Effects of Plant and Substrate Types on Turbidity Removal in Constructed Wetlands: Experimental and w-C* Model Validation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Validation of the Applicability of the First-Order Kinetic Decay Model of the w-C* Model
2.3. Statistical Analysis
3. Results and Discussion
3.1. Water Quality Monitoring
3.2. Calibration and Validation of the w-C* Model in Constructed Wetlands
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HRT | Hydraulic retention time |
HRL | Hydraulic loading rate |
HSSF | Horizontal subsurface flow |
FWS | Free water surface |
SMRS | Synthetic mine spoil rainwater |
NTU | Nephelometric turbidity unit |
References
- Jamion, N.A.; Lee, K.E.; Mokhtar, M.; Goh, T.L.; Simon, N.; Goh, C.T.; Bhat, I.U.H. The Integration of Nature Values and Services in the Nature-Based Solution Assessment Framework of Constructed Wetlands for Carbon–Water Nexus in Carbon Sequestration and Water Security. Env. Geochem. Health 2023, 45, 1201–1230. [Google Scholar] [CrossRef]
- Wu, S.; Wallace, S.; Brix, H.; Kuschk, P.; Kirui, W.K.; Masi, F.; Dong, R. Treatment of Industrial Effluents in Constructed Wetlands: Challenges, Operational Strategies and Overall Performance. Environ. Pollut. 2015, 201, 107–120. [Google Scholar] [CrossRef]
- Kushwaha, A.; Goswami, L.; Kim, B.S.; Lee, S.S.; Pandey, S.K.; Kim, K.-H. Constructed Wetlands for the Removal of Organic Micropollutants from Wastewater: Current Status, Progress, and Challenges. Chemosphere 2024, 360, 142364. [Google Scholar] [CrossRef]
- Nasrabadi, T.; Ruegner, H.; Sirdari, Z.Z.; Schwientek, M.; Grathwohl, P. Using Total Suspended Solids (TSS) and Turbidity as Proxies for Evaluation of Metal Transport in River Water. Appl. Geochem. 2016, 68, 1–9. [Google Scholar] [CrossRef]
- Gomes, P.C.S.; Rochinha, I.d.S.P.; de Paiva, M.H.R.; Santiago, A.d.F. Performance of Different Macrophytes and Support Media in Constructed Wetlands for High Turbidity Reduction from Mine Spoil Rainwater. Resources 2024, 13, 168. [Google Scholar] [CrossRef]
- Langergraber, G.; Giraldi, D.; Mena, J.; Meyer, D.; Peña, M.; Toscano, A.; Brovelli, A.; Korkusuz, E.A. Recent Developments in Numerical Modelling of Subsurface Flow Constructed Wetlands. Sci. Total Environ. 2009, 407, 3931–3943. [Google Scholar] [CrossRef]
- Xiong, X.; Yang, S.; Zhang, J.; Chen, J.; Zhang, X.; Zhang, Q. Numerical Simulation and Validation of Constructed Wetlands for Effluent Treatment in Eastern China: An Evaluation of MIKE21 in Enhancing Water Purification Efficiency. Water 2024, 16, 3182. [Google Scholar] [CrossRef]
- Nocetti, E.; Hadad, H.R.; Di Luca, G.A.; Mufarrege, M.d.l.M.; Maine, M.A. Pollutant Removal Modeling in a Hybrid Wetland System for Industrial Wastewater Treatment. J. Water Process Eng. 2023, 53, 103794. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781566705264. [Google Scholar]
- Stein, O.R.; Biederman, J.A.; Hook, P.B.; Allen, W.C. Plant Species and Temperature Effects on the K-C* First-Order Model for COD Removal in Batch-Loaded SSF Wetlands. Ecol. Eng. 2006, 26, 100–112. [Google Scholar] [CrossRef]
- Ferreira, A.G.; Borges, A.C.; Rosa, A.P. Comparison of First-Order Kinetic Models for Sewage Treatment in Horizontal Subsurface-Flow Constructed Wetlands. Env. Technol 2021, 42, 4511–4518. [Google Scholar] [CrossRef]
- Barco, A.; Borin, M. Treatment Performances of Floating Wetlands: A Decade of Studies in North Italy. Ecol. Eng. 2020, 158, 106016. [Google Scholar] [CrossRef]
- Kataki, S.; Chatterjee, S.; Vairale, M.G.; Dwivedi, S.K.; Gupta, D.K. Constructed Wetland, an Eco-Technology for Wastewater Treatment: A Review on Types of Wastewater Treated and Components of the Technology (Macrophyte, Biolfilm and Substrate). J. Environ. Manag. 2021, 283, 111986. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Feng, X.; Pyo, S.H. Current Problems and Countermeasures of Constructed Wetland for Wastewater Treatment: A Review. J. Water Process Eng. 2024, 57, 104569. [Google Scholar] [CrossRef]
- Opitz, J.; Alte, M.; Bauer, M.; Peiffer, S. The Role of Macrophytes in Constructed Surface-Flow Wetlands for Mine Water Treatment: A Review. Mine Water Environ. 2021, 40, 587–605. [Google Scholar] [CrossRef]
- Wang, F.; Li, W.; Wang, H.; Hu, Y.; Cheng, H. The Leaching Behavior of Heavy Metal from Contaminated Mining Soil: The Effect of Rainfall Conditions and the Impact on Surrounding Agricultural Lands. Sci. Total Environ. 2024, 914, 169877. [Google Scholar] [CrossRef]
- Blessy, V.; Kumar, M.; Saxena, C.; Gupta, A. Predicting Total Suspended Solids from Turbidity for Different Types of Soil Particles. Acta Sci. Agric. 2023, 7, 30–39. [Google Scholar]
- Shelef, O.; Gross, A.; Rachmilevitch, S. Role of Plants in a Constructed Wetland: Current and New Perspectives. Water 2013, 5, 405–419. [Google Scholar] [CrossRef]
- Yu, G.; Li, P.; Wang, G.; Wang, J.; Zhang, Y.; Wang, S.; Yang, K.; Du, C.; Chen, H. A Review on the Removal of Heavy Metals and Metalloids by Constructed Wetlands: Bibliometric, Removal Pathways, and Key Factors. World J. Microbiol. Biotechnol. 2021, 37, 157. [Google Scholar] [CrossRef]
- Koppen, W. Das Geographische System de Klimat. In Handbuch Der Klimatologie (Berlin); Köppen, W.P., Geiger, R., Eds.; Nature Publisher: Berlin, Germany, 1936; Volume 1, Part C. [Google Scholar]
- Bustamante, E.N. Tratamiento de Drenaje Ácido de Mina, Mediante Humedal Artificial En Condiciones de Laboratorio. Master’s Dissertation, Universidad Nacional Agraria La Molina, Lima, Peru, 2021. [Google Scholar]
- Richter, J.; Wiessner, A.; Zehnsdorf, A.; Müller, J.A.; Kuschk, P. Injection of Hydrogen Gas Stimulates Acid Mine Drainage Treatment in Laboratory-scale Hydroponic Root Mats. Eng. Life Sci. 2016, 16, 769–776. [Google Scholar] [CrossRef]
- Singh, S.; Chakraborty, S. Performance of Organic Substrate Amended Constructed Wetland Treating Acid Mine Drainage (AMD) of North-Eastern India. J. Hazard. Mater. 2020, 397, 122719. [Google Scholar] [CrossRef]
- de Campos, F.V.; de Oliveira, J.A.; da Silva, A.A.; Ribeiro, C.; dos Santos Farnese, F. Phytoremediation of Arsenite-Contaminated Environments: Is Pistia Stratiotes L. a Useful Tool? Ecol. Indic. 2019, 104, 794–801. [Google Scholar] [CrossRef]
- Escoto, D.F.; Gayer, M.C.; Bianchini, M.C.; da Cruz Pereira, G.; Roehrs, R.; Denardin, E.L.G. Use of Pistia Stratiotes for Phytoremediation of Water Resources Contaminated by Clomazone. Chemosphere 2019, 227, 299–304. [Google Scholar] [CrossRef]
- Singh, P.; Singh, G.; Singh, A.; Mishra, V.K.; Shukla, R. Macrophytes for Utilization in Constructed Wetland as Efficient Species for Phytoremediation of Emerging Contaminants from Wastewater. Wetlands 2024, 44, 22. [Google Scholar] [CrossRef]
- Brix, H. Do Macrophytes Play a Role in Constructed Treatment Wetlands? Water Sci. Technol. 1997, 35, 11–17. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Z.; Sheng, S.; Pan, F.; Chen, F.; Fu, J. Comprehensive Evaluation of Substrate Materials for Contaminants Removal in Constructed Wetlands. Sci. Total Environ. 2020, 701, 134736. [Google Scholar] [CrossRef]
- Stefanakis, A.I. The Role of ConstructedWetlands as Green Infrastructure for Sustainable Urban Water Management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Liu, R.; Morgan, D. Global Development of Various Emerged Substrates Utilized in Constructed Wetlands. Bioresour. Technol. 2018, 261, 441–452. [Google Scholar] [CrossRef]
- de Matos, M.P. Colmatação Em Sistemas Alagados Construídos de Escoamento Horizontal Subsuperficial: Principais Fatores e Métodos de Identificação Em Unidades Plantadas e Não Plantadas. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2015. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater—SMEWW; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Wong, T.H.F.; Fletcher, T.D.; Duncan, H.P.; Jenkins, G.A. Modelling Urban Stormwater Treatment-A Unified Approach. Ecol. Eng. 2006, 27, 58–70. [Google Scholar] [CrossRef]
- Ventura, D.; Rapisarda, R.; Sciuto, L.; Milani, M.; Consoli, S.; Cirelli, G.L.; Licciardello, F. Application of First-Order Kinetic Removal Models on Constructed Wetlands under Mediterranean Climatic Conditions. Ecol. Eng. 2022, 175, 106500. [Google Scholar] [CrossRef]
- Annamaa, A. Introducing Thonny, a Python IDE for Learning Programming. In Proceedings of the 15th Koli Calling Conference on Computing Education Research, Koli, Finland, 19 November 2015; ACM: New York, NY, USA, 2015; pp. 117–121. [Google Scholar]
- Alias, R.; Noor, N.A.M.; Sidek, L.M.; Kasa, A. Prediction of Water Quality for Free Water Surface Constructed Wetland Using ANN and MLRA. Civ. Eng. Archit. 2021, 9, 1365–1375. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Nguyen, T.P.; Lam, V.S.; Le, P.C.; Vo, T.D.H.; Hoang, T.H.T.; Chung, W.J.; Chang, S.W.; Nguyen, D.D. Estimating Ammonium Changes in Pilot and Full-Scale Constructed Wetlands Using Kinetic Model, Linear Regression, and Machine Learning. Sci. Total Environ. 2024, 907, 168142. [Google Scholar] [CrossRef]
- Sudarsan, J.S.; Rajan, R.J.; Arun, S.; Balaji, N. Statistical Interpretation of the Experimental Output to Identify Better Performing Treatment Units of Constructed Wetland for Wastewater Treatment. In Proceedings of the 11th National Conference On Mathematical Techniques and Applications, Chennai, India, 11–12 January 2019; American Institute of Physics Inc: Physics Ellipse Drive College Park, MD, USA, 2019; p. 2112. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 1983, 50, 885–900. [Google Scholar] [CrossRef]
- Choi, C.; Kim, J.; Han, H.; Han, D.; Kim, H.S. Development of Water Level Prediction Models Using Machine Learning in Wetlands: A Case Study of Upo Wetland in South Korea. Water 2020, 12, 93. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; Defense Technical Information Center: Fort Belvoir, VA, USA, 2017. [Google Scholar]
- Pasciucco, E.; Pasciucco, F.; Castagnoli, A.; Iannelli, R.; Pecorini, I. Removal of Heavy Metals from Dredging Marine Sediments via Electrokinetic Hexagonal System: A Pilot Study in Italy. Heliyon 2024, 10, e27616. [Google Scholar] [CrossRef]
- Singh, S.; Chakraborty, S. Impact of Seasonal Variation on the Treatment Response of Constructed Wetlands Receiving Acid Mine Drainage in a Subtropical Region. J. Water Process Eng. 2022, 49, 103182. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of Nutrients in Various Types of Constructed Wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Singh, S.; Chakraborty, S. Bioremediation of Acid Mine Drainage in Constructed Wetlands: Aspect of Vegetation (Typha latifolia), Loading Rate and Metal Recovery. Miner. Eng. 2021, 171, 107083. [Google Scholar] [CrossRef]
- Singh, S.; Kulshreshtha, N.M.; Goyal, S.; Brighu, U.; Bezbaruah, A.N.; Gupta, A.B. Performance Prediction of Horizontal Flow Constructed Wetlands by Employing Machine Learning. J. Water Process Eng. 2022, 50, 103264. [Google Scholar] [CrossRef]
- Pat-Espadas, A.M.; Portales, R.L.; Amabilis-Sosa, L.E.; Gómez, G.; Vidal, G. Review of Constructed Wetlands for Acid Mine Drainage Treatment. Water 2018, 10, 1685. [Google Scholar] [CrossRef]
- Knowles, P.; Dotro, G.; Nivala, J.; García, J. Clogging in Subsurface-Flow Treatment Wetlands: Occurrence and Contributing Factors. Ecol. Eng. 2011, 37, 99–112. [Google Scholar] [CrossRef]
- Sanchez-Ramos, D.; Agulló, N.; Samsó, R.; García, J. Effect of Key Design Parameters on Bacteria Community and Effluent Pollutant Concentrations in Constructed Wetlands Using Mathematical Models. Sci. Total Environ. 2017, 584–585, 374–380. [Google Scholar] [CrossRef] [PubMed]
Unit | HRT (days) | Substrate Volume (L) | Total Volume (L) | Flow Rate (L·h−1) | Area (m2) | HLR (L·m−2 d−1) |
---|---|---|---|---|---|---|
FWS | 2 | - | 40 | 0.83 | 0.18 | 108.84 |
FWS | 4 | - | 40 | 0.83 | 0.32 | 68.36 |
FWS | 6 | - | 40 | 0.83 | 0.55 | 36.53 |
HSSF | 2 | 20 | 20 | 0.42 | 0.18 | 54.86 |
HSSF | 4 | 20 | 20 | 0.42 | 0.32 | 27.43 |
HSSF | 6 | 20 | 20 | 0.42 | 0.55 | 18.27 |
Parameters | Unit | Mean e sd |
---|---|---|
Turbidity | NTU | 1614 ± 357 |
Hydrogen Potential | - | 7 ± 0.2 |
Temperature | °C | 20 ± 3 |
Dissolved Oxygen | mg·L−1 | 7 |
Oxirreduction Potential | mV | −24 ± 11 |
Conductivity | μS·cm−1 | 66 ± 24 |
Wetlands | Turbidity | Temperature | Potential Hydrogen | Conductivity | Dissolved Oxygen | Oxidation-Reduction Potential |
(NTU) | (°C) | - | (μS cm) | (mg·L−1) | (mV) | |
Inlet | 1614 ± 357 | 19.0 ± 0 | 7.3 ± 0.1 | 57.6 ± 0.8 | 8.1 ± 0.2 | −29.7 ± 4.2 |
FWS C | 230 ± 67 | 19.0 ± 3.0 | 7.4 ± 0.4 | 101.6 ± 40.7 | 7.3 ± 0.3 | −36.9 ± 20.6 |
FWS P | 11 ± 5 | 19.1 ± 3.1 | 7.3 ± 0.3 | 159.5 ± 54.5 | 6.4 ± 0.5 | −28.1 ± 14.0 |
FWS N | 87 ± 32 | 18.9 ± 3.1 | 7.3 ± 0.3 | 127.1 ± 42.5 | 6.9 ± 0.4 | −31.5 ± 14.7 |
FWS T | 26 ± 9 | 18.9 ± 2.9 | 7.3 ± 0.3 | 160.3 ± 36.8 | 6.5 ± 0.6 | −30.6 ± 18.7 |
HFS | 23 ± 12 | 19.0 ± 3.0 | 8.7 ± 0.2 | 101.7 ± 23.9 | 6.3 ± 0.5 | −120.2 ± 7.8 |
HFS-N | 6 ± 5 | 19.1 ± 2.9 | 8.2 ± 0.3 | 152.1 ± 44.0 | 6.3 ± 0.5 | −77.1 ± 15.3 |
HFS-T | 4 ± 3 | 19.1 ± 3.0 | 8.1 ± 0.2 | 163.0 ± 36.4 | 6.3 ± 0.5 | −78.0 ± 7.9 |
HFD2 | 51 ± 24 | 19.1 ± 3.0 | 8.1 ± 0.2 | 110.1 ± 33.9 | 7.1 ± 0.3 | −74.4 ± 10.7 |
HFD2-N | 14 ± 10 | 19.1 ± 3.0 | 7.8 ± 0.2 | 193.0 ± 47.6 | 6.9 ± 0.4 | −53.9 ± 6.1 |
HFD2-T | 3 ± 1 | 19.1 ± 3.0 | 7.6 ± 0.2 | 221.5 ± 52.7 | 6.4 ± 0.5 | −46.2 ± 6.9 |
HFD1 | 22 ± 13 | 19.3 ± 3.0 | 7.8 ± 0.2 | 114.0 ± 29.8 | 7.1 ± 0.4 | −57.0 ± 8.1 |
HFD1-N | 4 ± 3 | 19.2 ± 3.0 | 7.6 ± 0.2 | 229.0 ± 46.8 | 6.8 ± 0.4 | −46.0 ± 6.3 |
HFD1-T | 2 ± 1 | 19.5 ± 2.9 | 7.6 ± 0.2 | 243.8 ± 54.5 | 6.7 ± 0.5 | −45.4 ± 6.3 |
Wetland | w | R2 | R | p Value | NSE | RMSE | |||
---|---|---|---|---|---|---|---|---|---|
(m·d−1) | cal | val | cal | val | cal | val | |||
FWS-C | 0.09 | 0.70 | 0.80 | 0.89 | <2.2 × 10−16 | 0.70 | 0.72 | 196.40 | 180.73 |
FWS-P | 0.40 | 0.72 | 0.77 | 0.88 | <7.7 × 10−16 | 0.71 | 0.77 | 37.23 | 39.45 |
FWS-N | 0.16 | 0.82 | 0.79 | 0.79 | <2.2 × 10−16 | 0.82 | 0.74 | 90.91 | 139.06 |
FWS-T | 0.25 | 0.77 | 0.82 | 0.91 | <2.2 × 10−16 | 0.76 | 0.82 | 76.10 | 55.37 |
Wetland | w | R2 | R | p Value | NSE | RMSE | |||
---|---|---|---|---|---|---|---|---|---|
(m·d−1) | cal | val | cal | val | cal | val | |||
HFS | 0.38 | 0.84 | 0.76 | 0.87 | <2.2 × 10−16 | 0.83 | 0.74 | 25.30 | 37.23 |
HFS-N | 0.44 | 0.75 | 0.81 | 0.90 | <2.2 × 10−16 | 0.75 | 0.78 | 29.85 | 36.97 |
HFS-T | 0.61 | 0.78 | 0.64 | 0.80 | <6.7 × 10−16 | 0.77 | 0.56 | 14.78 | 28.19 |
Wetland | w (m·d−1) | R2 | R | p Value | NSE | RMSE | |||
---|---|---|---|---|---|---|---|---|---|
cal | val | cal | val | cal | val | ||||
HFD2 | 0.20 | 0.83 | 0.82 | 0.91 | <2.2 × 10−16 | 0.82 | 0.82 | 64.99 | 62.81 |
HFD2-N | 0.29 | 0.85 | 0.81 | 0.90 | <2.2 × 10−16 | 0.84 | 0.79 | 46.29 | 56.22 |
HFD2-T | 0.39 | 0.86 | 0.80 | 0.90 | <2.2 × 10−16 | 0.83 | 0.77 | 27.26 | 27.56 |
Wetland | w | R2 | R | p Value | NSE | RMSE | |||
---|---|---|---|---|---|---|---|---|---|
(m·d−1) | cal | val | cal | val | cal | val | |||
HFD1 | 0.30 | 0.78 | 0.76 | 0.87 | <6.9 × 10−16 | 0.78 | 0.74 | 48.96 | 53.32 |
HFD1-N | 0.46 | 0.70 | 0.75 | 0.87 | <1.2 × 10−13 | 0.69 | 0.73 | 34.00 | 37.77 |
HFD1-T | 0.70 | 0.82 | 0.75 | 0.87 | <5.4 × 10−15 | 0.81 | 0.75 | 9.78 | 10.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, P.C.S.; Rochinha, I.d.S.P.; de Oliveira, J.N.d.A.; de Paiva, M.H.R.; Castro, A.L.P.d.; de Souza, T.D.; Mendes, M.A.d.S.A.; Santiago, A.d.F. Effects of Plant and Substrate Types on Turbidity Removal in Constructed Wetlands: Experimental and w-C* Model Validation. Water 2025, 17, 1921. https://doi.org/10.3390/w17131921
Gomes PCS, Rochinha IdSP, de Oliveira JNdA, de Paiva MHR, Castro ALPd, de Souza TD, Mendes MAdSA, Santiago AdF. Effects of Plant and Substrate Types on Turbidity Removal in Constructed Wetlands: Experimental and w-C* Model Validation. Water. 2025; 17(13):1921. https://doi.org/10.3390/w17131921
Chicago/Turabian StyleGomes, Paula Cristine Silva, Isabela da Silva Pedro Rochinha, Jaine Nayara de Araújo de Oliveira, Marllus Henrique Ribeiro de Paiva, Ana Letícia Pilz de Castro, Tamara Daiane de Souza, Múcio André dos Santos Alves Mendes, and Aníbal da Fonseca Santiago. 2025. "Effects of Plant and Substrate Types on Turbidity Removal in Constructed Wetlands: Experimental and w-C* Model Validation" Water 17, no. 13: 1921. https://doi.org/10.3390/w17131921
APA StyleGomes, P. C. S., Rochinha, I. d. S. P., de Oliveira, J. N. d. A., de Paiva, M. H. R., Castro, A. L. P. d., de Souza, T. D., Mendes, M. A. d. S. A., & Santiago, A. d. F. (2025). Effects of Plant and Substrate Types on Turbidity Removal in Constructed Wetlands: Experimental and w-C* Model Validation. Water, 17(13), 1921. https://doi.org/10.3390/w17131921