-Zambrano, T.; Vázquez-Villamar, M.; Romero-Rosales, T.; Zagaceta-Álvarez, M.T.; Aguilar-Cruz, K.A.; et al. Abiotic Stress Effect on Agastache mexicana subsp. mexicana Yield: Cultivated in Two Contrasting Environments with Organic Nutrition and Artificial Shading. Plants 2024, 13, 2661. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Núñez, E.J.; Zamilpa, A.; González-Cortazar, M.; Olmedo-Juárez, A.; Cardoso-Taketa, A.; Sánchez-Mendoza, E.; Tapia-Miruri, D.; Salinas- Sánchez, D.O.; Mendoza-de Gives, P. Isorhamnetin: A nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae. Biomolecules 2020, 10, 773. [Google Scholar] [CrossRef] [PubMed]
- Ringuelet, J.; Vina, S. Productos Naturales Vegetales, 1st ed.; Universidad Nacional de La Plata: La Plata, Argentina; Buenos Aires, Argentina, 2013. [Google Scholar]
- Rivas-Morales, C.; Oranday-Cárdenas, M.A.; Verde-Star, M.J. Investigación en Plantas de Importancia Médica Nuevo León; OmniaScience: Barcelona, Spain, 2016. [Google Scholar]
- Domínguez, X.A. Métodos de Investigación Fitoquímica; Limusa: Ciudad de México, Mexico, 1973; 281p. [Google Scholar]
- Kuklinski, C. Farmacognosia: Estudio de las Drogas y Sustancias Medicamentosas de Origen Natural; Omega: Barcelona, Spain, 2000. [Google Scholar]
Metabolite and Reagent | Colorimetric Reaction | Result |
---|---|---|
Alkaloids Dragendorff Mayer Wagner | Turbidity or precipitate (red to orange, white to cream and brown) | − − − |
Coumarins Bornträger | Yellow fluorescence (U.V.) | +++ |
Flavonoids Mg2+ and HCl | Red, orange, and violet color | ++ |
Tannins Ferric chloride (FeCl3) | Hydrolyzable tannins (blue) Condensed tannins (green) | − +++ |
Confirmation | ||
Solution of gelatin | Precipitate White | +++ |
Gelatine and saline solution | Precipitate White | +++ |
Saline solution | Precipitate White | − |
Triterpenes/Sterols Liebermann–Buchard | Color blue, blue−green (sterols) | + |
Salkowski | Red to purple (triterpene) | + |
Saponins Water | Foam formation | ++ |
Stage | Irrigation Water |
---|---|
1 | 2 L water |
2 | 3 L water |
3 | 3.5 L water |
T/°C | Sample | t−1 | t0 |
---|---|---|---|
(CFU/g) | (CFU/g) | ||
35.5 °C | Control | 0 | 51.35 × 10−7 |
Amm | 50 × 10−10 | 15.20 × 10−6 | |
8.12 °C | Control | 0 | 26.54 × 10−5 |
Amm | 83 × 10−10 | 89.50 × 10−4 |
Element | Variable | Description | Units |
---|---|---|---|
Dependent | CFU; t ≠ 0 | Units | |
Ordered to the origin Maximum amplitude CFU in a time interval since from | CFU; t = 0 | Units | |
Independent | Time | Day | |
Curvature of the function | Shows which experimental condition approaches zero most quickly | Day−1 | |
Base of natural logarithm | How microbial growth is inhibited | Dimensionless |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celis-Segura, A.; Reséndiz-Muñoz, J.; Delgado-Nuñez, E.J.; Zamora-Gasa, V.M.; Fernández-Muñoz, J.L.; Cruz-Lagunas, B.; Godinez-Jaimes, F.; Gruintal-Santos, M.A.; Urbieta-Parrazales, R. Mathematical Modeling of Inhibitory Microbial Lethality Synergistic: Secondary Phytocompounds from Purple Toronjil, Temperature, and Harvest Stress Effects on Escherichia coli. Stresses 2024, 4, 870-882. https://doi.org/10.3390/stresses4040058
Celis-Segura A, Reséndiz-Muñoz J, Delgado-Nuñez EJ, Zamora-Gasa VM, Fernández-Muñoz JL, Cruz-Lagunas B, Godinez-Jaimes F, Gruintal-Santos MA, Urbieta-Parrazales R. Mathematical Modeling of Inhibitory Microbial Lethality Synergistic: Secondary Phytocompounds from Purple Toronjil, Temperature, and Harvest Stress Effects on Escherichia coli. Stresses. 2024; 4(4):870-882. https://doi.org/10.3390/stresses4040058
Chicago/Turabian StyleCelis-Segura, AyslethSacar, Juan Reséndiz-Muñoz, Edgar Jesús Delgado-Nuñez, Víctor Manuel Zamora-Gasa, José Luis Fernández-Muñoz, Blas Cruz-Lagunas, Flaviano Godinez-Jaimes, Miguel Angel Gruintal-Santos, and Romeo Urbieta-Parrazales. 2024. "Mathematical Modeling of Inhibitory Microbial Lethality Synergistic: Secondary Phytocompounds from Purple Toronjil, Temperature, and Harvest Stress Effects on Escherichia coli" Stresses 4, no. 4: 870-882. https://doi.org/10.3390/stresses4040058
APA StyleCelis-Segura, A., Reséndiz-Muñoz, J., Delgado-Nuñez, E. J., Zamora-Gasa, V. M., Fernández-Muñoz, J. L., Cruz-Lagunas, B., Godinez-Jaimes, F., Gruintal-Santos, M. A., & Urbieta-Parrazales, R. (2024). Mathematical Modeling of Inhibitory Microbial Lethality Synergistic: Secondary Phytocompounds from Purple Toronjil, Temperature, and Harvest Stress Effects on Escherichia coli. Stresses, 4(4), 870-882. https://doi.org/10.3390/stresses4040058