Plants Used in Constructed Wetlands for Aquaculture: A Systematic Review
Abstract
1. Introduction
1.1. Problem Statement
1.2. The Background on Ecotechnologies for the Treatment of Aquaculture Wastewater
1.3. The Justification for the Literature Review
1.4. The Relevance and Practical Implications of the Research
- RQ1. Which floating and emergent plant species have been used in constructed wetlands for bioremediation in aquaculture?
- RQ2. Which aquaculture species have had their wastewater treated with constructed wetlands?
- RQ3. Have constructed wetland systems been integrated into recirculating aquaculture systems (RAS)?
- RQ4. Is there evidence of full-scale studies or real-world applications?
2. Materials and Methods
2.1. The Planning of the Systematic Literature Review
2.2. Inclusion and Exclusion Criteria
- Studies focused on the application of constructed wetland technologies—vertical flow, horizontal flow, and hybrid systems—in any configuration, used in freshwater and marine aquaculture systems.
- Peer-reviewed research articles published in scientific journals.
- Publications in any language, covering the period from 2003 to 2023, to reflect recent advances in this underexplored field and focus on studies providing relevant empirical evidence.
- Studies that do not report information relevant to the research questions.
- General review articles, book chapters, theses, or documents that are not original research articles.
- Articles for which the full text was not available.
- Studies published outside the defined time frame (2003–2023).
- Research not specifically addressing the application of CWs in aquaculture.
- Studies lacking information regarding the country where the research was conducted, the aquaculture species cultivated, the vegetation used, whether the system was coupled to a recirculating aquaculture system (RAS), and the study’s scale.
2.3. Study Selection and Data Collection
3. Results and Discussion
3.1. Historical Evidence on the Treatment of Aquaculture Wastewater Using Constructed Wetlands
3.2. Empirical Evidence on the Treatment of Aquaculture Wastewater Using Constructed Wetlands
3.3. Research by Country on the Treatment of Aquaculture Wastewater Using Constructed Wetlands
3.4. Aquaculture Species Reported in Constructed Wetlands Wastewater Treatment Studies
Country | Aquaculture Species Cultivated | Vegetation | Type of Plant in the Wetlands | RAS | Study Scale | Reference |
---|---|---|---|---|---|---|
Taiwan | Milkfish (Chanos chanos). | Ipomoea aquatica, Paspalum vaginatum, and Phragmites australis | Emergent and Floating plants | Not included | HP | [45] |
Taiwan | Pacific white shrimp (Litopenaeus vannamei). | Phragmites australis | Emergent plant | Included | LB | [46] |
China | Pacific white shrimp (Litopenaeus vannamei). | Phragmites australis, smooth cordgrass (Spartina alterniflora Loisel), and scirpus (Scirpus mariqueter) | Emergent plant | Included | LB | [50] |
China | NE | Sesuvium portulacastrum | Emergent plant | Not included | LB | [51] |
China | Perch American (Micropterus salmoides). | Canna indica, Thalia Dealbata, and Iris germanica | Emergent plant | Not included | LB | [52] |
China | Nile tilapia (Oreochromis niloticus). | Pontederia, Arundo, and Iris germanica. | NE | Not included | LB | [64] |
E.E.U.U. | Channel catfish (Ictalurus punctatus). | Scirpus californicus, Zizaniopsis, miliacea, and Panicurn hemitomon | Floating plant | Included | LB | [74] |
E.E.U.U. | Hybrid tilapia (Oreochromis mossambicus × O. urolepis hornorum common carp (Cyprinus carpio), mosquitofish (Gambusia affinis), and red swamp crayfish (Procambarus clarkii | Eichhornia crassipes and Ipomea aquatica | Floating plant | Not included | LB | [75] |
E.E.U.U. | Nile tilapia (Oreochromis niloticus). | Canna Lillies (Canna sp.) and bulrush (Scirpus sp.) | Emergent plant | Included | LB | [76] |
Germany | Rainbow trout (Oncorhynchus mykiss). | Phragmites australis | Emergent plant | Not included | LB | [77] |
Australia | Rainbow trout (Oncorhynchus mykiss | Juncus kraussii | Emergent plant | Not included | LB | [78] |
E.E.U.U. | Red tilapia (O. mossambicus O. aureus). | Typha sp. and Canna Lillies. | Emergent plant | Included | LB | [79] |
Canada | Rainbow trout (Oncorhynchus mykiss). | Phragmites australis and Typha latifolia | Emergent plant | Not included | LB | [82] |
Canada | Atlantic salmon (Salmo salar) | Phragmites communis and Typha latifolia | Emergent plant | Included | LB | [83] |
E.E.U.U. | Royal salmon (Oncorhynchus tsawytscha). | NE | NE | Not included | LB | [84] |
Germany | Rainbow trout (Oncorhynchus mykiss). | Phragmites australis | Emergent plant | Not included | LB | [86] |
Germany | Rainbow trout (Oncorhynchus mykiss). | Phragmites communis and Phalaris arundinacea | Emergent plant | NE | LB | [87] |
China | Channel catfish (Ictalurus punctatus). | NE | NE | Included | LB | [88] |
China | Pacific white shrimp (Litopenaeus vannamei). | NE | NE | Included | LB | [89] |
Vietnam | Nile tilapia (Oreochromis niloticus) and common carp (Cyprinus carpio). | Canna generalis | Emergent plant | Included | LB | [90] |
China | Chinese carp (Ctenopharyngodon idella). | Nymphaea alba, Myriophyllum sp., and Vallisneria natans | Emergent and Floating plants | Included | LB | [110] |
China | Giant river prawn (Macrobrachium rosenbergii). | Typha angustifolia and Canna indica | Emergent plant | Included | LB | [111] |
Denmark | Rainbow trout (Oncorhynchus mykiss). | NE | NE | NE | LB | [112] |
China | Channel catfish (Ictalurus punctatus), spiny barb (Spinibarbus sinensis), and yellow catfish (Pelteobagrus fulvidraco). | Canna indica, Iris tectorum, Acorus calamus, Cyperus papiro, and Thalia dealbata | Emergent plant | Included | LB | [113] |
Israel | NE | Salicornia | Emergent plant | Included | LB | [114] |
China | NE | Thalia dealbata, Arundo Donax, Iris versicolor, Phragmites australis, Myriophyllum spicatum, and Nymphaea alba | Emergent and Floating plants | Not included | LB | [115] |
Finland | NE | Salicornia europaea and Phragmites australis | Emergent plant | Included | LB | [116] |
China | Pacific white shrimp (Litopenaeus vannamei). | Phragmites australis, Spartina alterniflora Loisel, and Scirpus mariqueter | Emergent plant | Not included | LB | [117] |
Brazil | Pacific white shrimp (Litopeneaus vannamei). | Spartina alterniflora | Floating plant | Included | LB | [118] |
Brazil | Nile tilapia (Oreochromis niloticus). | Salvinia sp. and Eichhornia crassipes. | Floating plant | Not included | LB | [119] |
Brazil | Nile tilapia (Oreochromis niloticus). | Eichhornia crassipes | Floating plant | Included | LB | [120] |
Malaysia | Channel catfish (Ictalurus punctatus). | Eichhornia crassipes and Limnocharis flava | Floating plant | Not included | LB | [121] |
Colombia | Channel catfish (Ictalurus punctatus). | Eichhornia crassipes | Floating plant | Not included | LB | [122] |
Brazil | River shrimp (Macrobrachium amazonicum). | Eichhornia crassipes and Pistia stratiotes | Floating plant | Not included | LB | [123] |
Brazil | Nile tilapia (Oreochromis niloticus). | Eichhornia crassipes, Pistia stratiotes, and Salvinia molesta | Floating plant | Not included | LB | [124] |
Brazil | Nile tilapia (Oreochromis niloticus) and | NE | NE | Included | LB | [125] |
Hungary | silver Carp (Hypophthalmichthys molitrix). Common carp (Cyprinus carpio), and sharp tooth catfish (Clarias gariepenus). | Phragmites australis, Typha angustifolia, Lemna minor, and Typha latifolia | Emergent and Floating plants | Not included | LB | [126] |
Hungary | Sharp tooth catfish (Clarias gariepinus), Nile tilapia (Oreochromis niloticus), common carp (Cyprinus carpio), | NE | NE | Included | LB | [127] |
Hungary | Sharp tooth catfish (Clarias gariepinus). Common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus). | Phragmites australis, Typha latifolia, Typha angustifolia, Salix viminalis, and Arundo donax | Emergent plant | Included | LB | [128] |
China | Puffer fish (Dichotomyctere ocellatus). | Phragmites australis, Spartina alterniflora, and Scirpus mariqueter | Emergent plant | Included | LB | [129] |
China | Channel catfish (Ictalurus punctatuss) Brema Wuchang (Megalobrama amblycephala), silver carp (Hypophthalmichthys Molitri), and black carp (Mylopharyngodon Piceus). | Canna indica, Typha latifolia, Acorus calamus, and Agave sisalana | Emergent plant | Included | ER | [130] |
China | Chinese carp (Ctenopharyngodon idella). | Nymphaea alba L, Myriophyllum sp., and Vallisneria natans | Floating plant | Included | LB | [131] |
Mexico | NE | Arundo donax, Medicago sativa, and Zandechia aethiopica | Emergent plant | Not included | LB | [132] |
China | NE | Thalia dealbata, Arundo, donax, Phragmites australis, Myriophyllum spicatum, and Nymphaea alba | Emergent plant | Not included | LB | [133] |
China | Channel catfish (Ictalurus punctatuss). | Canna indica, Typha orientalis, and Acorus calamus | Emergent plant | Included | LB | [134] |
Italy | Sea bass (Dicentrarchus labrax), and sea bream (Sparus aurata). | Ulva Linnaeus | NE | Not included | HP | [135] |
E.E.U.U. | Pacific white shrimp (Litopenaeus vannamei). | NE | NE | NE | LB | [136] |
Israel | NE | Salicornia persica | NE | Included | LB | [137] |
Germany | NE | Salicornia europaea and Tripolium pannonicum | NE | Included | LB | [138] |
E.E.U.U. | Pacific white shrimp (Litopenaeus vannamei). | Gracilaria tikvahiae | Floating plant | Not included | LB | [139] |
China | Milkfish (Chanos chanos). | Paspalum vaginatum, Ipomoea aquatica, and Phragmites australis | Floating plant | Not included | HP | [140] |
Taiwan | Pacific white shrimp (Litopenaeus vannamei). | Pistia stratiotes, Typha angustifolia, Phragmites common, Canna generalis, and Cyperus alternifa | Emergent plant | Not included | LB | [141] |
E.E.U.U. | Channel catfish (Ictalurus punctatus). | Scirpus californicus, Zizaniopsis miliacea, and Panicurn hemitomon | Emergent plant | Not included | LB | [142] |
China | Channel catfish (Ictalurus punctatus). | NE | NE | Not included | LB | [143] |
Hungary | NE | Phragmites Australis, Typha latifolia angustifolia, Salix viminalis, Arundo donax, and Tamarix tetrandra | Emergent plant | Not included | HP | [144] |
Malaysia | NE | Eichhornia crassipes and Limnocharis flava | NE | Not included | LB | [145] |
China | NE | Thalia dealbata, Canna indica, and Phragmites australis | NE | Not included | LB | [146] |
Brazil | Nile tilapia (Oreochromis niloticus). | Eichhornia crassipes, Pistia stratiotes, and Salvínia molesta | Floating plant | Not included | LB | [147] |
E.E.U.U. | Red tilapia (O. mossambicus x O. aureus). | Canna sp. and Scirpus sp. | Emergent plant | Included | LB | [148] |
Thailand | Nile tilapia (Oreochromis niloticus). | NE | NE | Included | LB | [149] |
Brazil | Tambaqui (Colossoma macropomum). | Lactuca sativa spp. | Emergent plant | Not included | LB | [150] |
Brazil | Nile tilapia (Oreochromis niloticus). | Typha latifolia | Emergent plant | Included | LB | [151] |
Indonesia | Pacific white shrimp (Litopenaeus vannamei). | NE | NE | Not included | LB | [152] |
Indonesia | Claria (Clarias gariepinus). | Chrysopogon zizanioides, Cyperus alternifolius, and Eichhornia crassipes | Emergent plant | Not included | LB | [153] |
Indonesia | Pacific white shrimp (Litopenaeus vannamei). | Chrysopogon zizanioides | Emergent plant | Not included | LB | [154] |
Indonesia | NE | Chrysopogon zizanioides | Emergent plant | Not included | LB | [155] |
Chile | Jaks (Carangidae). | Agarophyton chilense, Mazzaella canaliculate, and Ulva lactuca | Floating plant | Not included | LB | [156] |
China | Nile tilapia (Oreochromis niloticus). | Chlorella sp. | Floating plant | Included | LB | [157] |
China | Tachysurus fulvidraco and Lateo labrax japonicas. | Phragmites australis, Phalaris arundinacea, Acorus calamus, Typha latifolia, Scirpus lacustris, and Iris pseudacorus | Emergent plant | Not included | LB | [158] |
China | NE | Phragmites australis | Emergent plant | Not included | LB | [159] |
3.5. Plant Species Utilized in Constructed Wetlands for Aquaculture Wastewater Treatment
Emergent and Floating Plant Species Used in CW for Aquaculture Wastewater Treatment
3.6. Constructed Wetlands Integrated into Recirculating Aquaculture Systems (RAS)
3.7. The Research Scale of Constructed Wetlands Applied to the Aquaculture Sector
3.8. Factors Which Affect Constructed Wetlands in Aquaculture
3.9. Impact of Plants on Aquaculture Productivity
3.10. Challenges of Constructed Wetlands in Aquaculture
4. Conclusions
5. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). The State of World Fisheries and Aquaculture 2018: Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018; Available online: https://openknowledge.fao.org/items/87109e17-2bb7-4d20-874b-160ac0a2b131 (accessed on 19 December 2024).
- GPAS (Ley General de Pesca y Acuacultura Sustentable). Diario Oficial de la Federación. 2018. Available online: https://www.diputados.gob.mx/LeyesBiblio/pdf/LGPAS.pdf (accessed on 19 December 2024).
- Tidwell, J.H. (Ed.) Aquaculture Production Systems; Wiley-Blackwell: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Brief to The State of World Fisheries and Aquaculture 2024; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- White, P. Aquaculture Pollution: An Overview of Issues with a Focus on China, Vietnam, and the Philippines. 2017. Prep. Para El Banco Mund., Wash. DC, EE. UU 2017. Available online: https://acortar.link/GWB9pL (accessed on 1 March 2017).
- Hilborn, R.; Banobi, J.; Hall, S.; Pucylowski, T.; Walsworth, T. The environmental cost of animal source foods. Front. Ecol. Environ. 2018, 16, 329–335. [Google Scholar] [CrossRef]
- Costello, C.; Cao, L.; Gelcich, S.; Cisneros-Mata, M.Á.; Free, C.M.; Froehlich, H.E.; Golden, C.D.; Ishimura, G.; Maier, J.; Macadam-Somer, I.; et al. The future of food from the sea. Nature 2020, 588, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Tubb, C.; Seba, T. Rethinking Food and Agriculture 2020-2030: The Second Domestication of Plants and Animals, the Disruption of the Cow, and the Collapse of Industrial Livestock Farming. Ind. Biotechnol. 2021, 17, 57–72. [Google Scholar] [CrossRef]
- Boyd, C.E.; McNevin, A.A.; Davis, R.P. The contribution of fisheries and aquaculture to the global protein supply. Food Secur. 2022, 14, 805–827. [Google Scholar] [CrossRef] [PubMed]
- Valenti, W.C.; Kimpara, J.M.; Preto, B.d.L.; Moraes-Valenti, P. Indicators of sustainability to assess aquaculture systems. Ecol. Indic. 2018, 88, 402–413. [Google Scholar] [CrossRef]
- Golden, C.D.; Koehn, J.Z.; Shepon, A.; Passarelli, S.; Free, C.M.; Viana, D.F.; Matthey, H.; Eurich, J.G.; Gephart, J.A.; Fluet-Chouinard, E.; et al. Aquatic foods to nourish nations. Nature 2021, 598, 315–320. [Google Scholar] [CrossRef]
- Zhu, S.; Lyu, C. Construction and application of an evaluation index system for high-quality development in aquaculture. Aquac. Int. 2025, 33, 124. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). The State of World Fisheries and Aquaculture 2022 Towards the Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Xu, C.; Su, G.; Brosse, S.; Zhao, K.; Zhang, M.; Xu, J. Social benefits and environmental performance of aquaculture need to improve worldwide. Commun. Earth Environ. 2024, 5, 698. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations) Fisheries & Aquaculture. Overview of the National Sector Mexico. Available online: https://www.fao.org/fishery/fr/countrysector/mx/es (accessed on 9 February 2025).
- Filipski, M.; Belton, B. Give a Man a Fishpond: Modeling the Impacts of Aquaculture in the Rural Economy. World Dev. 2018, 110, 205–223. [Google Scholar] [CrossRef]
- Custódio, M.; Villasante, S.; Calado, R.; Lillebø, A.I. Valuation of Ecosystem Services to promote sustainable aquaculture practices. Rev. Aquac. 2019, 12, 392–405. [Google Scholar] [CrossRef]
- Mair, J.; Chien, P.M.; Kelly, S.J.; Derrington, S. Social impacts of mega-events: A systematic narrative review and research agenda. J. Sustain. Tour. 2023, 31, 538–560. [Google Scholar] [CrossRef]
- Avnimelech, Y. Biofloc Technology: A Practical Guidebook, 2nd ed.; World Aquaculture Society: Baton Rouge, LA, USA, 2012. [Google Scholar]
- Pueppke, S.G.; Nurtazin, S.; Ou, W. Water and Land as Shared Resources for Agriculture and Aquaculture: Insights from Asia. Water 2020, 12, 2787. [Google Scholar] [CrossRef]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Little, D.C.; Newton, R.W.; Beveridge, M.C.M. Aquaculture: A rapidly growing and significant source of sustainable food? Status, transitions and potential. Proc. Nutr. Soc. 2016, 75, 274–286. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Z.; Cheng, G.; Lu, S.; Gu, Z.; Zhu, H.; Shen, H.; Wang, J.; Chen, X. Ecological engineering in pond aquaculture: A review from the whole-process perspective in China. Rev. Aquac. 2020, 13, 1060–1076. [Google Scholar] [CrossRef]
- Jeanson, A.L.; Gotzek, D.; Mam, K.; Hecht, L.; Charvet, P.; Eckerström-Liedholm, S.; Cooke, S.J.; Pool, T.; Elliott, V.; Torres, Y. Inland Fisheries Management—Case Studies of Inland Fish. In Encyclopedia of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2022; pp. 343–354. [Google Scholar] [CrossRef]
- Macusi, E.D.; Estor, D.E.P.; Borazon, E.Q.; Clapano, M.B.; Santos, M.D. Environmental and Socioeconomic Impacts of Shrimp Farming in the Philippines: A Critical Analysis Using PRISMA. Sustainability 2022, 14, 2977. [Google Scholar] [CrossRef]
- Jiang, Q.; Bhattarai, N.; Pahlow, M.; Xu, Z. Environmental sustainability and footprints of global aquaculture. Resour. Conserv. Recycl. 2022, 180, 106183. [Google Scholar] [CrossRef]
- Zimmermann, S.; Kiessling, A.; Zhang, J. The future of intensive tilapia production and the circular bioeconomy without effluents: Biofloc technology, recirculation aquaculture systems, bio-RAS, partitioned aquaculture systems and integrated multitrophic aquaculture. Rev. Aquac. 2023, 15 (Suppl. S1), 22–31. [Google Scholar] [CrossRef]
- Emerenciano, M.G.C.; Khanjani, M.H.; Sharifinia, M.; Miranda-Baeza, A.; Qin, J. Could Biofloc Technology (BFT) Pave the Way Toward a More Sustainable Aquaculture in Line with the Circular Economy? Aquac. Res. 2025, 2025, 1020045. [Google Scholar] [CrossRef]
- Froehlich, H.E.; Gentry, R.R.; Rust, M.B.; Grimm, D.; Halpern, B.S.; Somers, C.M. Public Perceptions of Aquaculture: Evaluating Spatiotemporal Patterns of Sentiment around the World. PLoS ONE 2017, 12, e0169281. [Google Scholar] [CrossRef]
- Kluger, L.C.; Filgueira, R.; Byron, C.J. Using media analysis to scope priorities in social carrying capacity assessments: A global perspective. Mar. Policy 2019, 99, 252–261. [Google Scholar] [CrossRef]
- Ballut-Dajud, G.A.; Herazo, L.C.S.; Fernández-Lambert, G.; Marín-Muñiz, J.L.; Méndez, M.C.L.; Betanzo-Torres, E.A. Factors Affecting Wetland Loss: A Review. Land 2022, 11, 434. [Google Scholar] [CrossRef]
- Platas-Rosado, D.; Hernández-Arzaba, J.; Gonzalez-Reynoso, L. Importancia Económica y Social del Sector Acuícola en México. Producto Agro. 2018. Available online: https://bit.ly/3S8kqqZ (accessed on 10 June 2020).
- Betanzo-Torres, E.A. La Acuacultura en México y el Uso de Tecnología Biofloc Como Alternativa Sustentable: Análisis de Adopción, Desarrollo y Comparativo Con Otras Tecnologías Para el Cultivo de Tilapia (Oreochromis Niloticus). Ph.D. Thesis, El Colegio de Veracruz, Xalapa, Mexico, 2019. [Google Scholar]
- Delfín-Portela, E.; Sandoval-Herazo, L.C.; Reyes-González, D.; Mata-Alejandro, H.; López-Méndez, M.C.; Fernández-Lambert, G.; Betanzo-Torres, E.A. Grid-Connected Solar Photovoltaic System for Nile Tilapia Farms in Southern Mexico: Techno-Economic and Environmental Evaluation. Appl. Sci. 2022, 13, 570. [Google Scholar] [CrossRef]
- Esquivel Lopez, G.; Ruelas Mojardin, L. Propuestas Para Promover el Desarrollo Sustentable en la Acuicultura Mexicana. Un análisis a Través de Los Paradigmas de la Gestión Ambiental; Centro de Estudios para el Desarrollo Rural Sostenible y la Soberanía Alimentaria. Cámara de Diputados, México, s. f. Available online: http://201.147.98.23/Ver/Documento/4692 (accessed on 17 March 2024).
- Henares, M.N.P.; Medeiros, M.V.; Camargo, A.F.M. Overview of strategies that contribute to the environmental sustainability of pond aquaculture: Rearing systems, residue treatment, and environmental assessment tools. Rev. Aquac. 2019, 12, 453–470. [Google Scholar] [CrossRef]
- Laktuka, K.; Kalnbalkite, A.; Sniega, L.; Logins, K.; Lauka, D. Towards the Sustainable Intensification of Aquaculture: Exploring Possible Ways Forward. Sustainability 2023, 15, 16952. [Google Scholar] [CrossRef]
- Nunes, L.J.L.; da Silva Campos, C.V.F.; da Silva, S.M.B.C.; Gálvez, A.O.; Brito, L.O.; dos Santos, J.F. The culture of Nile tilapia (Oreochromis niloticus) juvenile at different culture technologies: Autotrophic, bioflocs and Synbiotic. Aquaculture 2024, 588, 740912. [Google Scholar] [CrossRef]
- Pimentel, O.A.L.F.; Wasielesky, W.; da Silva, N.P.; Borges, L.D.V.; Krummenauer, D. Fertilizing synbiotic system with different vegetable brans: Effects on nitrification, plankton composition, and growth of Penaeus vannamei in the nursery phase. Aquac. Int. 2024, 32, 6407–6429. [Google Scholar] [CrossRef]
- Celdran-Sabater, D. Que es la tecnologia BAF. Available online: https://www.bioaquafloc.com/que-es-la-tecnologia-baf/ (accessed on 9 December 2024).
- Spencer, B.E. Environmental impacts of aquaculture. Aquaculture 2002, 203, 397–398. [Google Scholar] [CrossRef]
- Martinez-Porchas, M.; Martinez-Cordova, L.R. World Aquaculture: Environmental Impacts and Troubleshooting Alternatives. Sci. World J. 2012, 2012, 389623. [Google Scholar] [CrossRef]
- Herath, S.S.; Satoh, S. Environmental impacts of nitrogen and phosphorus from aquaculture. In Feed and Feeding Practices in Aquaculture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 427–444. [Google Scholar] [CrossRef]
- Brix, H. How ‘Green’ Are Aquaculture, Constructed Wetlands and Conventional Wastewater Treatment Systems? Water Sci. Technol. 1999, 40, 45–50. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Jing, S.-R.; Lee, D.-Y.; Wang, T.-W. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture 2002, 209, 169–184. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Jing, S.-R.; Lee, D.-Y. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture. Environ. Pollut. 2003, 123, 107–113. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Jing, S.-R.; Lee, D.-Y.; Chang, Y.-F.; Chen, Y.-M.; Shih, K.-C. Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environ. Pollut. 2005, 134, 411–421. [Google Scholar] [CrossRef]
- Guo, H.; Liao, L.; Zheng, Z.; Xu, J.; Wei, Q.; Chen, P.; Wang, K. Evaluating the Effects of Aquaculture Wastewater Irrigation with Fertilizer Reduction on Greenhouse Tomato Production, Economic Benefits and Soil Nitrogen Characteristics. Phyton 2023, 92, 3291–3304. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Tepe, Y.; Temel, F.A. Treatment of Effluents from Fish and Shrimp Aquaculture in Constructed Wetlands. In Constructed Wetlands for Industrial Wastewater Treatment; John Wiley & Sons, Ltd.: Chichester, UK, 2018; pp. 105–125. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, D.; He, W.; Liu, H.; Chen, J.; Wei, X.; Mu, J. Sesuvium portulacastrum-Mediated Removal of Nitrogen and Phosphorus Affected by Sulfadiazine in Aquaculture Wastewater. Antibiotics 2022, 11, 68. [Google Scholar] [CrossRef]
- Li, H.; Huo, Y.; He, X.; Yao, L.; Zhang, H.; Cui, Y.; Xiao, H.; Xie, W.; Zhang, D.; Wang, Y.; et al. A male germ-cell-specific ribosome controls male fertility. Nature 2022, 612, 725–731. [Google Scholar] [CrossRef]
- Betanzo-Torres, E.A.; Piñar-Álvarez, M.d.l.Á.; Sierra-Carmona, C.G.; Santamaria, L.E.G.; Loeza-Mejía, C.-I.; Marín-Muñiz, J.L.; Sandoval Herazo, L.C. Proposal of Ecotechnologies for Tilapia (Oreochromis niloticus) Production in Mexico: Economic, Environmental, and Social Implications. Sustainability 2021, 13, 6853. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, M.; Chen, J.; Cui, H.; Zhu, S.; Jin, T.; Qu, K.; Cui, Z. Purification of seawater aquaculture using constructed wetlands in a recirculating aquaculture system for Pacific white shrimp (Litopenaeus vannamei) and analysis of microbial community structure. J. Water Process Eng. 2024, 66, 105959. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Sidrach-Cardona, R.; Pedescoll, A.; Sánchez, O.; Bécares, E. Role of Bacterial Diversity on PPCPs Removal in Constructed Wetlands. In Constructed Wetlands for Industrial Wastewater Treatment; John Wiley & Sons, Ltd.: Chichester, UK, 2018; pp. 405–426. [Google Scholar] [CrossRef]
- Le Gouvello, R.; Brugere, C.; Simard, F. Aquaculture and Nature-Based Solutions. In Aquaculture and Nature-Based Solutions; IUCN Commission on Ecosystem Management C: Gland, Switzerland, 2022. [Google Scholar]
- Castine, S.; McKinnon, A.; Paul, N.; Trott, L.; de Nys, R. Wastewater treatment for land-based aquaculture: Improvements and value-adding alternatives in model systems from Australia. Aquac. Environ. Interact. 2013, 4, 285–300. [Google Scholar] [CrossRef]
- Omotade, I.F.; Alatise, M.O.; Olanrewaju, O.O. Recycling of aquaculture wastewater using charcoal based constructed wetlands. Int. J. Phytoremediation 2019, 21, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Haydar, S.; Anis, M.; Afaq, M. Performance evaluation of hybrid constructed wetlands for the treatment of municipal wastewater in developing countries. Chin. J. Chem. Eng. 2020, 28, 1717–1724. [Google Scholar] [CrossRef]
- Uusheimo, S.; Huotari, J.; Tulonen, T.; Aalto, S.L.; Rissanen, A.J.; Arvola, L. High Nitrogen Removal in a Constructed Wetland Receiving Treated Wastewater in a Cold Climate. Environ. Sci. Technol. 2018, 52, 13343–13350. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, A.; Shukla, B.K.; Bansal, V. Sustainable design of textile industry effluent treatment plant with constructed wetland. Mater. Today 2022, 61, 537–542. [Google Scholar] [CrossRef]
- Tom, A.P.; Jayakumar, J.S.; Biju, M.; Somarajan, J.; Ibrahim, M.A. Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus 2021, 4, 100022. [Google Scholar] [CrossRef]
- Gorito, A.M.; Lado Ribeiro, A.R.; Pereira, M.F.R.; Almeida, C.M.R.; Silva, A.M.T. Advanced oxidation technologies and constructed wetlands in aquaculture farms: What do we know so far about micropollutant removal? Environ. Res. 2022, 204, 111955. [Google Scholar] [CrossRef]
- Zhang, S.; Li, G.; Chang, J.; Li, X. Aerated Enhanced Treatment of Aquaculture Effluent by Three-stage, Subsurface-Flow Constructed Wetlands under a High Loading Rate. Pol. J. Environ. 2014, 23, 1821–1830. [Google Scholar]
- Sochacki, A.; Yadav, A.K.; Srivastava, P.; Kumar, N.; Fitch, M.W.; Mohanty, A. Constructed Wetlands for Metals: Removal Mechanism and Analytical Challenges. In Constructed Wetlands for Industrial Wastewater Treatment; John Wiley & Sons, Ltd.: Chichester, UK, 2018; pp. 223–247. [Google Scholar] [CrossRef]
- Gorito, A.M.; Ribeiro, A.R.; Almeida, C.M.R.; Silva, A.M.T. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ. Pollut. 2017, 227, 428–443. [Google Scholar] [CrossRef]
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61, 582–592. [Google Scholar] [CrossRef]
- Nasr-Allah, A. Tilapia production using climate smart aquaculture system in Egypt, in-pond raceway system (IPRS). In Proceedings of the 4th International Conference on Sustainable Development of Livestock Production Systems “Smart and Precise Farming”, Alexandria, Egypt, 19 November 2019; p. 3. Available online: https://hdl.handle.net/20.500.12348/4078 (accessed on 17 January 2025).
- Zimmermann, S. Sistemas Acuícolas sin Efluentes. In Proceedings of the II CIA 2020—Congreso Internacional de Acuicultura, Cajamarca, Peru, 26 November 2020; Available online: https://www.regioncajamarca.gob.pe/media/portal/KJDIG/documento/8531/BROCHURE_II_CIA_2020_FINAL.pdf (accessed on 22 January 2024).
- Bertolini, R.; Sabbag, O.; Zimmermann, S.; Hein, G. Tecnologias Avaliadas: Dados Económicos de Diferentes Tecnologias de Produção Intensiva de Tilápias. Cartilha de custos. Ministério da Agricultura, Pecuária e Abastecimento. 2021. Available online: https://www.gov.br/agricultura/pt-br/assuntos/aquicultura-e-pesca/informativos/cartilha-de-custos-tilapia (accessed on 22 January 2024).
- CONAPESCA (Comisión Nacional de Acuacultura y Pesca). El Portal Electrónico del Gobierno. Available online: https://www.gob.mx/conapesca (accessed on 10 February 2025).
- Hernández Sampieri, R.; Fernandez Collado, C.; Baptista Lucio, M.d.p. Metodología de la Investigacion; McGraw-Hill: México City, México, 2010; Available online: https://bit.ly/4jvcxbm (accessed on 15 May 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 327, n71. [Google Scholar] [CrossRef]
- Schwartz, M.E.; Boyd, C.E. Constructed Wetlands for Treatment of Channel Catfish Pond Effluents. Progress. Fish-Culturist 1995, 57, 255–266. [Google Scholar] [CrossRef]
- Costa-Pierce, B.A. Preliminary investigation of an integrated aquaculture–wetland ecosystem using tertiary-treated municipal wastewater in Los Angeles County, California. Ecol. Eng. 1998, 10, 341–354. [Google Scholar] [CrossRef]
- Zachritz, W.H.; Fuller, J.W. Performance of an artificial wetlands filter treating facultative lagoon effluent at Carville, Louisiana. Water Environ. Res. 1993, 65, 46–52. [Google Scholar] [CrossRef]
- Schulz, C.; Gelbrecht, J.; Rennert, B. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture 2003, 217, 207–221. [Google Scholar] [CrossRef]
- Lymbery, A.J.; Doupé, R.G.; Bennett, T.; Starcevich, M.R. Efficacy of a subsurface-flow wetland using the estuarine sedge Juncus kraussii to treat effluent from inland saline aquaculture. Aquac. Eng. 2006, 34, 1–7. [Google Scholar] [CrossRef]
- Zachritz, W.H.; Hanson, A.T.; Sauceda, J.A.; Fitzsimmons, K.M. Evaluation of submerged surface flow (SSF) constructed wetlands for recirculating tilapia production systems. Aquac. Eng. 2008, 39, 16–23. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment: Five Decades of Experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef]
- Cargnin, J.M.R.; João, J.J. Removal of nutrients from aquaculture residual water: A review. Ambiente Agua Interdiscip. J. Appl. Sci. 2021, 16, e2747. [Google Scholar] [CrossRef]
- Comeau, Y.; Brisson, J.; Réville, J.P.; Forget, C.; Drizo, A. Phosphorus removal from trout farm effluents by constructed wetlands. Water Sci. Technol. 2001, 44, 55–60. [Google Scholar] [CrossRef]
- Naylor, S.; Brisson, J.; Labelle, M.A.; Drizo, A.; Comeau, Y. Treatment of freshwater fish farm effluent using constructed wetlands: The role of plants and substrate. Water Sci. Technol. 2003, 48, 215–222. [Google Scholar] [CrossRef]
- Michael, J.H. Nutrients in salmon hatchery wastewater and its removal through the use of a wetland constructed to treat off-line settling pond effluent. Aquaculture 2003, 226, 213–225. [Google Scholar] [CrossRef]
- Li, G.; Wu, Z.; Cheng, S.; Liang, W.; He, F.; Fu, G.; Zhong, F. Application of constructed wetlands on wastewater treatment for aquaculture ponds. Wuhan Univ. J. Nat. Sci. 2007, 12, 1131–1135. [Google Scholar] [CrossRef]
- Sindilariu, P.-D.; Wolter, C.; Reiter, R. Constructed wetlands as a treatment method for effluents from intensive trout farms. Aquaculture 2008, 277, 179–184. [Google Scholar] [CrossRef]
- Sindilariu, P.-D.; Schulz, C.; Reiter, R. Treatment of flow-through trout aquaculture effluents in a constructed wetland. Aquaculture 2007, 270, 92–104. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, G.; Liu, J.; Zhu, Y.; Xu, J. Performance of a constructed wetland in treating brackish wastewater from commercial recirculating and super-intensive shrimp grow out systems. Bioresour. Technol. 2011, 102, 9416–9424. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhou, Q.H.; Xu, D.; He, F.; Cheng, S.; Liang, W.; Wu, Z. Vertical-flow constructed wetlands applied in a recirculating aquaculture system for channel catfish culture: Effects on water quality and zooplankton. J. Environ. 2010, 277, 1063–1070. [Google Scholar]
- Konnerup, D.; Trang, N.T.D.; Brix, H. Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics. Aquaculture 2011, 313, 57–64. [Google Scholar] [CrossRef]
- Chen, J.; Guo, F.; Wu, F.; Bryan, B.A. Costs and benefits of constructed wetlands for meeting new water quality standards from China’s wastewater treatment plants. Resour. Conserv. Recycl. 2023, 199, 107248. [Google Scholar] [CrossRef]
- Akyürek, A.; Ağdağ, O.N. Comparison of constructed wetlands and package type sequencing batch biological treatment plants in rural areas in terms of efficiency and cost in a full-scale example. Ecol. Eng. 2024, 201, 107190. [Google Scholar] [CrossRef]
- Tellbüscher, A.A.; Gebauer, R.; Mráz, J. Nutrients revisited: Review and meta-data analysis of nutrient inputs into freshwater aquaculture systems. Aquaculture 2025, 595, 741633. [Google Scholar] [CrossRef]
- Deng, Y.Y.; Zou, M.Y.; Liu, W.; Lian, Y.L.; Guo, Q.M.; Zhang, X.M. Antibiotic removal and microbial response mechanism in constructed wetlands treating aquaculture wastewater containing veterinary drugs. J. Clean. Prod. 2023, 394, 136271. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, S.; Ma, Z.; Li, Y.; Huang, D.; Zhang, J. Study on the purification of aquaculture tailwater under Sulfamethoxazole stress using algae-bacteria biofilms: Nutrient removal efficiency, microbial community, and ARGs. Process Saf. Environ. Prot. 2024, 191, 1432–1444. [Google Scholar] [CrossRef]
- Rocha, C.; Ibanhez, J.; Leote, C. Benthic nitrate biogeochemistry affected by tidal modulation of Submarine Groundwater Discharge (SGD) through a sandy beach face, Ria Formosa, Southwestern Iberia. Mar. Chem. 2009, 115, 43–58. [Google Scholar] [CrossRef]
- Zidan, A.A.; Wu, Z.; Wang, Y.; Chen, Y.; Liu, J. Nutrient distribution and nitrate processing in a mangrove tidal creek affected by submarine groundwater discharge (SGD). Mar. Pollut. Bull. 2025, 212, 117575. [Google Scholar] [CrossRef]
- Saeed, T.; Muntaha, S.; Rashid, M.; Sun, G.; Hasnat, A. Industrial wastewater treatment in constructed wetlands packed with construction materials and agricultural by-products. J. Clean. Prod. 2018, 189, 442–453. [Google Scholar] [CrossRef]
- Vymazal, J.; Zhao, Y.; Mander, Ü. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2021, 169, 106318. [Google Scholar] [CrossRef]
- Dolores-Salinas, E.; Miret-Pastor, L. Environmental certifications in Brazilian aquaculture. Aquac. Int. 2024, 32, 8609–8630. [Google Scholar] [CrossRef]
- USDA (U.S. Department of Agriculture). USDA Announces More than $2 Million to Strengthen Specialty Crop Sector and Expand Crop Storage for Producers. USA. 2024. Available online: https://bit.ly/3GECw1i (accessed on 24 June 2024).
- NOOA (National Oceanic and Atmospheric Administration). Identification of Areas of Opportunity for Aquaculture in California and the Gulf of Mexico. USA. 2024. Available online: https://bit.ly/4cTRH2Q (accessed on 17 November 2024).
- Vymazal, J. The Historical Development of Constructed Wetlands for Wastewater Treatment. Land 2022, 11, 174. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Sharifinia, M.; Hajirezaee, S. Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture 2022, 552, 738021. [Google Scholar] [CrossRef]
- Citarasu, T.; Babu, M.M.; Yilmaz, E. Alternative medications in shrimp health management for improved production. Aquaculture 2022, 561, 738695. [Google Scholar] [CrossRef]
- Widiasa, I.N.; Susanto, H.; Ting, Y.P.; Suantika, G.; Steven, S.; Khoiruddin, K.; Wenten, I.G. Membrane-based recirculating aquaculture system: Opportunities and challenges shrimp farming. Aquaculture 2023, 579, 740224. [Google Scholar] [CrossRef]
- Lara-Rivera, A.L.; Parra-Bracamonte, G.M.; Sifuentes-Rincón, A.M.; Gojón-Báez, H.H.; Rodríguez-González, H.; Montelongo-Alfaro, I.O. Channel catfish (Ictalurus punctatus Rafinesque, 1818): Current status and problematic situation in Mexico. Lat. Am. J. Aquat. Res. 2017, 43, 424–434. [Google Scholar] [CrossRef]
- Zhong, L.; Song, C.; Chen, X.; Deng, W.; Xiao, Y.; Wang, M.; Qin, Q.; Luan, S.; Kong, J.; Bian, W. Channel catfish in China: Historical aspects, current status, and problems. Aquaculture 2016, 465, 367–373. [Google Scholar] [CrossRef]
- Abass, N.Y.; Su, B.; Perera, D.A.; Qin, Z.; Li, H.; Alsaqufi, A.; Elaswad, A.; Ye, Z.; Dong, S.; Dunham, R.A. Effects of family and promoter on growth performance of ccGH cDNA transgenic channel catfish, Ictalurus punctatus, grown in a trough culture system. Aquaculture 2021, 536, 736468. [Google Scholar] [CrossRef]
- Li, G.; Zhang, S.Y.; Tao, L.; Li, X.; Song, J.; Zhang, C.; Zhu, J.Q. Purification performance and production of a recirculating pond aquaculture system based on paddy field. Adv. J. Food Sci. Technol. 2012, 4, 383–388. [Google Scholar]
- Mahmood, T.; Zhang, J.; Zhang, G. Assessment of Constructed Wetland in Nutrient Reduction, in the Commercial Scale Experiment Ponds of Freshwater Prawn Macrobrachium rosenbergii. Bull. Environ. Contam. Toxicol. 2015, 96, 361–368. [Google Scholar] [CrossRef]
- Dalsgaard, J.; von Ahnen, M.; Naas, C.; Pedersen, P. Nutrient removal in a constructed wetland treating aquaculture effluent at short hydraulic retention time. Aquac. Environ. Interact. 2018, 10, 329–343. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Li, G.; Wu, H.-B.; Liu, X.-G.; Yao, Y.-H.; Tao, L.; Liu, H. An integrated recirculating aquaculture system (RAS) for land-based fish farming: The effects on water quality and fish production. Aquac. Eng. 2011, 45, 93–102. [Google Scholar] [CrossRef]
- Shpigel, M.; Ben-Ezra, D.; Shauli, L.; Sagi, M.; Ventura, Y.; Samocha, T.; Lee, J.J. Constructed wetland with Salicornia as a biofilter for mariculture effluents. Aquaculture 2013, 412–413, 52–63. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Li, G.; Li, X.; Tao, L. Four stage hybrid constructed wetlands treating low strength aquaculture wastewater with and without artificial aeration. Environ. Prot. Eng. 2015, 41, 31–42. [Google Scholar] [CrossRef]
- Webb, J.M.; Quintã, R.; Papadimitriou, S.; Norman, L.; Rigby, M.; Thomas, D.N.; Le Vay, L. The effect of halophyte planting density on the efficiency of constructed wetlands for the treatment of wastewater from marine aquaculture. Ecol. Eng. 2013, 61, 145–153. [Google Scholar] [CrossRef]
- Pham, T.T.H.; Cochevelou, V.; Dinh, H.D.K.; Breider, F.; Rossi, P. Implementation of a constructed wetland for the sustainable treatment of inland shrimp farming water. J. Environ. Manag. 2021, 279, 111782. [Google Scholar] [CrossRef]
- Sousa, W.T.Z.; Panitz, C.M.N.; Thomaz, S.M. Performance of pilot-scale vertical flow constructed wetlands with and without the emergent macrophyte Spartina alterniflora treating mariculture effluent. Braz. Arch. Biol. Technol. 2011, 54, 405–413. [Google Scholar] [CrossRef]
- Bitar, A.L.; Tauk-Tornisielo, S.M.; Oliveira Santos, A.A.; Malagutti, E.N.; Silva, I.M. Tratamento de efluentes de pesque-pague em sistema construído de áreas alagadas. Holos Enviroment 2009, 9, 2. [Google Scholar] [CrossRef]
- Osti, J.A.S.; Carmo, C.F.D.; Cerqueira, M.A.S.; Giamas, M.T.D.; Peixoto, A.C.; Vaz-Dos-Santos, A.M.; Mercante, C.T.J. Nitrogen and phosphorus removal from fish farming effluents using artificial floating islands colonized by Eichhornia crassipes. Aquac. Rep. 2020, 17, 100324. [Google Scholar] [CrossRef]
- Kamarudzaman, A.N.; Gana, A.D.A.; Jalil, M.F.A.; Aziz, R.A. Landfill Leachate Treatment Using SSF-FWS Constructed Wetland Planted with Limnocharis flava and Eihhornia crassipes under Different Hydraulic Loading Rate. Key Eng. Mater. 2013, 594–595, 344–349. [Google Scholar] [CrossRef]
- Díaz, C.A.; Atencio, G.V.; Pardo, C.S. Assessment of an artificial free-flow wetland system with water hyacinth (Eichhornia crassipes) for treating fish farming effluents. Rev. Colomb. Cienc. Pecu. 2014, 27, 202–210. [Google Scholar] [CrossRef]
- Henry-Silva, G.G.; Camargo, A.F.M. Tratamento de efluentes de carcinicultura por macrófitas aquáticas flutuantes. Rev. Bras. Zootec. 2008, 37, 181–188. [Google Scholar] [CrossRef]
- Henry-Silva, G.G.; Camargo, A.F.M. Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents. Sci. Agricola 2006, 63, 433–438. [Google Scholar] [CrossRef]
- Pereira, J.S.; Mercante, C.T.J.; Lombardi, J.V.; Vaz-Dos-Santos, A.M.; Carmo, C.F.D.; Osti, J.A.S. Eutrophization process in a system used for rearing the Nile tilapia (Oreochromis niloticus), São Paulo State, Brazil. Acta Limnol. Bras. 2013, 24, 387–396. [Google Scholar] [CrossRef]
- Kerepeczki, E.; Gal, D.; Szabo, P.; Pekar, F. Preliminary investigations on the nutrient removal efficiency of a wetland-type ecosystem. Hydrobiologia 2003, 506, 665–670. [Google Scholar]
- Gál, D.; Pekár, F.; Kerepeczki, É.; Váradi, L. Experiments on the operation of a combined aquaculture-algae system. Aquac. Int. 2007, 15, 173–180. [Google Scholar] [CrossRef]
- Gál, D.; Kerepeczk, É.; Kosáros, T.; Pekár, F. The waste nutrients reutilisation capacity of combined pond aquaculture systems. Analele Universitatii din Oradea, Fascicula: Ecotoxicologie, Zootehnie si Tehnologii de Industrie Alimentara. Analele Univ. Din Oradea 2009, 2, 307–316. [Google Scholar]
- Xu, J.; Shi, Y.; Zhang, G.; Liu, J.; Zhu, Y. Effect of hydraulic loading rate on the efficiency of effluent treatment in a recirculating puffer aquaculture system coupled with constructed wetlands. J. Ocean Univ. China 2013, 13, 146–152. [Google Scholar] [CrossRef]
- Galaviz, M.A.A.; Díaz, J.A.Á.; Sandoval, P.H. Evaluación de un humedal artificial piloto para el tratamiento de aguas residuales domesticas—Fitorremediacíon con Eichhornia crassipes. Ra Ximhai 2024, 20, 17–37. [Google Scholar] [CrossRef]
- Rannap, R.; Kaart, M.M.; Kaart, T.; Kill, K.; Uuemaa, E.; Mander, Ü.; Kasak, K. Constructed wetlands as potential breeding sites for amphibians in agricultural landscapes: A case study. Ecol. Eng. 2020, 158, 106077. [Google Scholar] [CrossRef]
- Ramírez-Carrillo, H.; Luna-Pabello, V.; Arredondo-Figueroa, J. Evaluation of an intermittent artificial vertical flow wetland, to obtain good quality water for aquaculture. Rev. Mex. Ing. Quimica 2009, 8, 93–99. [Google Scholar]
- Tee, H.-C.; Lim, P.-E.; Seng, C.-E.; Nawi, M.-A.M. Newly developed baffled subsurface-flow constructed wetland for the enhancement of nitrogen removal. Bioresour. Technol. 2012, 104, 235–242. [Google Scholar] [CrossRef]
- Zhong, F.; Liang, W.; Yu, T.; Cheng, S.P.; He, F.; Wu, Z.B. Removal efficiency and balance of nitrogen in a recirculating aquaculture system integrated with constructed wetlands. J. Environ. Sci. Health A. 2011, 46, 789–794. [Google Scholar] [CrossRef]
- Porrello, S.; Lenzi, M.; Persia, E.; Tomassetti, P.; Finoia, M.G. Reduction of aquaculture wastewater eutrophication by Phyto treatment ponds system. Aquaculture 2003, 219, 515–529. [Google Scholar] [CrossRef]
- Fleckenstein, L.J.; Tierney, T.W.; Fisk, J.C.; Ray, A.J. The effects of different solids and biological filters in intensive pacific white shrimp (Litopenaeus vannamei) production systems. Aqua. Eng. 2020, 91, 102120. [Google Scholar] [CrossRef]
- Ma, X.; Song, X.; Li, X.; Fu, S.; Li, M.; Liu, Y. Characterization of Microbial Communities in Pilot-Scale Constructed Wetlands with Salicornia for Treatment of Marine Aquaculture Effluents. Archaea 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Buhmann, A.; Papenbrock, J. Biofiltering of aquaculture effluents by halophytic plants: Basic principles, current uses and future perspectives. Environ. Exp. Bot. 2013, 92, 122–133. [Google Scholar]
- Kinne, P.N.; Samocha, T.M.; Jones, E.R.; Browdy, C.L. Characterization of Intensive Shrimp Pond Effluent and Preliminary Studies on Biofiltration. North Am. J. Aquac. 2001, 63, 25–33. [Google Scholar] [CrossRef]
- Hu, J.; Hu, R.; Qi, D.; Lu, X. Study on treatment of aquaculture wastewater using a hybrid constructed wetland. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Proceedings of the 3rd International Conference on Energy Materials and Environment Engineering, Bangkok, Thailand, 10–12 March 2017; Volume 61, p. 012015. [Google Scholar] [CrossRef]
- Lin, Y.; Jing, S.; Lee, D.; Chang, Y.; Sui, H. Constructed Wetlands for Water Pollution Management of Aquaculture Farms Conducting Earthen Pond Culture. Water Environ. Res. 2010, 82, 759–768. [Google Scholar] [CrossRef]
- Schwartz, M.F.; Boyd, C.E. Channel Catfish Pond Effluents. Progress. Fish Cult. 1994, 56, 273–281. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, Z.-H.; Zhao, J.-G.; Gu, B.-H. Contaminant Removal of Domestic Wastewater by Constructed Wetlands: Effects of Plant Species. J. Integr. Plant Biol. 2007, 49, 437–446. [Google Scholar] [CrossRef]
- Kerepeczki, É.; Gál, D.; Kosáros, T.; Hegedűs, R.; Gyalog, G.; Pekár, F. Natural water treatment method for intensive aquaculture effluent purification. Stud. Univ. Vasile Goldis Ser. Stiintele Vietii 2011, 21, 827–837. [Google Scholar]
- Iamchaturapatr, J.; Yi, S.W.; Rhee, J.S. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland. Ecol. Eng. 2007, 29, 287–293. [Google Scholar] [CrossRef]
- Zhang, S.; Ban, Y.; Xu, Z.; Cheng, J.; Li, M. Comparative evaluation of influencing factors on aquaculture wastewater treatment by various constructed wetlands. Ecol. Eng. 2016, 93, 221–225. [Google Scholar] [CrossRef]
- de Vasconcelos, V.M.; de Morais, E.R.C.; Faustino, S.J.B.; Hernandez, M.C.R.; Gaudêncio, H.R.d.S.C.; de Melo, R.R.; Junior, A.P.B. Floating aquatic macrophytes for the treatment of aquaculture effluents. Environ. Sci. Pollut. Res. 2020, 28, 2600–2607. [Google Scholar] [CrossRef]
- Al-Hafedh, Y.S.; Alam, A.; Alam, M.A. Performance of plastic biofilter media with different configuration in a water recirculation system for the culture of Nile tilapia (Oreochromis niloticus). Aquac. Eng. 2003, 29, 139–154. [Google Scholar] [CrossRef]
- Nootong, K.; Nurit, S.; Powtongsook, S. Control of Inorganic Nitrogen and Suspended Solids Concentrations in a Land-Based Recirculating Aquaculture System. Eng. J. 2013, 17, 49–60. [Google Scholar] [CrossRef]
- De Farias Lima, J.; Bastos, A.M.; Duarte, S.S.; dos Santos, U.R.A. Are artificial semi-dry wetlands efficient in wastewater treatment from different fish densities and for lettuce production? Int. J. Environ. Sci. Technol. 2021, 19, 8329–8340. [Google Scholar] [CrossRef]
- Teixeira, D.L.; Souza, A.; Moura, G.d.S.; Júnior, M.C.R.L. Reuse of aquaculture wastewater treated in constructed wetlands. Rev. Eng. Na Agric. Reveng 2021, 29, 347–354. [Google Scholar] [CrossRef]
- Raharjo, S.; Suprihatin, N.S.I.; Riani, E. The Benefits of Constructed Wetlands Application in a Vannamei Shrimp (Litopenaeus vannamei) 2015. Cultivation System with a Mesohaline Condition. Available online: https://acortar.link/AjxcAD (accessed on 7 May 2025).
- Raharjo, S.; Fitriyah Irmawati, E.S.; Manaf, M. Constructed Wetland with Flow Water Surface Type for Elimination of Aquaculture Wastewater from Catfish (Clarias gariepinus, Var). In Proceedings of the IOP Conference Series: Earth and Environmental Science, Proceedings of the 4th International Seminar on Sciences, Bogor, Indonesia, 19–20 October 2017; Volume 187, p. 012061. [Google Scholar] [CrossRef]
- Raharjo, S.; Suprihatin, S.; Indrasti, N.S.; Riani, E.; Supriyadi, S.; Hardanu, W. lahan basah buatan sebagai media pengolahan air limbah budidaya udang vaname (litopenaeus vannamaei) bersalinitas rendah (Constructed Wetland for Remediation of Brackish Wastewater from White Shrimp (Litopenaeus vannamaei) Cultivation). J. Mns. Dan Lingkung. 2015, 22, 201. [Google Scholar] [CrossRef]
- Raharjo, S. kemampuan lahan basah buatan dan fitoremediasi rumput akar wangi (chrysopogon zizanioides, l) dalam mengendalikan air limbah budidaya udang vaname (litopenaeus vannamaei). In Proceedings of the Indonesian Clean Technology Meeting, Jakarta, Indonesia, 12 April 2017; pp. 64–71. [Google Scholar]
- Ramos, R.; Gallardo, S. Capacidad de biofiltración de nutrientes y crecimiento de macroalgas utilizando efluentes generados en el cultivo del pez dorado Seriola lalandi (Perciformes: Carangidae). Rev. Biol. Mar. Oceanogr. 2021, 56, 13–21. [Google Scholar] [CrossRef]
- Sri-uam, P.; Donnuea, S.; Powtongsook, S.; Pavasant, P. Integrated Multi-Trophic Recirculating Aquaculture System for Nile Tilapia (Oreochlomis niloticus). Sustainability 2016, 8, 592. [Google Scholar] [CrossRef]
- Liu, J.; Yi, N.-K.; Wang, S.; Lu, L.-J.; Huang, X.-F. Impact of plant species on spatial distribution of metabolic potential and functional diversity of microbial communities in a constructed wetland treating aquaculture wastewater. Ecol. Eng. 2016, 94, 564–573. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiao, L.; Qin, H.; Li, F. Effect of Environmental Stress on the Nutrient Stoichiometry of the Clonal Plant Phragmites australis in Inland Riparian Wetlands of Northwest China. Front. Plant Sci. 2022, 12, 705319. [Google Scholar] [CrossRef]
- Jin, L.; Sun, X.; Ren, H.; Huang, H. Biological filtration for wastewater treatment in the 21st century: A data-driven analysis of hotspots, challenges and prospects. Sci. Total Environ. 2023, 855, 158951. [Google Scholar] [CrossRef]
- Kanchanapiya, P.; Tantisattayakul, T. Wastewater reclamation trends in Thailand. Water Sci. Technol. 2022, 86, 2878–2911. [Google Scholar] [CrossRef]
- World Bank Open Data. World Bank Open Data. Available online: https://bit.ly/3YlmMqe (accessed on 19 November 2024).
- Kurniawan, S.B.; Ahmad, A.; Rahim, N.F.M.; Said, N.S.M.; Alnawajha, M.M.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Ismail, N.; Hasan, H.A. Aquaculture in Malaysia: Water-related environmental challenges and opportunities for cleaner production. Environ. Technol. Innov. 2021, 24, 101913. [Google Scholar] [CrossRef]
- Wu, Y.; Song, K. Source, Treatment, and Disposal of Aquaculture Solid Waste: A Review. J. Environ. Eng. 2021, 147, 03120012. [Google Scholar] [CrossRef]
- Messer, T.L.; Moore, L.T.; Nelson, N.; Ahiablame, L.; Bean, E.Z.; Boles, C.; Cook, S.L.; Hall, S.G.; McMaine, J.; Schlea, D. Constructed Wetlands for Water Quality Improvement: A Synthesis on Nutrient Reduction from Agricultural Effluents. Trans. ASABE 2021, 64, 625–639. [Google Scholar] [CrossRef]
- Dosantos, P.S.; Bouchet, A.; Mariñas-Collado, I.; Montes, S. OPSBC: A method to sort Pareto-optimal sets of solutions in multi-objective problems. Expert Syst. Appl. 2024, 250, 123803. [Google Scholar] [CrossRef]
- Nurjanah, D.A.; Kusminah, I.L.; Rachmat, A.N.; Nabella, N. Analisis Penentuan Komponen Kritis Small Excavator Menggunakan Metode FMEA dan Diagram Pareto. J. Saf. Health Environ. Eng. 2024, 1, 7–15. [Google Scholar] [CrossRef]
- Sandoval Herazo, L.C.; Marín-Muñiz, J.L.; Alvarado-Lassman, A.; Zurita, F.; Marín-Peña, O.; Sandoval-Herazo, M. Full-Scale Constructed Wetlands Planted with Ornamental Species and PET as a Substitute for Filter Media for Municipal Wastewater Treatment: An Experience in a Mexican Rural Community. Water 2023, 15, 2280. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; Sandoval Herazo, L.C.; López-Méndez, M.C.; Sandoval-Herazo, M.; Meléndez-Armenta, R.Á.; González-Moreno, H.R.; Zamora, S. Treatment Wetlands in Mexico for Control of Wastewater Contaminants: A Review of Experiences during the Last Twenty-Two Years. Processes 2023, 11, 359. [Google Scholar] [CrossRef]
- Li, K.; Jiang, R.; Qiu, J.; Liu, J.; Shao, L.; Zhang, J.; Liu, Q.; Jiang, Z.; Wang, H.; He, W.; et al. How to control pollution from tailwater in large scale aquaculture in China: A review. Aquaculture 2024, 590, 741085. [Google Scholar] [CrossRef]
- Zitácuaro-Contreras, I.; Vidal-Álvarez, M.; Hernández y Orduña, M.G.; Zamora-Castro, S.A.; Betanzo-Torres, E.A.; Marín-Muñíz, J.L.; Sandoval-Herazo, L.C. Environmental, Economic, and Social Potentialities of Ornamental Vegetation Cultivated in Constructed Wetlands of Mexico. Sustainability 2021, 13, 6267. [Google Scholar] [CrossRef]
- Sandoval, L.; Zamora-Castro, S.; Vidal-Álvarez, M.; Marín-Muñiz, J. Role of Wetland Plants and Use of Ornamental Flowering Plants in Constructed Wetlands for Wastewater Treatment: A Review. Appl. Sci. 2019, 9, 685. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Liu, H.; Zhang, Y.; Zhou, Q.; Wen, X.; Guo, W.; Zhang, Z. A systematic review on aquaculture wastewater: Pollutants, impacts, and treatment technology. Environ. Res. 2024, 262, 119793. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, G.A.; de Las Mercedes Mufarrege, M.; Hadad, H.R.; Maine, M.A.; Nocetti, E.; Campagnoli, M.A. Floating treatment wetlands with Canna indica for the removal of Cr (III) and Cr (VI) from water: A comprehensive study. Sci. Total Environ. 2024, 940, 173642. [Google Scholar] [CrossRef]
- Dhir, B. Role of Wetlands. In Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up; Springer: Pune, India, 2013; pp. 65–93. [Google Scholar] [CrossRef]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. Water hyacinth (Eichhornia crassipes) for organic contaminants removal in water—A review. J. Hazard. Mater. Adv. 2022, 7, 100092. [Google Scholar] [CrossRef]
- Lino, G.; Espigul, P.; Nogués, S.; Serrat, X. Arundo donax L. growth potential under different abiotic stress. Heliyon 2023, 9, e15521. [Google Scholar] [CrossRef]
- Badiola, M.; Mendiola, D.; Bostock, J. Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng. 2012, 51, 26–35. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Delfin-Portela, E. Diseño y Evaluación de un Sistema Integrado de Recirculación Acuícola Con Humedales Construidos Como Filtro Biológico (RAS-CW) Con un Enfoque de Economía Circular. Ph.D. Thesis, Instituto Tecnológico Superior de Misantla, Misantla, Mexico, 2024. [Google Scholar]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands; Taylor and Francis Group: Florida, FL, USA, 2008. [Google Scholar]
- Kadlec, R.H.; Knight, R.L. Treatment Wetlands; Lewis Publishers Inc: Ann Arbor, MI, USA, 1996; pp. 68–80. [Google Scholar]
- Hernández, M.E. Ecological engineering for controlling water pollution in Latin America En. In Ecological Engineering for Controlling Water Pollution in Latin America in Ecological Dimensions for Sustainable Socio-Economic Development; Yañez-Arancibia, A., Yáñez-Arancibia, A., Dávalos-Sotelo, R., Day, J.W., Reyes, E., Eds.; WIT Press: Southampton, UK, 2013. [Google Scholar]
- Marín-Muñiz, J.L.; Ortega-Pineda, G.; Zitácuaro-Contreras, I.; Vidal-Álvarez, M.; Martínez-Aguilar, K.E.; Álvarez-Hernández, L.M.; Zamora-Castro, S. Removal of Nitrogen, Phosphates, and Chemical Oxygen Demand from Community Wastewater by Using Treatment Wetlands Planted with Ornamental Plants in Different Mineral Filter Media. Nitrogen 2024, 5, 903–914. [Google Scholar] [CrossRef]
- Boutin, K.D.; Mitsch, W.J.; Everham, E.; Bakshi, B.R.; Zhang, L. An evaluation of corn production within a Wetlaculture™ system at Buckeye Lake, Ohio. Ecol. Eng. 2021, 171, 106366. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Jiang, B.; Miller, S.K.; Boutin, K.D.; Zhang, L.; Wilson, A.; Bakshi, B.R. Wetlaculture: Solving Harmful Algal Blooms with a Sustainable Wetland/Agricultural Landscape. In Engineering and Ecosystems; Springer International Publishing: Cham, Switzerland, 2023; pp. 333–354. [Google Scholar] [CrossRef]
- NASA (National Aeronautics and Space Administration). Technology Readiness Levels. 2023. Available online: https://bit.ly/4cZWLCY (accessed on 19 November 2024).
Cultivated Species | Country | CW Type | HLR | HRT | Reference |
---|---|---|---|---|---|
Channel catfish (Ictalurus punctatus) | USA | FWS | 7.7–9.1 cmd−1 | 1–4 d | [74] |
Milkfish (Chanos chanos) | Taiwan | FWS-FH | 1.8–13.5 cmd−1 | [45] | |
Rainbow trout (Oncorhynchus mykiss) | Canada | FH | 21.2 cmd−1 | 1.3 d | [82] |
Not specified | Canada | FH | 3 cmd−1 | 4 d | [83] |
Chinook salmon (Oncorhynchus tshawytscha) Coho salmon (Oncorhynchus kisutch) | USA | FWS | 7.9 cmd−1 | 4.2 d | [84] |
Channel catfish (Ictalurus punctatus) Black carp (Megalobrama amblycephala) | China | VF | 14.7–39.1 cmd−1 | 0.58–1.44 d | [85] |
Pacific white shrimp (Litopenaeus vannamei) | Taiwan | FWS-FH | 30 cmd−1 | 0.76 d | [46] |
Rainbow trout (Oncorhynchus mykiss) | Germany | FH | 1–5 md−1 | 1.5–7.5 d | [77] |
Red tilapia (Oreochromis massambicus x Oreochromis aureus) | USA | FH | 3.03 md−1 | 0.12 d | [79] |
Rainbow trout (Oncorhynchus mykiss) Brook trout (Salvelinus fontinalis) Brown trout (Salmo trutta) | Germany | FH | 10.6–28.9 md−1 | 0.014 d | [86] |
Rainbow trout (Oncorhynchus mykiss) | Germany | FH | 3.3–14.1 md−1 | [87] | |
Channel catfish (Ictalurus punctatus) | China | VF | 22.5–33.8 cmd−1 | 0.9–1.3 d | [88] |
Pacific white shrimp (Litopenaeus vannamei) | China | VF-FH | 86 cmd−1 | 0.76 d | [89] |
Nile tilapia (Oreochromis niloticus) Common carp (Cyprinus carpio) | Vietnam | VF-FH | 75–300 cmd−1 | [90] |
Country | Quantity | % |
---|---|---|
China | 12 | 17.1 |
Brazil | 4 | 5.7 |
USA | 2 | 2.9 |
Taiwan | 2 | 2.9 |
Israel | 2 | 2.9 |
Hungary | 2 | 2.9 |
Canada | 1 | 1.4 |
Vietnam | 1 | 1.4 |
Finland | 1 | 1.4 |
Germany | 1 | 1.4 |
Studies with RAS systems | 28 | 40% |
Studies without RAS systems | 42 | 60% |
Research Scale | Quantity | % | TRL |
---|---|---|---|
Laboratory | 64 | 91.43 | 1 to 4 |
Pilot Scale | 1 | 1.43 | 6 and 7 |
Real Scale | 4 | 5.71 | 8 and 9 |
Not Specified | 1 | 1.43 | |
Total Studies Analyzed | 70 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betanzo-Torres, E.A.; Ballut-Dajud, G.; Aguilar-Cortés, G.; Delfín-Portela, E.; Sandoval Herazo, L.C. Plants Used in Constructed Wetlands for Aquaculture: A Systematic Review. Sustainability 2025, 17, 6298. https://doi.org/10.3390/su17146298
Betanzo-Torres EA, Ballut-Dajud G, Aguilar-Cortés G, Delfín-Portela E, Sandoval Herazo LC. Plants Used in Constructed Wetlands for Aquaculture: A Systematic Review. Sustainability. 2025; 17(14):6298. https://doi.org/10.3390/su17146298
Chicago/Turabian StyleBetanzo-Torres, Erick Arturo, Gastón Ballut-Dajud, Graciano Aguilar-Cortés, Elizabeth Delfín-Portela, and Luis Carlos Sandoval Herazo. 2025. "Plants Used in Constructed Wetlands for Aquaculture: A Systematic Review" Sustainability 17, no. 14: 6298. https://doi.org/10.3390/su17146298
APA StyleBetanzo-Torres, E. A., Ballut-Dajud, G., Aguilar-Cortés, G., Delfín-Portela, E., & Sandoval Herazo, L. C. (2025). Plants Used in Constructed Wetlands for Aquaculture: A Systematic Review. Sustainability, 17(14), 6298. https://doi.org/10.3390/su17146298