Progress in the Study of Chemical Constituents of Actaea cimicifuga and Actaea erythrocarpa and Their Biological Potential
Abstract
1. Introduction
2. Results and Discussion
2.1. Levels of Biologically Active Substances in Extracts from A. cimicifuga and A. erythrocarpa
2.2. Metabolites (In Extracts from Actaea Species) Identified by LC-HRMS
2.3. HPLC Analysis of the Content of Individual Compounds in Extracts from Actaea Species
2.4. Cytotoxicity of Extracts from A. cimicifuga and A. erythrocarpa
2.5. Antioxidant Activity of Extracts from A. cimicifuga and A. erythrocarpa
3. Materials and Methods
3.1. Plant Material
3.2. Ethanol Extract Preparation
3.3. Quantification of Biologically Active Substances in Actaea Extracts
3.4. Liquid Chromatography Coupled with High-Resolution Mass Spectrometry (LC-HRMS) Analysis of Metabolites in Actaea Extracts
3.5. Analysis of Metabolite Levels in Extracts from Actaea Plants Using High-Performance Liquid Chromatography (HPLC)
3.6. Cytotoxicity Assay
3.7. Antioxidant Activity Assay Using 2,2-Diphenyl-1-Picrylhydrazyl (DPPH)
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ling, Y.Y.; Xiang, K.L.; Peng, H.W.; Erst, A.S.; Lian, L.; Zhao, L.; Jabbour, F.; Wang, W. Biogeographic diversification of Actaea (Ranunculaceae): Insights into the historical assembly of deciduous broad-leaved forests in the Northern Hemisphere. Mol. Phylogenet. Evol. 2023, 186, 107870. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M. Ranunculaceae. In Die Natürlichen Pflanzenfamilien, 2nd ed.; Hiepko, P., Ed.; Duncker and Humblot: Berlin, Germany, 1995; Volume 17a IV, pp. 223–555. [Google Scholar]
- Compton, J.A.; Culham, A.; Jury, S.L. Reclassification of Actaea to include Cimicifuga and Souliea (Ranunculaceae): Phylogeny inferred from morphology, nrDNA ITS, and cpDNA trnL-F sequence variation. TAXON 1998, 47, 593–634. [Google Scholar] [CrossRef]
- Xiang, K.L.; Erst, A.S.; Xiang, X.G.; Jabbour, F.; Wang, W. Biogeography of Coptis Salisb. (Ranunculales, Ranunculaceae, Coptidoideae), an Eastern Asian and North American genus. BMC Evol. Biol. 2018, 18, 74. [Google Scholar] [CrossRef]
- Cavaliere, C.; Rea, P.; Lynch, M.E.; Blumenthal, M. Herbal Supplement Sales Experience Slight increase in 2008. Herb. Gram. 2009, 82, 58–91. [Google Scholar]
- Jiang, B.; Kronenberg, F.; Nuntanakorn, P.; Qiu, M.H.; Kennelly, E.J. Evaluation of the botanical authenticity and phytochemical profile of black cohosh products by high-performance liquid chromatography with selected ion monitoring liquid chromatography-mass spectrometry. J. Agric. Food Chem. 2006, 54, 3242–3253. [Google Scholar] [CrossRef] [PubMed]
- Nuntanakorn, P.; Jiang, B.; Einbond, L.S.; Yang, H.; Kronenberg, F.; Weinstein, I.B.; Kennelly, E.J. Polyphenolic constituents of Actaea racemosa. J. Nat. Prod. 2006, 69, 314–318. [Google Scholar] [CrossRef]
- Hao, D.C.; Gu, X.J.; Xiao, P.G.; Liang, Z.G.; Xu, L.J.; Peng, Y. Recent advance in chemical and biological studies on cimicifugeae pharmaceutical resources. Chin. Herb. Med. 2013, 5, 81–95. [Google Scholar]
- Salari, S.; Amiri, M.S.; Ramezani, M.; Moghadam, A.T.; Elyasi, S.; Sahebkar, A.; Emami, S.A. Ethnobotany, Phytochemistry, Traditional and Modern Uses of Actaea racemosa L. (Black cohosh): A Review. Adv. Exp. Med. Biol. 2021, 1308, 403–449. [Google Scholar]
- Gao, J.C.; Peng, Y.; Yang, M.S.; Xiao, P.G. A preliminary pharmacophylogenetic study of tribe Cimicifugeae (Ranunculaceae). J. Syst. Evol. 2008, 46, 516–536. [Google Scholar]
- Hashida, M. Cimicifuga rhizome. The Japanese Pharmacopoeia, 16th ed.; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2011; pp. 1622–1623. [Google Scholar]
- Maadan, R.; Sharma, A. Evalution of anti-anxiety activity of Actaea spicata Linn. Int. J. Pharm. Sci. Drug Res. 2011, 3, 45–47. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, T.; Wang, X.; Zhang, F.; Pan, G.; Lv, H.; Wang, X.; Owoicho Orgah, J.; Zhu, Y.; Wu, H. Traditional uses, phytochemistry, pharmacology and toxicology of the genus Cimicifuga: A review. J. Ethnopharmacol. 2017, 209, 264–282. [Google Scholar] [CrossRef]
- Mohapatra, S. Benefits of Black Cohosh (Cimicifuga racemosa) for Women Health: An Up-Close and In-Depth Review. Pharmaceuticals 2022, 15, 278. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Rashid, K.; Ganie, A.H.; Nawchoo, I.A.; Tantry, M.A.; Khuroo, A.A. A review of the genus Actaea L.: Ethnomedical uses, phytochemical and pharmacological properties. J. Herb. Med. 2023, 41, 100690. [Google Scholar] [CrossRef]
- Mitrenina, E.Y.; Erst, A.S. Study of karyotypes of plants of the tribe Cimicifugeae within the framework of an integrative approach to taxonomy. In Proceedings of the Collection of Theses of Reports and Messages of the XIX All-Russian Symposium “Structure and Functions of the Cell Nucleus”, St. Petersburg, Russia, 21–22 May 2024; pp. 97–99. (In Russian). [Google Scholar]
- Luferov, A.N. A taxonomic synopsis of Ranunculaceae of the Far East of Russia. Turczaninowia 2004, 7, 1–85. (In Russian) [Google Scholar]
- Li, X.; Lin, J.; Gao, Y.; Han, W.; Chen, D. Antioxidant Activity and Mechanism of Rhizoma Cimicifugae. Chem. Cent. J. 2012, 6, 140. [Google Scholar] [CrossRef]
- Szymczak, G.; Wojciak Kosior, M.; Sowa, I.; Zapala, K.; Bogucka Kocka, A. Comparison of phenolic content and antioxidant activity of Actaea racemosa L. and Actaea cordifolia DC. Nat. Prod. Res. 2015, 29, 1149–1152. [Google Scholar] [CrossRef]
- Qin, R.-L.; Lv, C.-N.; Zhao, Y.; Zhao, Y.-D.; Yu, Y.; Lu, J.-C. Assessment of phenolics contents and antioxidant properties in Cimicifuga dahurica (Turcz.) Maxim during drying process. Ind. Crops Prod. 2017, 107, 288–296. [Google Scholar] [CrossRef]
- Kowalska, A.; Kalinowska-Lis, U. 18-beta-Glycyrrhetinic acid: Its core biological properties and dermatological applications. Int. J. Cosmet. Sci. 2019, 41, 325–331. [Google Scholar] [CrossRef]
- Lombrea, A.; Scurtu, A.D.; Avram, S.; Pavel, I.Z.; Turks, M.; Lugiņina, J.; Peipiņš, U.; Dehelean, C.A.; Soica, C.; Danciu, C. Anticancer Potential of Betulonic Acid Derivatives. Int. J. Mol. Sci. 2021, 22, 3676. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Imran, M.; Hussain, M.; Saeed, F.; Imran, A.; Umar, M.; Abdelgawad, M.A.; El-Ghorab, A.H.; Ahmed, A.; Alsagaby, S.A.; et al. Asiatic acid: A review on its polypharmacological properties and therapeutic potential against various Maladies. Int. J. Food Prop. 2023, 26, 12441263. [Google Scholar] [CrossRef]
- Verma, N.; Raghuvanshi, D.S.; Singh, R.V. Recent advances in the chemistry and biology of oleanolic acid and its derivatives. Eur. J. Med. Chem. 2024, 276, 116619. [Google Scholar] [CrossRef] [PubMed]
- Abdul, A.B.; Abdelwahab, S.I.; Al-Zubaira, A.S.; Elhassan, M.M.; Murali, S.M. Anticancer and antimicrobial activities of zerumbone from the rhizomes of Zingiber zerumbut. Int. J. Pharmacol. 2008, 4, 301–304. [Google Scholar] [CrossRef]
- Wang, H.-K.; Sakurai, N.; Shih, C.Y.; Lee, K.-H. LC/TIS-MS Fingerprint Profiling of Cimicifuga Species and Analysis of 23-Epi-26-deoxyactein in Cimicifuga racemosa Commercial Products. J. Agric. Food Chem. 2005, 53, 1379–1386. [Google Scholar] [CrossRef]
- van Breemen, R.B.; Liang, W.; Banuvar, S.; Shulman, L.P.; Pang, Y.; Tao, Y.; Nikolic, D.; Krock, K.M.; Fabricant, D.S.; Chen, S.N.; et al. Pharmacokinetics of 23-epi-26-deoxyactein in women after oral administration of a standardized extract of black cohosh. Clin. Pharmacol. Ther. 2010, 87, 219–225. [Google Scholar] [CrossRef]
- Nicolić, D.; Gödecke, T.; Chen, S.N.; White, J.; Lankin, D.; Pauli, G.F.; Breemen, R.B. Mass spectrometric dereplication of nitrogen-containing constituents of black cohosh (Cimicifuga racemosa L.). Fititerapia 2012, 83, 441–460. [Google Scholar] [CrossRef] [PubMed]
- Gödecke, T.; Lankin, D.C.; Nikolic, D.; Chen, S.-N.; van Breemen, R.B.; Farnsworth, N.R.; Pauli, G.F. Guanidine alkaloids and Pictet-Spengler adducts from black cohosh (Cimicifuga racemosa). J. Nat. Prod. 2009, 72, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Nicolić, D.; Lankin, D.; Cisowska, T.; Chen, S.N.; Pauli, G.F.; Breemen, R.B. Nitrogen-containing constituents of black cohosh: Chemistry, structure elucidation, and biological activities. Resent Adv. Phytochem. 2015, 45, 31–75. [Google Scholar]
- Jarry, H.; Metten, M.; Spengler, B.; Christoffel, V.; Wuttke, W. In vitro effects of the Cimicifuga racemosa extract BNO 1055. Maturitas 2003, 44, 31–38. [Google Scholar] [CrossRef]
- Jang, B.; Ma, C.; Motley, T.; Kronenberg, F.; Kennelly, E.J. Phytochemical fingerprinting to thwart black cohosh adulteration: A 15 Actaea species analysis. Phytochem. Anal. 2011, 22, 339–351. [Google Scholar] [CrossRef]
- Shi, Q.Q.; Gao, Y.; Lu, J.; Zhou, L.; Qiu, M.H. Two new triterpenoid-chromone hybrids from the rhizomes of Actaea cimicifuga L. (syn. Cimicifuga foetida L.) and their cytotoxic activities. Nat. Prod. Res. 2020, 36, 193–199. [Google Scholar]
- Wu, D.; Yao, Q.; Chen, Y.; Hu, X.; Qing, C.; Qiu, M. The in Vitro and in Vivo Antitumor Activities of Tetracyclic Triterpenoids Compounds Actein and 26-Deoxyactein Isolated from Rhizome of Cimicifuga foetida L. Molecules 2016, 30, 1001. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, W.; Fan, Y.; Wei, Y.; Yu, L.Q.; Wei, J.F.; Wang, Y.F. Anticancer effciency of cycloartane triterpenoid derivatives isolated from Cimicifuga yunnanensis Hsiao on triple- negative breast cancer cells. Cancer Manag. Res. 2018, 10, 6715–6729. [Google Scholar] [CrossRef] [PubMed]
- Yim, S.H.; Kim, H.J.; Park, S.H.; Kim, J.; Williams, D.R.; Jung, D.W.; Lee, I.S. Cytotoxic caffeic acid derivatives from the rhizomes of Cimicifuga heracleifolia. Arch. Pharm. Res. 2012, 35, 1559–1565. [Google Scholar] [CrossRef]
- Burdette, J.E.; Chen, S.N.; Lu, Z.Z.; Xu, H.Y.; White, B.E.P.; Fabricant, D.S.; Liu, J.H.; Fong, H.H.S.; Farnsworth, N.R.; Constantinou, A.I.; et al. Black cohosh (Cimicifuga racemosa L.) protects against menadione-induced DNA damage through scavenging of reactive oxygen species: Bioassay-directed isolation and characterization of active principles. J. Agric. Food Chem. 2002, 50, 7022–7028. [Google Scholar] [CrossRef]
- Da, Y.; Niu, K.; Wang, K.; Cui, G.; Wang, W.; Jin, B.; Sun, Y.; Jia, J.; Qin, L.; Bai, W. A comparison of the effects of estrogen and Cimicifuga racemosa on the lacrimal gland and submandibular gland in ovariectomized rats. PLoS ONE 2015, 10, e0121470. [Google Scholar] [CrossRef]
- Nuntankorn, P.; Jiang, B.; Yang, H.; Cervantes-Cervantes, M.; Kronenberg, F.; Kennelly, E.J. Analysis of polyphenolic compounds and radical scavenging activity of four American Actaea species. Phytochem. Anal. 2007, 18, 219–228. [Google Scholar] [CrossRef]
- Andreyeva, V.Y.; Sheykin, V.V.; Kalinkina, G.I.; Razina, T.G.; Zuyeva, Y.P.; Rybalkina, O.Y.; Ul’rikh, A.V. Development of a drug based on the fruits of chokeberry (Arónia Melanocárpa (Michx.) Elliot) improving the efficiency of cancer chemotherapy. Khimiya Rastitel’nogo Syr’ya 2020, 4, 219–226. (In Russian) [Google Scholar]
- Ardestani, A.; Yazdanparast, R. Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem. 2007, 104, 21–29. [Google Scholar] [CrossRef]
- Brighente, I.M.C.; Dias, M.; Verdi, L.G.; Pizzolatti, M.G. Antioxidant activity and total phenolic content of some Brazilian species. Pharm. Biol. 2007, 45, 156–161. [Google Scholar] [CrossRef]
- Kukushkina, T.A.; Kostikova, V.A.; Khramova, E.P. Content of catechins in leaves and roots of Comarum Salesovianum and Comarum palustre (Rosaceae). Khimiya Rastitel’nogo Syr’ya 2024, 2, 196–206. (In Russian) [Google Scholar]
- Fedoseeva, L.M. The study of tannins of underground and aboveground vegetative organs of the Bergenia Crassifolia (L.) Fitsch., growing in Altai. Khimiya Rastitel’nogo Syr’ya 2005, 2, 45–50. (In Russian) [Google Scholar]
- Polish Pharmacopeia VI; Polskie Towarzystwo Farmaceutyczne: Warszawa, Poland, 2002.
- Gawron-Gzella, A.; Dudek-Makuch, M.; Matlawska, I. DPPH radical scavenging activity and phenolic compound content in different leaf extracts from selected blackberry species. Acta Biol. Cracoviensia Ser. Bot. 2012, 54, 32–38. [Google Scholar] [CrossRef]
- Kaidash, O.A.; Kostikova, V.A.; Udut, E.V.; Shaykin, V.V.; Kashapov, D.R. Extracts of Spiraea hypericifolia L. and Spiraea crenata L.: The phenolic profile and biological activities. Plants 2022, 11, 2728. [Google Scholar] [CrossRef] [PubMed]
- Kostikova, V.A.; Zarubaev, V.V.; Esaulkova, I.L.; Sinegubova, E.O.; Kadyrova, R.A.; Shaldaeva, T.M.; Veklich, T.N.; Kuznetsov, A.A. The antiviral, antiradical, and phytochemical potential of dry extracts from Spiraea hypericifolia, S. media, and S. salicifolia (Rosaceae). S. Afr. J. Bot. 2022, 147, 215–222. [Google Scholar] [CrossRef]
- Pisarev, D.I.; Martynova, N.A.; Netrebenko, N.N.; Novikov, O.O.; Sorokopudov, V.N. Saponins and their determination in the rhizomes of Aralia manchurian from the Belgorod region. Chem. Plant Raw Mater. 2009, 4, 197–198. (In Russian) [Google Scholar]
- De Amorim, E.C.; de Castro, V.D.A.; de Melo, J.; Corrêa, A.; Sobrinho, T.D.S.P. Standard operating procedures (SOP) for the spectrophotometric determination of phenolic compounds contained in plant samples. In Latest Research into Quality Control; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Available online: https://www.genome.jp/kegg/ (accessed on 5 November 2024).
- Available online: https://massbank.eu/MassBank/ (accessed on 5 November 2024).
- Available online: https://plantcyc.org/ (accessed on 5 November 2024).
- Available online: http://www.cqab.eu/index.php/en/ (accessed on 5 November 2024).
- Available online: https://www.arabidopsis.org/biocyc/ (accessed on 5 November 2024).
- Available online: https://www.extrasynthese.com/ (accessed on 5 November 2024).
- Available online: https://www.indofinechemical.com/ (accessed on 5 November 2024).
- Available online: http://www.chemcd.com/supplier/sequoia.html (accessed on 5 November 2024).
- Erst, A.S.; Chernonosov, A.A.; Petrova, N.V.; Kulikovskiy, M.S.; Maltseva, S.Y.; Wang, W.; Kostikova, V.A. Investigation of chemical constituents of Eranthis longistipitata (Ranunculaceae): Coumarins and furochromones. Int. J. Mol. Sci. 2022, 23, 406. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, W.; Xiang, Q.; Kim, J.; Dufresne, C.; Liu, Y.; Li, T.; Chen, S. Creation of a Plant Metabolite Spectral Library for Untargeted and Targeted Metabolomics. Int. J. Mol. Sci. 2023, 24, 2249. [Google Scholar] [CrossRef]
- Available online: https://more.bham.ac.uk/bamcg/resources/ (accessed on 5 November 2024).
- Folberth, J.; Begemann, K.; Jöhren, O.; Schwaninger, M.; Othman, A. MS2 and LC libraries for untargeted metabolomics: Enhancing method development and identification confidence. J. Chromatogr. B 2020, 1145, 122105. [Google Scholar] [CrossRef]
- Available online: https://www.mzcloud.org (accessed on 5 November 2024).
- Kostikova, V.A.; Kuznetsov, A.A. Changes in the sets and levels of flavonoids and Phenolcarboxylic Acids in the Leaves of Spiraea betulifolia subsp. aemiliana (Rosaceae) during Introduction into Novosibirsk Conditions. Chem. Sustain. Dev. 2021, 29, 40–50. [Google Scholar]
- Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening seeds of some Scottish plants for free radical scavenging activity. Phytother. Res. 2007, 21, 615–621. [Google Scholar] [CrossRef]
- Gawron-Gzella, A.; Witkowska-Banaszczak, E.; Bylka, W.; Dudek-Makuch, M.; Odwrot, A.; Skrodzka, N. Chemical composition, antioxidant and antimicrobial activities of Sanguisorba officinalis L. extracts. Pharm. Chem. J. 2016, 50, 244–249. [Google Scholar] [CrossRef] [PubMed]
Substance Level, mg/g | Species (Plant Part) | |||
---|---|---|---|---|
A. cimicifuga (Above-Ground Parts) | A. cimicifuga (Roots and Rhizomes) | A. erythrocarpa (Above-Ground Parts) | A. erythrocarpa (Roots and Rhizomes) | |
Phenolic compounds | 79.31 ± 3.15 b | 67.10 ± 2.66 c | 101.31 ± 4.02 a | 79.19 ± 3.14 b |
Catechins | 7.04 ± 0.12 b | 3.55 ± 0.06 d | 10.92 ± 0.19 a | 5.04 ± 0.09 c |
Flavonols | 20.04 ± 0.60 b | 8.08 ± 0.24 c | 32.42 ± 0.97 a | 8.12 ± 0.24 c |
Tannins | 149.51 ± 1.27 b | 130.26 ± 1.11 c | 147.83 ± 1.26 b | 202.31 ± 1.72 a |
Phenolic acids | 71.27 ± 2.85 d | 95.15 ± 3.81 b,c | 104.48 ± 4.18 a,b | 112.18 ± 4.49 a |
Saponins | 178.90 ± 0.02 c | 154.34 ± 0.06 d | 247.88 ± 0.06 a | 225.86 ± 4.95 b |
Coumarins | 92.76 ± 3.71 c | 70.47 ± 2.82 d | 161.55 ± 6.46 a | 105.44 ± 4.22 b |
Compound Number | Identified Compounds | tR (min) | Calculated Mass (Da) | Found Mass | Delta of Mass (ppm) | Score | Mode | A. cimicifuga | A. erythrocarpa | ||
---|---|---|---|---|---|---|---|---|---|---|---|
AP | RR | AP | RR | ||||||||
Phenolic Compounds | |||||||||||
1 | Benzoic acid * | 3.20 | 122.037 | 122.037 | 2.01 | – | p | – | – | + | + |
2 | Caffeic acid * | 10.08 | 180.042 | 180.042 | 0.76 | 96.2 1 | p | + | + | + | + |
3 | Methyl caffeate | 8.73 | 194.058 | 194.058 | 0.75 | – | p | + | + | + | + |
4 | 2-Hydroxycinnamic acid | 12.81 | 164.047 | 164.048 | 1.32 | 75.9 1 | p | + | + | + | + |
5 | 3,4-Dimethoxycinnamic acid | 12.62 | 208.074 | 208.077 | 15.81 | 88.8 1 | p | + | + | + | + |
6 | 2-Hydroxy-4-methoxycinnamic acid | 16.89 | 194.058 | 194.058 | 1 | 81.7 1 | p | + | + | + | + |
7 | 2,5-Dihydroxycinnamic acid | 3.55 | 180.042 | 180.042 | 0.16 | 71.8 1 | p | – | – | + | + |
8 | 4-Methoxy-cinnamic acid-2-glucoside | 7.29 | 356.111 | 356.111 | 0.66 | 78.4 1 | P | + | + | – | – |
9 | Cimicifugic acid A | 10.44 | 448.101 | 448.101 | 0.14 | 65.6 1 | p | + | + | + | + |
10 | Cimicifugic acid B | 13.62 | 448.101 | 448.092 | −18.75 | 93.7 1 | n | + | + | + | + |
11 | Ferulic acid * | 12.03 | 194.058 | 194.058 | 1.29 | 90.5 2 | p | + | + | + | + |
12 | Isoferulic acid * | 11.73 | 194.058 | 194.058 | 0.6 | 91.7 1 | p | + | + | + | + |
13 | p-Coumaric acid * | 14.31 | 164.047 | 164.048 | 1.31 | 90.3 1 | p | + | + | + | + |
Flavonoids | |||||||||||
14 | Zapotin | 0.31 | 342.110 | 342.116 | 17.44 | 57 1 | p | – | – | + | + |
15 | Chrysin | 11.19 | 254.058 | 254.058 | 0.57 | 75.6 1 | p | – | – | + | + |
16 | 4′,5,7-Trihydroxy-3-methoxyflavone-3′-O-xylopyranoside | 10.70 | 448.101 | 448.100 | −0.25 | 53.5 1 | p | – | – | + | + |
17 | 5-Methoxy-7,2’,4’-trihydroxyisoflavone | 19.97 | 300.063 | 300.058 | −19.49 | 65.5 1 | n | + | + | – | – |
18 | Quercetin * | 9.90 | 302.043 | 302.043 | −0.04 | 93.9 1 | p | + | + | + | + |
19 | Isorhamnetin | 10.78 | 316.058 | 316.058 | 0.04 | 95.4 1 | p | + | + | + | + |
20 | Hyperoside * | 9.46 | 464.095 | 464.095 | −0.08 | 93.9 1 | p | + | + | + | + |
21 | Quercetin-6-O-β-D-xylopyranosyl-β-D-glucopyranoside | 8.57 | 596.138 | 596.137 | −0.51 | 87.9 1 | p | + | + | + | + |
22 | Kaempferol * | 9.61 | 286.048 | 286.048 | 0.14 | 89.6 1 | p | + | + | – | – |
23 | Trifolin | 13.79 | 448.101 | 448.092 | −18.97 | 61.1 1 | n | – | – | + | + |
24 | Kaempferol-3-O-xylopyranosyl-glucopyranoside | 9.86 | 580.143 | 580.143 | −0.21 | 79.4 1 | p | – | – | + | + |
Terpenes | |||||||||||
25 | Oleanolic acid | 35.67 | 456.360 | 456.360 | 0.29 | - | p | + | + | – | – |
26 | Asiatic acid | 20.69 | 488.350 | 488.350 | −0.27 | 62.2 1 | p | + | + | + | + |
27 | 2,24-Dihydroxyursolic acid | 33.54 | 488.350 | 488.350 | 0.08 | 65.3 1 | p | – | – | + | + |
28 | 23-Epi-26-deoxyactein | 23.56 | 660.387 | 660.387 | −0.02 | 84.2 1 | P | + | + | + | + |
29 | 18-β-Glycyrrhetinic acid | 23.50 | 470.340 | 470.340 | 0.39 | 75.1 2 | p | + | + | + | + |
30 | 7-Hydroxy-betulonic acid | 26.31 | 470.340 | 470.340 | 0.22 | 66.5 1 | P | + | + | – | – |
31 | 1-Oxo-3β,23-dihydroxyolean-12-en-28-oic acid | 18.94 | 486.335 | 486.342 | 15.92 | 63.6 1 | p | – | – | + | + |
32 | 2-Hydroxy-22-(2-hydroxy-2-propanyl)-3,8,8,17,19-pentamethyl-23,24-dioxaheptacyclo[19.2.1.01,18 03,17 04,14 07,12 012,14]tetracos-4-en-9-yl β-D-xylopyranoside | 22.52 | 618.377 | 618.387 | 16.24 | 70.7 1 | p | + | + | + | + |
33 | Zerumbone | 30.32 | 218.167 | 218.171 | 17.03 | 64.6 1 | p | – | – | + | + |
Nitrogen-containing constituents | |||||||||||
34 | 1,3-Dimethyl-6-morpholino-1,2,3,4-tetrahydropyrimidine-2,4-dione | 3.19 | 225.111 | 225.111 | 0.66 | 64.3 1 | P | + | + | – | – |
35 | 5-Amino-3-(4-methoxyphenyl)-5-oxopentanoic acid | 1.24 | 237.100 | 237.100 | 1.01 | 73.4 1 | p | + | + | – | – |
36 | 1,3,4,10-Tetrahydro-9(2H)-acridinone | 19.25 | 199.100 | 199.100 | 0.94 | 66.6 1 | P | + | + | + | + |
37 | Salsolinol | 0.68 | 179.095 | 179.095 | 0.91 | 67.4 1 | p | + | + | + | + |
38 | Thymine | 1.06 | 126.043 | 126.043 | 2.02 | 86.5 1 | p | + | + | + | + |
39 | Choline | 0.29 | 103.100 | 103.100 | 3.37 | 86.1 1 | p | + | + | + | + |
40 | DL-Glutamic acid | 0.40 | 147.053 | 147.053 | 1.41 | 70.7 2 | p | + | + | + | + |
41 | Guanine | 0.63 | 151.049 | 151.050 | 0.59 | 89.2 1 | p | + | + | + | + |
Coumarins | |||||||||||
42 | Scopoletin | 6.88 | 192.042 | 192.042 | 1.17 | 72.5 1 | p | + | + | + | + |
43 | Fraxetin | 7.28 | 208.037 | 208.037 | 1.05 | 62.6 1 | p | + | + | – | – |
44 | 7,8-Dihydroxy-4-methylcoumarin | 9.96 | 192.042 | 192.043 | 1.44 | 77.3 1 | p | + | + | + | + |
45 | Umbelliferone | 10.12 | 162.032 | 162.032 | 0.55 | 78.7 1 | p | – | – | + | + |
46 | Magnolioside | 6.88 | 354.095 | 354.095 | −0.14 | 71.6 1 | p | + | + | + | + |
47 | 5-Methylcoumarin-4-β-glucoside | 11.53 | 338.100 | 338.100 | −0.19 | 60.2 1 | p | + | + | + | + |
48 | Ostruthin | 27.17 | 298.157 | 298.154 | −8.57 | 55 1 | n | + | + | + | + |
49 | Isobergapten | 19.59 | 216.042 | 216.042 | 0.95 | 68.6 1 | p | + | + | – | – |
50 | 5-Xylopyranosyl-glucopyranoside 7,4′,5′-trihydroxy-4-phenylcoumarin | 12.96 | 580.143 | 580.132 | −18.89 | 85.3 1 | n | + | + | + | + |
Chromones | |||||||||||
51 | Cimifugin | 9.83 | 306.110 | 306.110 | −0.63 | 87.5 1 | p | + | + | + | + |
52 | Visnagin | 17.21 | 230.058 | 230.058 | −0.23 | 71.5 1 | p | + | + | + | + |
53 | 5-Hydroxy-7-(hydroxymethyl)-2-methyl-2-(5-oxotetrahydro-2-furanyl)-2,3-dihydro-4H-chromen-4-one | 10.44 | 292.095 | 292.095 | 0.27 | 60.9 1 | p | + | + | + | + |
Fatty acids and their derivatives | |||||||||||
54 | (±)13-HODE | 37.20 | 296.235 | 296.229 | −19.69 | 86.8 1 | n | + | + | + | + |
55 | (9Z,12Z)-6,8-Dihydroxy-9,12-octadecadienoic acid | 25.36 | 312.230 | 312.224 | −19.37 | 66.8 1 | n | – | – | + | + |
56 | (±)9-HpODE | 26.47 | 312.230 | 312.224 | −19.4 | 90.5 1 | n | + | + | + | + |
57 | 13(S)-HOTrE | 33.30 | 294.219 | 294.214 | −19.24 | 85.8 1 | n | + | + | + | + |
58 | Arachidonic acid | 36.69 | 304.240 | 304.240 | 0.58 | 70.4 1 | p | – | – | + | + |
59 | Juniperic acid | 39.56 | 272.235 | 272.230 | −19.27 | 92.3 1 | n | + | + | + | + |
60 | Corchorifatty acid F | 19.02 | 328.225 | 328.219 | −19.13 | 91.7 1 | n | + | + | + | + |
61 | α-Eleostearic acid | 31.67 | 278.225 | 278.225 | 0.46 | 93.9 1 | p | + | + | + | + |
62 | α-Linolenic acid | 31.38 | 278.225 | 278.225 | 0.44 | 88.3 1 | p | – | – | + | + |
63 | 9-Oxo-ODE | 32.43 | 294.219 | 294.220 | 0.33 | 75.8 1 | p | + | + | + | + |
64 | 9S,13R-12-Oxophytodienoic acid | 22.70 | 292.204 | 292.204 | 0.38 | 90.3 1 | p | – | – | + | + |
65 | 4-Oxododecanedioic acid | 9.75 | 244.131 | 244.131 | 0.38 | 67 1 | p | – | – | + | + |
66 | 12-Oxo phytodienoic acid | 26.82 | 292.204 | 292.204 | 0.5 | 92.9 1 | p | + | + | + | + |
Peak ID | Compound | tR, min | Spectral Data λmax, nm | A. cimicifuga | A. erythrocarpa | ||
---|---|---|---|---|---|---|---|
AP | RR | AP | RR | ||||
Extracts (chromatography with solvent I) | |||||||
1 | caffeic acid | 10.6 | 240, 298 sh., 325 | 0.61 ± 0.02 b | 0.41 ± 0.02 d | 0.51 ± 0.02 c | 0.74 ± 0.03 a |
2 | ferulic acid | 15.1 | 235, 295 sh., 320 | 1.02 ± 0.04 b | 1.12 ± 0.04 a,b | 1.16 ± 0.04 a | 1.10 ± 0.04 a,b |
3 | isoferulic acid | 16.2 | 235, 295 sh., 320 | 1.29 ± 0.05 b | 0.12 ± 0.00 d | 1.49 ± 0.06 a | 0.54 ± 0.02 c |
4 | benzoic acid | 17.8 | 275 | traces | traces | 0.57 ± 0.02 a | traces |
5 | hyperoside | 18.6 | 255, 268 sh., 355 | 10.52 ± 0.39 b | traces | 13.05 ± 0.48 a | traces |
6 | quercetin | 24.5 | 255, 370 | 1.58 ± 0.06 a | traces | 1.05 ± 0.04 b | traces |
7 | kaempferol | 27.8 | 265, 365 | 0.05 ± 0.00 b | traces | traces | traces |
Hydrolysate of extracts (chromatography with solvent II) | |||||||
1 | quercetin | 9.4 | 255, 372 | 2.13 ± 0.08 | traces | 5.31 ± 0.20 | traces |
2 | kaempferol | 16.2 | 265, 365 | 1.12 ± 0.04 | traces | 2.38 ± 0.09 | traces |
3 | isorhamnetin | 18.0 | 255, 370 | 0.39 ± 0.01 | traces | 0.98 ± 0.04 | traces |
Species (Plant Part) | IC50 Toward Cell Lines µg/mL | ||
---|---|---|---|
3T3-L1 | HepG2 | MDA-MB-231 | |
A. erythrocarpa (above-ground parts) | 81 ± 3 | 236 ± 6 | 61 ± 5 |
A. erythrocarpa (roots and rhizomes) | 728 ± 8 | 503 ± 3 | 554 ± 32 |
A. cimicifuga (above-ground parts) | 230 ± 23 | 264 ± 29 | 782 ± 87 |
A. cimicifuga (roots and rhizomes) | 711 ± 44 | 1023 ± 131 | н/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erst, A.S.; Petrova, N.V.; Chernonosov, A.A.; Kaidash, O.A.; Sheikin, V.V.; Leonova, T.V.; Shaldaeva, T.M.; Gusar, A.S.; Koval, V.V.; Udut, E.V.; et al. Progress in the Study of Chemical Constituents of Actaea cimicifuga and Actaea erythrocarpa and Their Biological Potential. Int. J. Mol. Sci. 2025, 26, 4768. https://doi.org/10.3390/ijms26104768
Erst AS, Petrova NV, Chernonosov AA, Kaidash OA, Sheikin VV, Leonova TV, Shaldaeva TM, Gusar AS, Koval VV, Udut EV, et al. Progress in the Study of Chemical Constituents of Actaea cimicifuga and Actaea erythrocarpa and Their Biological Potential. International Journal of Molecular Sciences. 2025; 26(10):4768. https://doi.org/10.3390/ijms26104768
Chicago/Turabian StyleErst, Andrey S., Natalia V. Petrova, Alexander A. Chernonosov, Olga A. Kaidash, Vladimir V. Sheikin, Tatiana V. Leonova, Tatiana M. Shaldaeva, Anastasiia S. Gusar, Vladimir V. Koval, Elena V. Udut, and et al. 2025. "Progress in the Study of Chemical Constituents of Actaea cimicifuga and Actaea erythrocarpa and Their Biological Potential" International Journal of Molecular Sciences 26, no. 10: 4768. https://doi.org/10.3390/ijms26104768
APA StyleErst, A. S., Petrova, N. V., Chernonosov, A. A., Kaidash, O. A., Sheikin, V. V., Leonova, T. V., Shaldaeva, T. M., Gusar, A. S., Koval, V. V., Udut, E. V., Xiang, K., Ling, Y.-Y., Wang, W., & Kostikova, V. A. (2025). Progress in the Study of Chemical Constituents of Actaea cimicifuga and Actaea erythrocarpa and Their Biological Potential. International Journal of Molecular Sciences, 26(10), 4768. https://doi.org/10.3390/ijms26104768