A Multi-Objective Approach for Improving Ecosystem Services and Mitigating Environmental Externalities in Paddy Fields and Its Emergy Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental System Design
2.2.1. Construction and Operation of the MIA System
2.2.2. Simulation Experiment for Verifying the Paddy Wetland’s Purification Capacity
2.2.3. Enclosure Experiment for Verifying the Effect of the Tide Flow on Reducing CH4 Emissions
2.3. Sampling and Analysis
2.3.1. Measurement of Grain Growth and Rice Quality
2.3.2. Measurement of Arthropod and Amphibian Community
2.3.3. Measurement of Water Quality
2.3.4. Measurement of CH4
2.4. Emergy Evaluation
3. Results and Discussion
3.1. The Rice Growth and Biodiversity Conservation of the MIA System
3.2. The Nitrogen Removal Capacity of the MIA System
3.3. The CH4 Emissions of Rice Paddy
3.4. The Emergy Analysis
3.5. Limitations and Future Direction for Practice and Research
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Natuhara, Y. Ecosystem services by paddy fields as substitutes of natural wetlands in Japan. Ecol. Eng. 2013, 56, 97–106. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Wang, Z.; Xie, H.; Yuan, X.; Pei, E.; Wang, T. Effects of landscape heterogeneity and breeding habitat diversity on rice frog abundance and body condition in agricultural landscapes of Yangtze River Delta, China. Curr. Zool. 2020, 66, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ouyang, X.; Shen, J.; Li, Y.; Sun, W.; Jiang, W.; Wu, J. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China. Sci. Total Environ. 2020, 715, 136852. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.W.; Lim, J.Y.; Bhuiyan, M.S.I.; Das, S.; Khan, M.I.; Kim, P.J. Investigating the arable land that is the main contributor to global warming between paddy and upland vegetable crops under excessive nitrogen fertilization. J. Clean. Prod. 2022, 346, 131197. [Google Scholar] [CrossRef]
- Xiong, Y.; Peng, S.; Luo, Y.; Xu, J.; Yang, S. A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency. Environ. Sci. Pollut. Res. 2015, 22, 4406–4417. [Google Scholar] [CrossRef]
- Katayama, N.; Osada, Y.; Mashiko, M.; Baba, Y.G.; Tanaka, K.; Kusumoto, Y.; Okubo, S.; Ikeda, H.; Natuhara, Y. Organic farming and associated management practices benefit multiple wildlife taxa: A large-scale field study in rice paddy landscapes. J. Appl. Ecol. 2019, 56, 1970–1981. [Google Scholar] [CrossRef]
- Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 2015, 523, 602–606. [Google Scholar] [CrossRef]
- Kremen, C.; Miles, A. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems. Ecol. Soc. 2012, 17, 40. [Google Scholar] [CrossRef]
- Ani, O.; Onu, O.; Okoro, G.; Uguru, M. Overview of Biological Methods of Weed Control. In Biological Approaches for Controlling Weeds; Radhakrishnan, R., Ed.; InTech: Nappanee, IN, USA, 2018; ISBN 978-1-78923-654-5. [Google Scholar]
- Ferraresi de Araujo, G.J.; Ronquim Filho, A.; Cezarino, L.O.; Liboni, L.B. Sugar-energy bioelectricity in energy trading environments: Reasons for the lack of competitiveness. Int. J. Energy Sect. Manag. 2023, 17, 63–81. [Google Scholar] [CrossRef]
- Garbach, K.; Milder, J.C.; DeClerck, F.A.J.; de Wit, M.M.; Driscoll, L.; Gemmill-Herren, B. Examining multi-functionality for crop yield and ecosystem services in five systems of agroecological intensification. Int. J. Agric. Sustain. 2017, 15, 11–28. [Google Scholar] [CrossRef]
- Gao, J.; Wang, R.; Huang, J. Ecological engineering for traditional Chinese agriculture—A case study of Beitang. Ecol. Eng. 2015, 76, 7–13. [Google Scholar] [CrossRef]
- Lagomarsino, A.; Agnelli, A.E.; Linquist, B.; Adviento-Borbe, M.A.; Agnelli, A.; Gavina, G.; Ravaglia, S.; Ferrara, R.M. Alternate Wetting and Drying of Rice Reduced CH4 Emissions but Triggered N2O Peaks in a Clayey Soil of Central Italy. Pedosphere 2016, 26, 533–548. [Google Scholar] [CrossRef]
- Gu, X.; Xu, D.; Xu, M.; Zhang, Z. Measuring residents’ perceptions of multifunctional land use in peri-urban areas of three Chinese megacities: Suggestions for governance from a demand perspective. Cities 2022, 126, 103703. [Google Scholar] [CrossRef]
- Wang, N.; Wang, L.; Jin, L.; Wu, J.; Pang, M.; Wei, D.; Li, Y.; Wang, J.; Xu, T.; Yang, Z.; et al. Rainfall Runoff and Nitrogen Loss Characteristics on the Miyun Reservoir Slope. Water 2024, 16, 786. [Google Scholar] [CrossRef]
- Escobar Escobar, N.; Castro, J.M.; Baquero, G.Y.; Hoyos Benjumea, D. Identification of functional groups of insects associated with family agricultural production systems in the province of Sumapaz, Colombia. Bol. Científico Cent. Mus. Mus. Hist. Nat. 2022, 26, 41–54. [Google Scholar] [CrossRef]
- Zou, Y.; de Kraker, J.; Bianchi, F.J.J.A.; Xiao, H.; Huang, J.; Deng, X.; Hou, L.; van der Werf, W. Do diverse landscapes provide for effective natural pest control in subtropical rice? J. Appl. Ecol. 2020, 57, 170–180. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Yang, H.; Pan, L.; Perry, D.C.; Xu, P.; Tang, J.; You, W.; He, X.; Wen, Q. Restoring wetlands outside of the seawalls and to provide clean water habitat. Sci. Total Environ. 2020, 721, 137788. [Google Scholar] [CrossRef]
- Yang, H.; Tang, J.; Zhang, C.; Dai, Y.; Zhou, C.; Xu, P.; Perry, D.C.; Chen, X. Enhanced Carbon Uptake and Reduced Methane Emissions in a Newly Restored Wetland. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005222. [Google Scholar] [CrossRef]
- Brown, M.T.; Campbell, D.E.; Vilbiss, C.D.; Ulgiati, S. The geobiosphere emergy baseline: A synthesis. Ecol. Model. 2016, 339, 92–95. [Google Scholar] [CrossRef]
- Lu, H.; Yuan, Y.; Campbell, D.E.; Qin, P.; Cui, L. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water. Ecol. Eng. 2014, 69, 244–254. [Google Scholar] [CrossRef]
- Lan, S.; Qin, P. Emergy analysis of ecosystems. Chin. J. Appl. Ecol. 2001, 12, 129–131. [Google Scholar]
- Wang, L.; Li, L.; Cheng, K.; Ji, C.; Yue, Q.; Bian, R.; Pan, G. An assessment of emergy, energy, and cost-benefits of grain production over 6 years following a biochar amendment in a rice paddy from China. Environ. Sci. Pollut. Res. 2018, 25, 9683–9696. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Chen, J.; Hu, N.; Zhu, L. Evaluation on environmental consequences and sustainability of three rice-based rotation systems in Quanjiao, China by an integrated analysis of life cycle, emergy and economic assessment. J. Clean. Prod. 2021, 310, 127493. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: Hoboken, NJ, USA, 1996; ISBN 978-0-471-11442-0. [Google Scholar]
- Zhou, Y.; Ya, X.-Y.; Gong, S.-L.; Li, C.-W.; Zhu, R.; Zhu, B.; Liu, Z.-Y.; Wang, X.-L.; Cao, P. Changes in paddy cropping system enhanced economic profit and ecological sustainability in central China. J. Integr. Agric. 2022, 21, 566–577. [Google Scholar] [CrossRef]
- Zhang, Z.; Chu, G.; Liu, L.; Wang, Z.; Wang, X.; Zhang, H.; Yang, J.; Zhang, J. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res. 2013, 150, 9–18. [Google Scholar] [CrossRef]
- Wells, K.D. The Ecology and Behavior of Amphibians; University of Chicago Press: Chicago, IL, USA, 2007; ISBN 978-0-226-89334-1. [Google Scholar]
- Kidera, N.; Kadoya, T.; Yamano, H.; Takamura, N.; Ogano, D.; Wakabayashi, T.; Takezawa, M.; Hasegawa, M. Hydrological effects of paddy improvement and abandonment on amphibian populations; long-term trends of the Japanese brown frog, Rana japonica. Biol. Conserv. 2018, 219, 96–104. [Google Scholar] [CrossRef]
- Lingaraj, V.K.; Nitin, K.S.; Rajendra Prasad, B.S. Arthropod Community on Rice: A Blend of Aquatic and Terrestrial Species. In Economic and Ecological Significance of Arthropods in Diversified Ecosystems: Sustaining Regulatory Mechanisms; Chakravarthy, A.K., Sridhara, S., Eds.; Springer: Singapore, 2016; pp. 147–167. ISBN 978-981-10-1524-3. [Google Scholar]
- Wan, N.-F.; Cai, Y.-M.; Shen, Y.-J.; Ji, X.-Y.; Wu, X.-W.; Zheng, X.-R.; Cheng, W.; Li, J.; Jiang, Y.-P.; Chen, X.; et al. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture. eLife 2018, 7, e35103. [Google Scholar] [CrossRef]
- Muramatsu, A.; Ito, H.; Sasaki, A.; Kajihara, A.; Watanabe, T. Cultivation of rice for animal feed with circulated irrigation of treated municipal wastewater for enhanced nitrogen removal: Comparison of cultivation systems feeding irrigation water upward and downward. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2015, 72, 579–584. [Google Scholar] [CrossRef]
- Xue, L.H.; Yang, L.Z. Purification of Water with Low Concentrations of N and P in Paddy Wetlands in Taihu Lake Region. Res. Environ. Sci. 2015, 28, 117–124. [Google Scholar]
- Lu, H.-F.; Cai, C.-J.; Zeng, X.-S.; Campbell, D.E.; Fan, S.-H.; Liu, G.-L. Bamboo vs. crops: An integrated emergy and economic evaluation of using bamboo to replace crops in south Sichuan Province, China. J. Clean. Prod. 2018, 177, 464–473. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Y.; Li, M.; Deng, S.; Wu, J.; Zhang, Y.; Xiao, H. Emergy evaluation of an integrated livestock wastewater treatment system. Resour. Conserv. Recycl. 2014, 92, 95–107. [Google Scholar] [CrossRef]
- Lu, H.-F.; Kang, W.-L.; Campbell, D.E.; Ren, H.; Tan, Y.-W.; Feng, R.-X.; Luo, J.-T.; Chen, F.-P. Emergy and economic evaluations of four fruit production systems on reclaimed wetlands surrounding the Pearl River Estuary, China. Ecol. Eng. 2009, 35, 1743–1757. [Google Scholar] [CrossRef]
- Messer, T.L.; Moore, T.L.; Nelson, N.; Ahiablame, L.; Bean, E.Z.; Boles, C.; Cook, S.L.; Hall, S.G.; McMaine, J.; Schlea, D. Constructed Wetlands for Water Quality Improvement: A Synthesis on Nutrient Reduction from Agricultural Effluents. Trans. ASABE 2021, 64, 625–639. [Google Scholar] [CrossRef]
Settings | Functional Groups | Indices | ||||
---|---|---|---|---|---|---|
Richness | Ratio of Richness | Abundance | Ratio of Abundance | Shannon-Wiener Index | ||
MIA system | Pest | 15 | 0.42 | 32 | 0.28 | 3.12 |
Natural enemies | 18 | 0.5 | 66 | 0.57 | ||
Neutral insects | 3 | 0.08 | 18 | 0.16 | ||
Total | 36 | / | 116 | / | ||
Ordinary Rice field | Pest | 8 | 0.25 | 40 | 0.35 | 2.98 |
Natural enemies | 18 | 0.56 | 62 | 0.54 | ||
Neutral insects | 6 | 0.19 | 12 | 0.11 | ||
Total | 32 | / | 114 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramdat, N.; Zou, H.; Sheng, S.; Fu, M.; Huang, Y.; Cui, Y.; Wang, Y.; Ding, R.; Xu, P.; Chen, X. A Multi-Objective Approach for Improving Ecosystem Services and Mitigating Environmental Externalities in Paddy Fields and Its Emergy Analysis. Water 2025, 17, 2244. https://doi.org/10.3390/w17152244
Ramdat N, Zou H, Sheng S, Fu M, Huang Y, Cui Y, Wang Y, Ding R, Xu P, Chen X. A Multi-Objective Approach for Improving Ecosystem Services and Mitigating Environmental Externalities in Paddy Fields and Its Emergy Analysis. Water. 2025; 17(15):2244. https://doi.org/10.3390/w17152244
Chicago/Turabian StyleRamdat, Naven, Hongshuo Zou, Shiwen Sheng, Min Fu, Yingying Huang, Yaonan Cui, Yiru Wang, Rui Ding, Ping Xu, and Xuechu Chen. 2025. "A Multi-Objective Approach for Improving Ecosystem Services and Mitigating Environmental Externalities in Paddy Fields and Its Emergy Analysis" Water 17, no. 15: 2244. https://doi.org/10.3390/w17152244
APA StyleRamdat, N., Zou, H., Sheng, S., Fu, M., Huang, Y., Cui, Y., Wang, Y., Ding, R., Xu, P., & Chen, X. (2025). A Multi-Objective Approach for Improving Ecosystem Services and Mitigating Environmental Externalities in Paddy Fields and Its Emergy Analysis. Water, 17(15), 2244. https://doi.org/10.3390/w17152244