Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (735)

Search Parameters:
Keywords = treatment wetland

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2597 KiB  
Article
Chemical and Isotopic Investigation of Abiotic Oxidation of Lactate Substrate in the Presence of Varied Electron Acceptors and Under Circumneutral Anaerobic Conditions
by Tsigabu A. Gebrehiwet and R. V. Krishnamurthy
Water 2025, 17(15), 2308; https://doi.org/10.3390/w17152308 - 3 Aug 2025
Viewed by 231
Abstract
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide [...] Read more.
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide (HFO), media composition, and pH under anaerobic conditions, using sodium bicarbonate as the buffering agent. Dissolved inorganic carbon (DIC) was used as a proxy for the oxidation of substrates. HFO media generated more DIC compared to ferric citrate containing media. Light and pH had major roles in the oxidation of lactate in the presence of ferric iron. Under dark conditions in the presence or absence of Fe(III), the DIC produced was low in all pH conditions. Inhibition of DIC production was also observed upon photo exposure when Fe (III) was absent. Isotopically, the system showed initial mixing between the bicarbonate and the carbon dioxide produced from oxidation later being dominated by carbon isotope value of lactate used. These redox conditions align with previous studies suggesting cleavage of organic compounds by hydroxyl radicals. The slower redox processes observed here, compared to previous studies, could be due to the scavenging effect of chloride ion on the hydroxyl radical. Full article
Show Figures

Figure 1

26 pages, 1533 KiB  
Article
Optimization of Agricultural and Urban BMPs to Meet Phosphorus and Sediment Loading Targets in the Upper Soldier Creek, Kansas, USA
by Naomi E. Detenbeck, Christopher P. Weaver, Alyssa M. Le, Philip E. Morefield, Samuel Ennett and Marilyn R. ten Brink
Water 2025, 17(15), 2265; https://doi.org/10.3390/w17152265 - 30 Jul 2025
Viewed by 238
Abstract
This study was developed to identify the optimal (most cost-effective) strategies to reduce sediment and phosphorus loadings in the Upper Soldier Creek, Kansas, USA, watershed using the Watershed Management Optimization Support Tool (WMOST) suite of programs. Under average precipitation, loading targets for upland [...] Read more.
This study was developed to identify the optimal (most cost-effective) strategies to reduce sediment and phosphorus loadings in the Upper Soldier Creek, Kansas, USA, watershed using the Watershed Management Optimization Support Tool (WMOST) suite of programs. Under average precipitation, loading targets for upland total phosphorus (TP) could be met with use of grassed swales for treating urban area runoff and of contouring for agricultural runoff. For a wet year, the same target could be met, but with use of a sand filter with underdrain for the urban runoff. Both annual and daily TP loading targets from Total Maximum Daily Loads (TMDLs) were exceeded in simulations of best management practice (BMP) solutions for 14 alternative future climate scenarios. We expanded the set of BMPs to include stream bank stabilization (physical plus riparian restoration) and two-stage channel designs, but upland loading targets could not be met for either TP or total suspended solids (TSS) under any precipitation conditions. An optimization scenario that simulated the routing of flows in excess of those treated by the upland BMPs to an off-channel treatment wetland allowed TMDLs to be met for an average precipitation year. WMOST can optimize cost-effectiveness of BMPs across multiple scales and climate scenarios. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

37 pages, 1767 KiB  
Review
Antibiotics and Antibiotic Resistance Genes in the Environment: Dissemination, Ecological Risks, and Remediation Approaches
by Zhaomeng Wu, Xiaohou Shao and Qilin Wang
Microorganisms 2025, 13(8), 1763; https://doi.org/10.3390/microorganisms13081763 - 29 Jul 2025
Viewed by 438
Abstract
Global antibiotic use saturates ecosystems with selective pressure, driving mobile genetic element (MGE)-mediated antibiotic resistance gene (ARG) dissemination that destabilizes ecological integrity and breaches public health defenses. This review synthesizes the sources, environmental distribution, and ecological risks of antibiotics and ARGs, emphasizing the [...] Read more.
Global antibiotic use saturates ecosystems with selective pressure, driving mobile genetic element (MGE)-mediated antibiotic resistance gene (ARG) dissemination that destabilizes ecological integrity and breaches public health defenses. This review synthesizes the sources, environmental distribution, and ecological risks of antibiotics and ARGs, emphasizing the mechanisms of horizontal gene transfer (HGT) driven by MGEs such as plasmids, transposons, and integrons. We further conduct a comparative critical analysis of the effectiveness and limitations of antibiotics and ARGs remediation strategies for adsorption (biochar, activated carbon, carbon nanotubes), chemical degradation (advanced oxidation processes, Fenton-based systems), and biological treatment (microbial degradation, constructed wetlands). To effectively curb the spread of antimicrobial resistance and safeguard the sustainability of ecosystems, we propose an integrated “One Health” framework encompassing enhanced global surveillance (antibiotic residues and ARGs dissemination) as well as public education. Full article
(This article belongs to the Special Issue Antibiotic and Resistance Gene Pollution in the Environment)
Show Figures

Graphical abstract

15 pages, 2232 KiB  
Article
A Multi-Objective Approach for Improving Ecosystem Services and Mitigating Environmental Externalities in Paddy Fields and Its Emergy Analysis
by Naven Ramdat, Hongshuo Zou, Shiwen Sheng, Min Fu, Yingying Huang, Yaonan Cui, Yiru Wang, Rui Ding, Ping Xu and Xuechu Chen
Water 2025, 17(15), 2244; https://doi.org/10.3390/w17152244 - 29 Jul 2025
Viewed by 309
Abstract
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural [...] Read more.
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural system (MIA system), which combines two eco-functional units: paddy wetlands and Beitang (irrigation water collection pond). Pilot study results demonstrated that the MIA system enhanced biodiversity and inhibited pest outbreak, with only a marginal reduction in rice production compared with the control. Additionally, the paddy wetland effectively removed nitrogen, with removal rates of total nitrogen and dissolved inorganic nitrogen ranging from 0.06 to 0.65 g N m−2 d−1 and from 0.02 to 0.22 g N m−2 d−1, respectively. Continuous water flow in the paddy wetland reduced the CH4 emission by 84.4% compared with the static water conditions. Furthermore, a simulation experiment indicated that tide flow was more effective in mitigating CH4 emission, with a 68.3% reduction compared with the drying–wetting cycle treatment. The emergy evaluation demonstrated that the MIA system outperformed the ordinary paddy field when considering both critical ecosystem services and environmental externalities. The MIA system exhibited higher emergy self-sufficiency ratio, emergy yield ratio, and emergy sustainable index, along with a lower environmental load ratio. Additionally, the system required minimal transformation, thus a modest investment. By presenting the case of the MIA system, we provide a theoretical foundation for comprehensive management and assessment of agricultural ecosystems, highlighting its significant potential for widespread application. Full article
Show Figures

Figure 1

14 pages, 1632 KiB  
Article
Is the Mineral Content of Muscle Tissue (Longissimus Lumborum) in Cattle Finished During the Rainy Season in the Eastern Amazon Influenced by Different Farming Systems?
by Ana Paula Damasceno Ferreira, Jamile Andréa Rodrigues da Silva, Miguel Pedro Mourato, José António Mestre Prates, Thomaz Cyro Guimarães de Carvalho Rodrigues, André Guimarães Maciel e Silva, Andrea Viana da Cruz, Adriny dos Santos Miranda Lobato, Welligton Conceição da Silva, Elton Alex Corrêa da Silva, Antônio Marcos Quadros Cunha, Vanessa Vieira Lourenço-Costa, Éder Bruno Rebelo da Silva, Tatiane Silva Belo and José de Brito Lourenço-Júnior
Animals 2025, 15(15), 2186; https://doi.org/10.3390/ani15152186 - 25 Jul 2025
Viewed by 282
Abstract
The scientific literature currently lacks studies that evaluate the nutritional composition of the tissues of cattle raised in different systems, so that the nutritional effects can be known and used to enhance consumption and use in the diet. The aim was therefore to [...] Read more.
The scientific literature currently lacks studies that evaluate the nutritional composition of the tissues of cattle raised in different systems, so that the nutritional effects can be known and used to enhance consumption and use in the diet. The aim was therefore to assess whether the mineral content of muscle tissue (longissimus lumborum) in cattle finished during the rainy season in the Eastern Amazon is influenced by different farming systems. The treatments consisted of four systems (three pasture production systems and one feedlot system). 1. native wetland pasture in Santa Cruz do Arari (Mesoregion of Marajó); 2. native wetland pasture in Monte Alegre (Mesoregion of Baixo Amazonas); 3. cultivated dryland pasture in São Miguel do Guamá (Mesoregion of Nordeste Paraense); and 4. Confinement in Santa Izabel do Pará (Metropolitan Region of Belém). The analyses were carried out on samples of the longissimus lumborum muscle tissue of 48 male, castrated, crossbred Nelore cattle, twelve per breeding system, from commercial farms, destined for meat production, finished during the rainiest period of the year (between January and June). In systems 1 and 2, the animals were slaughtered in licensed slaughterhouses; the animals in systems 3 and 4 were slaughtered in commercial slaughterhouses. Food sampling and chemical analysis, soil sample collection and analysis, longissimus lumborum muscle tissue collection, sample preparation and digestion, and inductively coupled plasma optical emission spectrometry were evaluated. The experimental design was completely randomized in a linear model with four rearing systems and one period (rainy). The data was compared using the Statistical Analysis Systems (SAS) program. All analyses were carried out considering a significance level of 0.05. Samples of the diets offered (pasture and concentrate) were also collected. The Amazon systems influenced the macro- and micromineral content in the muscles of cattle (p < 0.05). The interaction between pasture systems vs. confinement showed differences in the minerals calcium (Ca), magnesium (Mg), phosphorus (P), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) (p < 0.05). However, there was no difference in the values of sodium (Na), potassium (K), and sulfur (S) between the rearing systems (p > 0.05). By contrast, the cultivated pasture system vs. extensive pasture showed differences in all the elements evaluated (p < 0.05). The rearing systems of the Eastern Amazon influenced the mineral content of beef, which continues to be an excellent source of macro- and microminerals and can compose the human diet. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

20 pages, 5384 KiB  
Article
Integrated Water Resources Management in Response to Rainfall Change: A Runoff-Based Approach for Mixed Land-Use Catchments
by Jinsun Kim and Ok Yeon Choi
Environments 2025, 12(7), 241; https://doi.org/10.3390/environments12070241 - 14 Jul 2025
Viewed by 534
Abstract
The U.S. Environmental Protection Agency (EPA) developed the concept of Water Quality Volume (WQv) as a Best Management Practice (BMP) to treat the first 25.4 mm of rainfall in urban areas, aiming to capture approximately 90% of annual runoff. However, applying this urban-based [...] Read more.
The U.S. Environmental Protection Agency (EPA) developed the concept of Water Quality Volume (WQv) as a Best Management Practice (BMP) to treat the first 25.4 mm of rainfall in urban areas, aiming to capture approximately 90% of annual runoff. However, applying this urban-based standard—designed for areas with over 50% imperviousness—to rural regions with higher infiltration and pervious surfaces may result in overestimated facility capacities. In Korea, a uniform WQv criterion of 5 mm is applied nationwide, regardless of land use or hydrological conditions. This study examines the suitability of this 5 mm standard in rural catchments using the Hydrological Simulation Program–Fortran (HSPF). Eight sub-watersheds in the target area were simulated under varying cumulative runoff depths (1–10 mm) to assess pollutant loads and runoff characteristics. First-flush effects were most evident below 5 mm, with variation depending on land cover. Nature-based treatment systems for constructed wetlands were modeled for each sub-watershed, and their effectiveness was evaluated using Flow Duration Curves (FDCs) and Load Duration Curves (LDCs). The findings suggest that the uniform 5 mm WQv criterion may result in overdesign in rural watersheds and highlight the need for region-specific standards that consider local land-use and hydrological variability. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil)
Show Figures

Figure 1

16 pages, 2652 KiB  
Article
Evaluation of the Effect of Floating Treatment Wetlands Planted with Sesuvium portulacastrum on the Dynamics of Dissolved Inorganic Nitrogen, CO2, and N2O in Grouper Aquaculture Systems
by Shenghua Zheng, Man Wu, Jian Liu, Wangwang Ye, Yongqing Lin, Miaofeng Yang, Huidong Zheng, Fang Yang, Donglian Luo and Liyang Zhan
J. Mar. Sci. Eng. 2025, 13(7), 1342; https://doi.org/10.3390/jmse13071342 - 14 Jul 2025
Viewed by 253
Abstract
Aquaculture expansion to meet global protein demand has intensified concerns over nutrient pollution and greenhouse gas (GHG) emissions. While floating treatment wetlands (FTWs) are proven for water quality improvement, their potential to mitigate GHG emissions in marine aquaculture remains poorly understood. This study [...] Read more.
Aquaculture expansion to meet global protein demand has intensified concerns over nutrient pollution and greenhouse gas (GHG) emissions. While floating treatment wetlands (FTWs) are proven for water quality improvement, their potential to mitigate GHG emissions in marine aquaculture remains poorly understood. This study quantitatively evaluated the dual capacity of Sesuvium portulacastrum FTWs to (a) regulate dissolved inorganic nitrogen (DIN) and (b) reduce CO2/N2O emissions in grouper aquaculture systems. DIN speciation (NH4+, NO2, NO3) and CO2/N2O fluxes of six controlled ponds (three FTW and three control) were monitored for 44 days. DIN in the FTW group was approximately 90 μmol/L lower than that in the control group, and the water in the plant group was more “oxidative” than that in the control group. The former groups were dominated by NO3, with lower dissolved inorganic carbon (DIC) and N2O concentrations, whereas the latter were dominated by NH4+ during the first 20 days of the experiment and by NO2 at the end of the experiment, with higher DIC and N2O concentrations on average. Higher primary production may be the reason that the DIC concentration was lower in the plant group than in the control group, whereas efficient nitrification and uptake by plants reduced the availability of NH4+ in the plant group, thereby reducing the production of N2O. A comparison of the CO2 and N2O flux potentials in the plant group and control group revealed that, in the presence of FTWs, the CO2 and N2O emissions decreased by 14% and 36%, respectively. This showed that S. portulacastrum FTWs effectively couple DIN removal with GHG mitigation, offering a nature-based solution for sustainable aquaculture. Their low biomass requirement enhances practical scalability. Full article
(This article belongs to the Special Issue Coastal Geochemistry: The Processes of Water–Sediment Interaction)
Show Figures

Figure 1

16 pages, 2609 KiB  
Article
Comparative Life Cycle and Techno-Economic Assessment of Constructed Wetland, Microbial Fuel Cell, and Their Integration for Wastewater Treatment
by Nicholas Miwornunyuie, Samuel O. Alamu, Guozhu Mao, Nihed Benani, James Hunter and Gbekeloluwa Oguntimein
Clean Technol. 2025, 7(3), 57; https://doi.org/10.3390/cleantechnol7030057 - 10 Jul 2025
Viewed by 438
Abstract
This study systematically compares the environmental and economic performance of three wastewater treatment systems: constructed wetlands (CWs), microbial fuel cells (MFCs), and their integration (CW–MFC). Lab-scale units of each system were constructed using a multi-media matrix (gravel, zeolite, and granular activated carbon), composite [...] Read more.
This study systematically compares the environmental and economic performance of three wastewater treatment systems: constructed wetlands (CWs), microbial fuel cells (MFCs), and their integration (CW–MFC). Lab-scale units of each system were constructed using a multi-media matrix (gravel, zeolite, and granular activated carbon), composite native wetland species (Juncus effusus, Iris sp., and Typha angustifolia), carbon-based electrodes (graphite), and standard inoculum for CW and CW–MFC. The MFC system employed carbon-based electrodes and proton-exchange membrane. The experimental design included a parallel operation of all systems treating domestic wastewater under identical hydraulic and organic loading rates. Environmental impacts were quantified across construction and operational phases using life cycle assessment (LCA) with GaBi software 9.2, employing TRACI 2021 and ReCiPe 2016 methods, while techno-economic analysis (TEA) evaluated capital and operational costs. The key results indicate that CW demonstrates the lowest global warming potential (142.26 kg CO2-eq) due to its reliance on natural biological processes. The integrated CW–MFC system achieved enhanced pollutant removal (82.8%, 87.13%, 78.13%, and 90.3% for COD, NO3, TN, and TP) and bioenergy generation of 2.68 kWh, balancing environmental benefits with superior treatment efficiency. In contrast, the stand-alone MFC shows higher environmental burdens, primarily due to energy-intensive material requirements and fabrication processes. TEA results highlight CW as the most cost-effective solution (USD 627/m3), with CW–MFC emerging as a competitive alternative when considering environmental benefits and operational efficiencies (USD 718/m3). This study highlights the potential of hybrid systems, such as CW–MFC, to advance sustainable wastewater treatment technologies by minimizing environmental impacts and enhancing resource recovery, supporting their broader adoption in future water management strategies. Future research should focus on optimizing materials and energy use to improve scalability and feasibility. Full article
(This article belongs to the Collection Water and Wastewater Treatment Technologies)
Show Figures

Figure 1

31 pages, 3790 KiB  
Systematic Review
Plants Used in Constructed Wetlands for Aquaculture: A Systematic Review
by Erick Arturo Betanzo-Torres, Gastón Ballut-Dajud, Graciano Aguilar-Cortés, Elizabeth Delfín-Portela and Luis Carlos Sandoval Herazo
Sustainability 2025, 17(14), 6298; https://doi.org/10.3390/su17146298 - 9 Jul 2025
Viewed by 770
Abstract
The latest FAO report indicates that aquaculture accounts for 51% of the global production volume of fish and seafood. However, despite the continuous growth of this activity, there is evidence of the excessive use of groundwater in its production processes, as well as [...] Read more.
The latest FAO report indicates that aquaculture accounts for 51% of the global production volume of fish and seafood. However, despite the continuous growth of this activity, there is evidence of the excessive use of groundwater in its production processes, as well as pollution caused by nutrient discharges into surface waters due to the water exchange required to maintain water quality in fishponds. Given this context, the objectives of this study were as follows: (1) to review which emergent and floating plant species are used in constructed wetlands (CWs) for the bioremediation of aquaculture wastewater; (2) to identify the aquaculture species whose wastewater has been treated with CW systems; and (3) to examine the integration of CWs with recirculating aquaculture systems (RASs) for water reuse. A systematic literature review was conducted, selecting 70 scientific articles published between 2003 and 2023. The results show that the most used plant species in CW systems were Phragmites australis, Typha latifolia, Canna indica, Eichhornia crassipes, and Arundo donax, out of a total of 43 identified species. These plants treated wastewater generated by 25 aquaculture species, including Oreochromis niloticus, Litopenaeus vannamei, Ictalurus punctatus, Clarias gariepinus, Tachysurus fulvidraco, and Cyprinus carpio, However, only 40% of the reviewed studies addressed aspects related to the incorporation of RAS elements in their designs. In conclusion, the use of plants for wastewater treatment in CW systems is feasible; however, its application remains largely at the experimental scale. Evidence indicates that there are limited real-scale applications and few studies focused on the reuse of treated water for agricultural purposes. This highlights the need for future research aimed at production systems that integrate circular economy principles in this sector, through RAS–CW systems. Additionally, there is a wide variety of plant species that remain unexplored for these purposes. Full article
Show Figures

Figure 1

20 pages, 9728 KiB  
Article
The Response of the Functional Traits of Phragmites australis and Bolboschoenus planiculmis to Water and Saline–Alkaline Stresses
by Lili Yang, Yanjing Lou and Zhanhui Tang
Plants 2025, 14(14), 2112; https://doi.org/10.3390/plants14142112 - 9 Jul 2025
Viewed by 359
Abstract
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration [...] Read more.
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration levels as stress factors to assess eight key functional traits of Phragmites australis and Bolboschoenus planiculmis, dominant species in the salt marsh wetlands in the western region of Jilin province, China. The study aimed to evaluate how these factors influence the functional traits of P. australis and B. planiculmis. Our results showed that the leaf area, root biomass, and clonal biomass of P. australis significantly increased, and the leaf area of B. planiculmis significantly decreased under low and medium saline–alkaline concentration treatments, while the plant height, ramet number, and aboveground biomass of P. australis and the root biomass, clonal biomass, and clonal/belowground biomass ratio of B. planiculmis were significantly reduced and the ratio of belowground to aboveground biomass of B. planiculmis significantly increased under high saline–alkaline concentration treatment. The combination of drought conditions with medium and high saline–alkaline treatments significantly reduced leaf area, ramet number, and clonal biomass in both species. The interaction between flooding water level and medium and high saline–alkaline treatments significantly suppressed the plant height, root biomass, and aboveground biomass of both species, with the number of ramets having the greatest contribution. These findings suggest that the effects of water levels and saline–alkaline stress on the functional traits of P. australis and B. planiculmis are species-specific, and the ramet number–plant height–root biomass (RHR) strategy may serve as an adaptive mechanism for wetland clones to environmental changes. This strategy could be useful for predicting plant productivity in saline–alkaline wetlands. Full article
Show Figures

Figure 1

21 pages, 2629 KiB  
Article
SDG 6 in Practice: Demonstrating a Scalable Nature-Based Wastewater Treatment System for Pakistan’s Textile Industry
by Kamran Siddique, Aansa Rukya Saleem, Muhammad Arslan and Muhammad Afzal
Sustainability 2025, 17(13), 6226; https://doi.org/10.3390/su17136226 - 7 Jul 2025
Viewed by 384
Abstract
Industrial wastewater management remains a critical barrier to achieving Sustainable Development Goal 6 (SDG 6) in many developing countries, where regulatory frameworks exist but affordable and scalable treatment solutions are lacking. In Pakistan, the textile sector is a leading polluter, with untreated effluents [...] Read more.
Industrial wastewater management remains a critical barrier to achieving Sustainable Development Goal 6 (SDG 6) in many developing countries, where regulatory frameworks exist but affordable and scalable treatment solutions are lacking. In Pakistan, the textile sector is a leading polluter, with untreated effluents routinely discharged into rivers and agricultural lands despite stringent National Environmental Quality Standards (NEQS). This study presents a pilot-scale case from Faisalabad’s Khurrianwala industrial zone, where a decentralized, nature-based bioreactor was piloted to bridge the gap between policy and practice. The system integrates four treatment stages—anaerobic digestion (AD), floating treatment wetland (FTW), constructed wetland (CW), and sand filtration (SF)—and was further intensified via nutrient amendment, aeration, and bioaugmentation with three locally isolated bacterial strains (Acinetobacter junii NT-15, Pseudomonas indoloxydans NT-38, and Rhodococcus sp. NT-39). The fully intensified configuration achieved substantial reductions in total dissolved solids (TDS) (46%), total suspended solids (TSS) (51%), chemical oxygen demand (COD) (91%), biochemical oxygen demand (BOD) (94%), nutrients, nitrogen (N), and phosphorus (P) (86%), sulfate (26%), and chloride (41%). It also removed 95% iron (Fe), 87% cadmium (Cd), 57% lead (Pb), and 50% copper (Cu) from the effluent. The bacterial inoculants persist in the system and colonize the plant roots, contributing to stable bioremediation. The treated effluent met the national environmental quality standards (NEQS) discharge limits, confirming the system’s regulatory and ecological viability. This case study demonstrates how nature-based systems, when scientifically intensified, can deliver high-performance wastewater treatment in industrial zones with limited infrastructure—offering a replicable model for sustainable, SDG-aligned pollution control in the Global South. Full article
(This article belongs to the Special Issue Progress and Challenges in Realizing SDG-6 in Developing Countries)
Show Figures

Figure 1

19 pages, 863 KiB  
Review
Microplastic Pollution in China’s Aquatic Systems: Spatial Distribution, Transport Pathways, and Controlling Strategies
by Zhancheng Wu, Juzhuang Wang, Shengwang Yu, Qian Sun and Yulai Han
Microplastics 2025, 4(3), 41; https://doi.org/10.3390/microplastics4030041 - 3 Jul 2025
Viewed by 862
Abstract
Microplastics (MPs) have emerged as a critical environmental challenge in China’s aquatic ecosystems, driven by rapid industrialization and population growth. This review synthesizes recent findings on the abundance, morphology, and polymer types of MPs in China’s freshwater systems (rivers, lakes, reservoirs) and coastal [...] Read more.
Microplastics (MPs) have emerged as a critical environmental challenge in China’s aquatic ecosystems, driven by rapid industrialization and population growth. This review synthesizes recent findings on the abundance, morphology, and polymer types of MPs in China’s freshwater systems (rivers, lakes, reservoirs) and coastal marine environments. Spatial analysis reveals significant variability in MP abundance, ranging from 0.1 items/L in Tibet’s Lalu Wetland to 30.8 items/L in Beijing’s Qinghe River, with polypropylene (PP) and polyethylene (PE) dominating polymer profiles. Coastal regions exhibit distinct contamination patterns, with the Yellow Sea (5.3 ± 2.0 items/L) and the South China Sea (180 ± 80 items/m3) showing the highest MP loads, primarily as fibers and fragments. Fluvial transport, atmospheric deposition, and coastal anthropogenic activities (e.g., fisheries, tourism) are identified as major pathways for marine MP influx. Secondary MPs from degraded plastics and primary MPs from industrial/domestic effluents pose synergistic risks through the adsorption of heavy metals and organic pollutants. Human exposure routes—ingestion, inhalation, and dermal contact—are linked to inflammatory, metabolic, and carcinogenic health outcomes. Policy interventions, including bans on microbeads and non-degradable plastics, demonstrate progress in pollution mitigation. This work underscores the urgency of integrated source control, advanced wastewater treatment, and transboundary monitoring to address MP contamination in aquatic ecosystems. Full article
Show Figures

Figure 1

19 pages, 914 KiB  
Review
The Incorporation of Adsorbents with Contrasting Properties into the Soil Substrate for the Removal of Multiple Pollutants in Stormwater Treatment for the Reuse of Water—A Review
by Paripurnanda Loganathan, Jaya Kandasamy, Harsha Ratnaweera and Saravanamuthu Vigneswaran
Water 2025, 17(13), 2007; https://doi.org/10.3390/w17132007 - 3 Jul 2025
Viewed by 405
Abstract
Stormwater carries significant amounts of pollutants—including metals, microorganisms, organic micropollutants, and nutrients—from land surfaces into nearby water bodies, leading to water quality deterioration and threats to both human health and ecosystems. The removal of these contaminants is essential not only for environmental protection, [...] Read more.
Stormwater carries significant amounts of pollutants—including metals, microorganisms, organic micropollutants, and nutrients—from land surfaces into nearby water bodies, leading to water quality deterioration and threats to both human health and ecosystems. The removal of these contaminants is essential not only for environmental protection, but also to enable the reuse of treated water for various beneficial applications. Common treatment methods include bioretention systems, biofiltration, constructed wetlands, rain gardens, swales, and permeable pavements. To improve pollutant removal efficiency, adsorbent materials are often incorporated into the soil substrate of these treatment devices. However, most research on adsorbents has focused on their effectiveness against one or two specific pollutants and has been conducted under static, short-term laboratory conditions rather than dynamic, field-relevant scenarios. Column-based dynamic filtration type studies, which are more informative for field applications, are limited. In one study, a combination of two or more adsorbents with contrasting properties that matched the affinity preferences of the different pollutants to the substrate media removed 77–100% of several heavy metals that occur in real stormwater compared to 38–73% removal with only one adsorbent. In another study, polycyclic aromatic hydrocarbon removal with zeolite was only 30–50%, but increased to >99% with 0.3% granular activated carbon addition. Long-term dynamic column-based filtration experiments and field studies using real stormwater, which contains a wide range of pollutants, are recommended to better evaluate the performances of the combined adsorbent systems. Full article
Show Figures

Figure 1

19 pages, 3257 KiB  
Article
Total Phosphorus Loadings and Corrective Actions Needed to Restore Water Quality in a Eutrophic Urban Lake in Minnesota, USA: A Case Study
by Neal D. Mundahl and John Howard
Limnol. Rev. 2025, 25(3), 28; https://doi.org/10.3390/limnolrev25030028 - 1 Jul 2025
Viewed by 242
Abstract
Lake Winona, a 129 ha eutrophic urban lake comprised of two interconnected basins, exceeds state water quality standards for total phosphorus. Historical lake nutrient data and traditional watershed modeling for the lake’s two basins highlighted multiple major pathways (e.g., municipal stormwater discharges, watershed [...] Read more.
Lake Winona, a 129 ha eutrophic urban lake comprised of two interconnected basins, exceeds state water quality standards for total phosphorus. Historical lake nutrient data and traditional watershed modeling for the lake’s two basins highlighted multiple major pathways (e.g., municipal stormwater discharges, watershed runoff, internal loading, and wetland discharges) for total phosphorus (P) loading, with >900 kg P/year estimated entering the water columns of each basin. Updated data sources and newer watershed modeling resulted in significantly different (both higher and lower) P loading estimates for the various P sources, especially watershed runoff and internal loading. Overall, basin-specific loading estimates using the updated model were significantly lower (28–40%) than previous estimates: 680 and 546 kg P/year mobilized in the western and eastern basins, respectively. To achieve state water quality standards (<60 ppm P for the western basin, <40 ppm for the eastern basin), watershed and internal P loading each would need to be reduced by approximately 120 kg P/year across the two basins. Reductions could be achieved by a combination of alum treatments to reduce internal loading, removal of common carp (Cyprinus carpio) to prevent interference with alum treatments and nutrient releases via excretion and defecation, and six engineered structures to intercept P before it enters the lake. The different P reduction projects would cost USD 119 to 7920/kg P removed, totaling USD 5.2 million, or USD 40,310/hectare of lake surface area. Full article
Show Figures

Figure 1

17 pages, 1337 KiB  
Article
Effects of Plant and Substrate Types on Turbidity Removal in Constructed Wetlands: Experimental and w-C* Model Validation
by Paula Cristine Silva Gomes, Isabela da Silva Pedro Rochinha, Jaine Nayara de Araújo de Oliveira, Marllus Henrique Ribeiro de Paiva, Ana Letícia Pilz de Castro, Tamara Daiane de Souza, Múcio André dos Santos Alves Mendes and Aníbal da Fonseca Santiago
Water 2025, 17(13), 1921; https://doi.org/10.3390/w17131921 - 27 Jun 2025
Viewed by 352
Abstract
Constructed wetlands are nature-based technologies widely used for the treatment of wastewater and contaminated surface water. This study evaluated the efficiency of free water surface (FWS) and horizontal subsurface flow (HSSF) constructed wetlands in reducing the turbidity of mine spoil rainwater using the [...] Read more.
Constructed wetlands are nature-based technologies widely used for the treatment of wastewater and contaminated surface water. This study evaluated the efficiency of free water surface (FWS) and horizontal subsurface flow (HSSF) constructed wetlands in reducing the turbidity of mine spoil rainwater using the w-C* model. Different hydraulic retention times (2, 4, and 6 days) were tested, and the influence of macrophyte type and substrate on the w parameter was investigated. Model calibration was performed based on correlation coefficients (R), coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), and root mean square error (RMSE). The results indicated a 99% reduction in turbidity, with average values of R = 0.87 ± 0.05 (FWS) and 0.87 ± 0.03 (HSSF), and NSE of 0.76 ± 0.04 (FWS) and 0.74 ± 0.07 (HSSF), demonstrating good agreement between observed and predicted data. The settling rate (w) ranged from 0.16 to 0.40 m·d−1 in FWS and from 0.20 to 0.70 m·d−1 in HSSF, with the lowest value recorded in the control (0.09 m·d−1). The best performances were observed in FWS-P with Pistia stratiotes (0.40 m·d−1) and HSSF with Typha domingensis (0.70 m·d−1), demonstrating that vegetation, combined with the use of medium-grain substrate (9.5–19.0 mm), enhances turbidity removal. The w-C* model proved to be a robust tool for describing the kinetics of suspended colloidal particle removal in constructed wetlands, providing valuable insights for optimizing hydraulic parameters and design criteria for full-scale application. Full article
Show Figures

Figure 1

Back to TopTop