Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (483)

Search Parameters:
Keywords = transparent conducting film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 19050 KiB  
Article
Innovative Deposition of AZO as Recombination Layer on Silicon Nanowire Scaffold for Potential Application in Silicon/Perovskite Tandem Solar Cell
by Grażyna Kulesza-Matlak, Marek Szindler, Magdalena M. Szindler, Milena Kiliszkiewicz, Urszula Wawrzaszek, Anna Sypień, Łukasz Major and Kazimierz Drabczyk
Energies 2025, 18(15), 4193; https://doi.org/10.3390/en18154193 - 7 Aug 2025
Abstract
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined [...] Read more.
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined by cross-sectional SEM/TEM and profilometry, revealing fully conformal ALD coatings with tunable thicknesses (40–120 nm) versus tip-capped, semi-uniform MS films (100–120 nm). Optical transmission measurements on glass substrates showed that both 120 nm ALD and MS layers exhibit interference maxima near 450–500 nm and 72–89% transmission across 800–1200 nm; the thinnest ALD films reached up to 86% near-IR transparency. Four-point probe analysis demonstrated that ALD reduces surface resistance from 1150 Ω/□ at 40 nm to 245 Ω/□ at 120 nm, while MS layers achieved 317 Ω/□ at 120 nm. These results delineate the balance between conformality, transparency, and conductivity, providing design guidelines for AZO recombination interfaces in next-generation tandem photovoltaics. Full article
(This article belongs to the Special Issue Perovskite Solar Cells and Tandem Photovoltaics)
Show Figures

Figure 1

18 pages, 1289 KiB  
Article
Novel Film-Forming Spray: Advancing Shelf Life Extension and Post-Harvest Loss Reduction in Eggs
by Nagesh Sonale, Rokade J. Jaydip, Akhilesh Kumar, Monika Madheswaran, Rohit Kumar, Prasad Wadajkar and Ashok Kumar Tiwari
Polymers 2025, 17(15), 2142; https://doi.org/10.3390/polym17152142 - 5 Aug 2025
Viewed by 28
Abstract
This study explores the development of a topical film-forming spray infused with phytobiotic herbs to extend egg shelf life and maintain its quality. Unlike traditional surface treatments, film-forming sprays provide uniform drug distribution, better bioavailability, effective CO2 retention by sealing pores, and [...] Read more.
This study explores the development of a topical film-forming spray infused with phytobiotic herbs to extend egg shelf life and maintain its quality. Unlike traditional surface treatments, film-forming sprays provide uniform drug distribution, better bioavailability, effective CO2 retention by sealing pores, and antibacterial effects. The spray includes a polymer to encapsulate phytoconstituents and form the film. The resulting film is highly water-resistant, glossy, transparent, and dries within two minutes. SEM analysis showed a fine, uniform morphology, while zeta analysis revealed a negative potential of −0.342 mV and conductivity of 0.390 mS/cm, indicating stable dispersion. The spray’s effectiveness was tested on 640 chicken eggs stored at varying temperatures. Eggs treated and kept at 2–8 °C showed the best results, with smaller air cells, higher specific gravity, and superior quality indicators such as pH, albumen weight, albumen height and index, Haugh unit, yolk weight, and yolk index. Additionally, the spray significantly reduced microbial load, including total plate count and E. coli. Eggs stored at 28 °C remained safe for 24–30 days, while those at 2–8 °C lasted over 42 days. This innovative film-forming spray offers a promising approach for preserving internal and external egg quality during storage. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

12 pages, 1774 KiB  
Article
Comparison of Adhesion of Immortalized Human Iris-Derived Cells and Fibronectin on Phakic Intraocular Lenses Made of Different Polymer Base Materials
by Kei Ichikawa, Yoshiki Tanaka, Rie Horai, Yu Kato, Kazuo Ichikawa and Naoki Yamamoto
Medicina 2025, 61(8), 1384; https://doi.org/10.3390/medicina61081384 - 30 Jul 2025
Viewed by 225
Abstract
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend [...] Read more.
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend of collagen and hydroxyethyl methacrylate (HEMA), has demonstrated excellent long-term biocompatibility and optical clarity. Recently, hydrophilic acrylic Phakic-ICLs, such as the Implantable Phakic Contact Lens (IPCL), have been introduced. This study investigated the material differences among Phakic-ICLs and their interaction with fibronectin (FN), which has been reported to adhere to intraocular lens (IOL) surfaces following implantation. The aim was to compare Collamer, IPCL, and LENTIS lenses (used as control) in terms of FN distribution and cell adhesion using a small number of explanted Phakic-ICLs. Materials and Methods: Three lens types were analyzed: a Collamer Phakic-ICL (EVO+ Visian ICL), a hydrophilic acrylic IPCL, and a hydrophilic acrylic phakic-IOL (LENTIS). FN distribution and cell adhesion were evaluated across different regions of each lens. An in vitro FN-coating experiment was conducted to assess its effect on cell adhesion. Results: All lenses demonstrated minimal FN deposition and cellular adhesion in the central optical zone. A thin FN film was observed on the haptics of Collamer lenses, while FN adhesion was weaker or absent on IPCL and LENTIS surfaces. Following FN coating, Collamer lenses supported more uniform FN film formation; however, this did not significantly enhance cell adhesion. Conclusions: Collamer, which contains collagen, promotes FN film formation. Although FN film formation was enhanced, the low cell-adhesive properties of HEMA resulted in minimal cell adhesion even with FN presence. This characteristic may contribute to the long-term transparency and biocompatibility observed clinically. In contrast, hydrophilic acrylic materials used in IPCL and LENTIS demonstrated limited FN interaction. These material differences may influence extracellular matrix protein deposition and biocompatibility in clinical settings, warranting further investigation. Full article
(This article belongs to the Special Issue Ophthalmology: New Diagnostic and Treatment Approaches)
Show Figures

Figure 1

20 pages, 2828 KiB  
Article
Innovative Biobased Active Composites of Cellulose Acetate Propionate with Tween 80 and Cinnamic Acid for Blueberry Preservation
by Ewa Olewnik-Kruszkowska, Martina Ferri, Micaela Degli Esposti, Agnieszka Richert and Paola Fabbri
Polymers 2025, 17(15), 2072; https://doi.org/10.3390/polym17152072 - 29 Jul 2025
Viewed by 287
Abstract
In order to develop modern polymer films intended for food packaging, materials based on cellulose acetate propionate (CAP) with the addition of Tween 80 as a plasticizer and cinnamic acid (CA), known for its antibacterial properties, were prepared. It should be emphasized that [...] Read more.
In order to develop modern polymer films intended for food packaging, materials based on cellulose acetate propionate (CAP) with the addition of Tween 80 as a plasticizer and cinnamic acid (CA), known for its antibacterial properties, were prepared. It should be emphasized that materials based on CAP combined with Tween 80 have not been previously reported in the literature. Therefore, not only is the incorporation of cinnamic acid into these systems an innovative approach, but also the use of the CAP-Tween80 matrix itself represents a novel strategy in the context of the proposed applications. The conducted studies made it possible to assess the properties of the obtained materials with and without the addition of cinnamic acid. The obtained results showed that the addition of cinnamic acid significantly influenced the crucial properties relevant to food storage. The introduction of CA into the polymer matrix notably enhanced the UV barrier properties achieving complete (100%) blockage of UVB radiation and approximately a 20% reduction of UVA transmittance. Furthermore, the modified films exhibited pronounced antibacterial activity, with over 99% reduction in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa populations observed for samples containing 2 and 3% CA. This antibacterial effect contributed to the extended freshness of stored blueberries. Moreover, the addition of cinnamic acid did not significantly affect the transparency of the films, which remained high (97–99%), thereby allowing the fruit to remain visible. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

29 pages, 6921 KiB  
Review
The Advances in Polymer-Based Electrothermal Composites: A Review
by Xiaoli Wu, Ting Yin, Wenyan Liu, Libo Wan and Yijun Liao
Polymers 2025, 17(15), 2047; https://doi.org/10.3390/polym17152047 - 27 Jul 2025
Viewed by 318
Abstract
Polymer-based electrothermal composites (PECs) have been increasingly attracting attention in recent years owing to their flexibility, low density, and high electrothermal efficiency. However, although a large number of reviews have focused on flexible and transparent film heaters as well as polymer-based conductive composites, [...] Read more.
Polymer-based electrothermal composites (PECs) have been increasingly attracting attention in recent years owing to their flexibility, low density, and high electrothermal efficiency. However, although a large number of reviews have focused on flexible and transparent film heaters as well as polymer-based conductive composites, comprehensive reviews of polymer-based electrothermal composites remain limited. Herein, we provide a comprehensive review of recent advancements in polymer-based electrothermal materials. This review begins with an introduction to the electrothermal theoretical basis and the research progress of PECs incorporating various conductive fillers, such as graphene, carbon nanotubes (CNTs), carbon black (CB), MXenes, and metal nanowires. Furthermore, a critical discussion is provided to emphasize the factors influencing the electrothermal conversion efficiency of these composites. Meanwhile, the development of multi-functional electrothermal materials has been also summarized. Finally, the application progress, future prospects, limitations, and potential directions for PEC are discussed. This review aims to serve as a practical guide for engineers and researchers engaged in the development of polymer-based electrothermal composites. Full article
Show Figures

Figure 1

29 pages, 1609 KiB  
Review
Recent Advances in Silver Nanowire-Based Transparent Conductive Films: From Synthesis to Applications
by Ji Li, Jun Luo and Yang Liu
Coatings 2025, 15(7), 858; https://doi.org/10.3390/coatings15070858 - 21 Jul 2025
Viewed by 666
Abstract
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced [...] Read more.
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced by silk-screen printing exhibits the highest quality factor of 568.47, achieving 95.3% visible light transmittance of 95.3% and 13.6 Ω/sq sheet resistance. Ensuring the stability of AgNW films requires the deposition of protective layers through physical or chemical approaches. This review also systematically evaluates the different methods for preparing these protective layers, including their respective advantages and limitations. Furthermore, the review proposes strategies to enhance the conductivity, transparency, and flexibility of AgNW films. Finally, it discusses potential future applications and challenges, offering valuable insights for the development of next-generation flexible transparent electrodes. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

16 pages, 4562 KiB  
Article
Preparation and Properties of Flexible Multilayered Transparent Conductive Films on Substrate with High Surface Roughness
by Mengfan Li, Kai Tao, Jinghan Lu, Shenyue Xu, Yuanyuan Sun, Yaman Chen and Zhiyong Liu
Materials 2025, 18(14), 3389; https://doi.org/10.3390/ma18143389 - 19 Jul 2025
Viewed by 326
Abstract
The flexible transparent conductive films (TCFs) of a ZnS/Cu/Ag/TiO2 multilayered structure were deposited on a flexible PET substrate with high surface roughness using magnetic sputtering, and the effects of structural characteristics on the performance of the films were analyzed. The TCFs with [...] Read more.
The flexible transparent conductive films (TCFs) of a ZnS/Cu/Ag/TiO2 multilayered structure were deposited on a flexible PET substrate with high surface roughness using magnetic sputtering, and the effects of structural characteristics on the performance of the films were analyzed. The TCFs with TiO2/Cu/Ag/TiO2 and ZnS/Cu/Ag/ZnS symmetric structures were also prepared for comparison. The TCF samples were deposited using ZnS, TiO2, Cu and Ag targets, and they were analyzed using scanning electronic microscopy, atomic force microscopy, grazing incidence X-ray diffraction, spectrophotometry and a four-probe tester. The TCFs exhibit generally uniform surface morphology, excellent light transmittance and electrical conductivity with optimized structure. The optimal values are 84.40%, 5.52 Ω/sq and 33.19 × 10−3 Ω−1 for the transmittance, sheet resistance and figure of merit, respectively, in the visible spectrum. The satisfactory properties of the asymmetric multilayered TCF deposited on a rough-surface substrate should be mainly attributed to the optimized structure parameters and reasonable interfacial compatibilities. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

22 pages, 10488 KiB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 332
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

20 pages, 23355 KiB  
Article
Unveiling Thickness-Dependent Oxidation Effect on Optical Response of Room Temperature RF-Sputtered Nickel Ultrathin Films on Amorphous Glass: An Experimental and FDTD Investigation
by Dylan A. Huerta-Arteaga, Mitchel A. Ruiz-Robles, Srivathsava Surabhi, S. Shiva Samhitha, Santhosh Girish, María J. Martínez-Carreón, Francisco Solís-Pomar, A. Martínez-Huerta, Jong-Ryul Jeong and Eduardo Pérez-Tijerina
Materials 2025, 18(12), 2891; https://doi.org/10.3390/ma18122891 - 18 Jun 2025
Viewed by 493
Abstract
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research [...] Read more.
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research is to investigate the temporal oxidation of RF-sputtered Ni ultrathin films on Corning glass under ambient atmospheric conditions and its impact on their structural, surface, and optical characteristics. Controlled film thicknesses were achieved through precise manipulation of deposition parameters, enabling the analysis of oxidation-induced modifications. Atomic force microscopy (AFM) revealed that films with high structural integrity and surface uniformity are exhibiting roughness values (Rq) from 0.679 to 4.379 nm of corresponding thicknesses ranging from 4 to 85 nm. Scanning electron microscopy (SEM) validated the formation of Ni grains interspersed with NiO phases, facilitating SPR-like effects. UV-visible spectroscopy is demonstrating thickness-dependent spectral (plasmonic peak) shifts. Finite Difference Time Domain (FDTD) simulations corroborate the observed thickness-dependent optical absorbance and the resultant shifts in the absorbance-induced plasmonic peak position and bandgap. Increased NiO presence primarily drives the enhancement of electromagnetic (EM) field localization and the direct impact on power absorption efficiency, which are modulated by the tunability of the plasmonic peak position. Our work demonstrates that controlled fabrication conditions and optimal film thickness selection allow for accurate manipulation of the Ni oxidation process, significantly altering their optical properties. This enables the tailoring of these Ni films for applications in transparent conductive electrodes (TCEs), magneto-optic (MO) devices, spintronics, wear-resistant coatings, microelectronics, and photonics. Full article
Show Figures

Graphical abstract

19 pages, 8597 KiB  
Article
Application of Two-Element Zn-Al Metallic Target for Deposition of Aluminum-Doped Zinc Oxide—Analysis of Sputtering Process and Properties of Obtained Transparent Conducting Films
by Szymon Kiełczawa, Artur Wiatrowski, Michał Mazur, Witold Posadowski and Jarosław Domaradzki
Coatings 2025, 15(6), 713; https://doi.org/10.3390/coatings15060713 - 13 Jun 2025
Viewed by 716
Abstract
This article analyzes the reactive magnetron sputtering process, using a two-element Zn-Al target, for depositing aluminum-doped zinc oxide (AZO) layers, aimed at transparent electronics. AZO films were deposited on Corning 7059 glass, flexible Corning Willow® glass and amorphous silica substrates. To optimize [...] Read more.
This article analyzes the reactive magnetron sputtering process, using a two-element Zn-Al target, for depositing aluminum-doped zinc oxide (AZO) layers, aimed at transparent electronics. AZO films were deposited on Corning 7059 glass, flexible Corning Willow® glass and amorphous silica substrates. To optimize the process, the study examined the target surface state across varying argon/oxygen ratios. The gas mixture significantly influenced the Al/Zn atomic ratio in the films, affecting their structural, optical and electrical performance. Films deposited at 80/20 argon/oxygen ratio—near the dielectric mode—showed high light transmission (84%) but high resistivity (47.4·10−3 Ω·cm). Films deposited at ratio of 84/16—close to metallic mode—exhibited lower resistivity (1.9·10−3 Ω·cm) but reduced light transmission (65%). The best balance was achieved with an 82/18 ratio, yielding high light transmission (83%) and low resistivity (1.4·10−3 Ω·cm). These findings highlight the critical role of sputtering atmosphere in tailoring AZO layer properties for use in transparent electronics. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

29 pages, 9493 KiB  
Article
Development and Optimization of Edible Antimicrobial Films Based on Dry Heat–Modified Starches from Kazakhstan
by Marat Muratkhan, Kakimova Zhainagul, Kamanova Svetlana, Dana Toimbayeva, Indira Temirova, Sayagul Tazhina, Dina Khamitova, Saduakhasova Saule, Tamara Tultabayeva, Berdibek Bulashev and Gulnazym Ospankulova
Foods 2025, 14(11), 2001; https://doi.org/10.3390/foods14112001 - 5 Jun 2025
Viewed by 3079
Abstract
This study aimed to design and optimize an edible antimicrobial film incorporating thermally modified starches using a systematic experimental approach. A comprehensive analysis of six starch types—both native and dry heat–modified—was conducted to evaluate their gelatinization clarity, freeze–thaw stability, microstructure (CLSM), and in [...] Read more.
This study aimed to design and optimize an edible antimicrobial film incorporating thermally modified starches using a systematic experimental approach. A comprehensive analysis of six starch types—both native and dry heat–modified—was conducted to evaluate their gelatinization clarity, freeze–thaw stability, microstructure (CLSM), and in vitro digestibility. Corn and cassava starches were selected as optimal components based on their physicochemical performance. A series of single-factor experiments and a Box–Behnken design were employed to assess the influence of starch concentration, gelatinization time, glycerol, and chitosan content on film properties including tensile strength, elongation at break, water vapor permeability (WVP), and transparency. The optimized formulation (5.0% starch, 28.2 min gelatinization, 2.6% glycerol, 1.4% chitosan) yielded a transparent (77.64%), mechanically stable (10.92 MPa tensile strength; 50.0% elongation), and moisture-resistant film. Structural and thermal analyses (SEM, AFM, DSC, TGA) confirmed the film’s homogeneity and stability. Furthermore, the film exhibited moderate antioxidant activity and antibacterial efficacy against Escherichia coli and Staphylococcus aureus. These findings demonstrate the feasibility of using dry heat–modified Kazakhstani starches to develop sustainable antimicrobial packaging materials. However, further studies are needed to explore sensory attributes, long-term storage performance, and compatibility with different food matrices. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

13 pages, 1995 KiB  
Article
Tuning Electrical and Optical Properties of SnO2 Thin Films by Dual-Doping Al and Sb
by Yuxin Wang, Hongyu Zhang, Xinyi Zhang, Zhengkai Zhou and Lu Wang
Coatings 2025, 15(6), 669; https://doi.org/10.3390/coatings15060669 - 30 May 2025
Viewed by 589
Abstract
The Al-Sb co-doped SnO2 composite thin films were prepared by the sol–gel spin-coating method. The structure, morphology, optical and electrical properties of the samples were investigated using XRD, XPS, SEM, UV-Vis spectroscopy, and Hall effect tester, respectively. It was found that when [...] Read more.
The Al-Sb co-doped SnO2 composite thin films were prepared by the sol–gel spin-coating method. The structure, morphology, optical and electrical properties of the samples were investigated using XRD, XPS, SEM, UV-Vis spectroscopy, and Hall effect tester, respectively. It was found that when the aluminum doping amount was 15 at%, the resistivity of the sample was the lowest, and the overall optoelectronic performance was the best. Moreover, the Al-SnO2 composite thin film transformed from an n-type semiconductor to a p-type semiconductor. When Al and Sb were co-doped, the carrier concentration increased significantly from 4.234 × 1019 to 6.455 × 1020. Finally, the conduction type of the Al-Sb-SnO2 composite thin film changed from p-type to n-type. In terms of optical performance, the transmittance of the Al-Sb co-doped SnO2 composite thin films in the visible light region was significantly improved, reaching up to 80% on average, which is favorable for applications in transparent optoelectronic devices. Additionally, the absorption edge of the thin films exhibited a blue-shift after co-doping, indicating an increase in the bandgap energy, which can be exploited to tune the light-absorption properties of the thin films for specific photonic applications. Full article
Show Figures

Figure 1

15 pages, 9567 KiB  
Article
Characterization of Zno:Al Nanolayers Produced by ALD for Clean Energy Applications
by Marek Szindler, Magdalena Szindler, Krzysztof Matus, Błażej Tomiczek and Barbara Hajduk
Energies 2025, 18(11), 2860; https://doi.org/10.3390/en18112860 - 30 May 2025
Viewed by 462
Abstract
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like [...] Read more.
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like ITO raises concerns over cost and material scarcity, prompting the search for more abundant and scalable alternatives. This study focuses on the fabrication and characterization of aluminum-doped zinc oxide (ZnO:Al, AZO) thin films deposited via Atomic Layer Deposition (ALD), targeting their application as transparent conductive oxides in silicon solar cells. The ZnO:Al thin films were synthesized by alternating supercycles of ZnO and Al2O3 depositions at 225 °C, allowing precise control of composition and thickness. Structural, optical, and electrical properties were assessed using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), Raman spectroscopy, spectroscopic ellipsometry, and four-point probe measurements. The results confirmed the formation of uniform, crack-free ZnO:Al thin films with a spinel-type ZnAl2O4 crystalline structure. Optical analyses revealed high transparency (more than 80%) and tunable refractive indices (1.64 ÷ 1.74); the energy band gap was 2.6 ÷ 3.07 eV, while electrical measurements demonstrated low sheet resistance values, reaching 85 Ω/□ for thicker films. This combination of optical and electrical properties underscores the potential of ALD-grown AZO thin films to meet the stringent demands of next-generation photovoltaics. Integration of Zn:Al thin films into silicon solar cells led to an optimized photovoltaic performance, with the best cell achieving a short-circuit current density of 36.0 mA/cm2 and a power conversion efficiency of 15.3%. Overall, this work highlights the technological relevance of ZnO:Al thin films as a sustainable and cost-effective alternative to conventional TCOs, offering pathways toward more accessible and efficient solar energy solutions. Full article
Show Figures

Figure 1

16 pages, 3980 KiB  
Article
Z-Scheme ZIF-8/Ag3PO4 Heterojunction Photocatalyst for High-Performance Antibacterial Food Packaging Films
by Qingyang Zhou, Zhuluni Fang, Junyi Wang, Wenbo Zhang, Yihan Liu, Miao Yu, Zhuo Ma, Yunfeng Qiu and Shaoqin Liu
Materials 2025, 18(11), 2544; https://doi.org/10.3390/ma18112544 - 28 May 2025
Viewed by 486
Abstract
Food spoilage caused by microbial contamination remains a global challenge, driving demand for sustainable antibacterial packaging. Conventional photocatalytic materials suffer from limited spectral response, rapid charge recombination, and insufficient reactive oxygen species (ROS) generation under visible light. Here, a Z-scheme heterojunction was constructed [...] Read more.
Food spoilage caused by microbial contamination remains a global challenge, driving demand for sustainable antibacterial packaging. Conventional photocatalytic materials suffer from limited spectral response, rapid charge recombination, and insufficient reactive oxygen species (ROS) generation under visible light. Here, a Z-scheme heterojunction was constructed by coupling zeolitic imidazolate framework-8 (ZIF-8) with Ag3PO4, achieving dual-spectral absorption and spatial charge separation. The directional electron transfer from Ag3PO4’s conduction band to ZIF-8 effectively suppresses electron-hole recombination, prolonging carrier lifetimes and amplifying ROS production (·O2/·OH). Synergy with Ag+ release further enhances bactericidal efficacy. Incorporated into a cellulose acetate matrix (CAM), the ZIF-8/Ag3PO4/CAM film demonstrates 99.06% antibacterial efficiency against meat surface microbiota under simulated sunlight, alongside high transparency. This study proposes a Z-scheme heterojunction strategy to maximize ROS generation efficiency and demonstrates a scalable fabrication approach for active food packaging materials, effectively targeting microbial contamination control and shelf-life prolongation. Full article
Show Figures

Graphical abstract

13 pages, 8814 KiB  
Article
Structural, Optical and Electrical Properties of the Flexible, Asymmetric TiO2/Cu/Ag/ZnS and ZnS/Cu/Ag/TiO2 Films Deposited via Magnetron Sputtering
by Qingping Li, Kai Tao, Jiayi Zhang, Yazhe Ren and Zhiyong Liu
Coatings 2025, 15(6), 650; https://doi.org/10.3390/coatings15060650 - 28 May 2025
Viewed by 413
Abstract
The structural, optical and electrical properties of the flexible, asymmetric TiO2/Cu/Ag/ZnS and ZnS/Cu/Ag/TiO2 transparent conductive films (TCFs) were studied. The multilayered TCFs were magnetron sputtered onto the flexible PET substrate layer-wise, with TiO2, ZnS, Cu and Ag targets. [...] Read more.
The structural, optical and electrical properties of the flexible, asymmetric TiO2/Cu/Ag/ZnS and ZnS/Cu/Ag/TiO2 transparent conductive films (TCFs) were studied. The multilayered TCFs were magnetron sputtered onto the flexible PET substrate layer-wise, with TiO2, ZnS, Cu and Ag targets. The atomic force microscope, scanning electronic microscope, X-ray diffractometer, ultraviolet-visible spectrophotometer and four-probe tester were utilized to characterize the samples. The photoelectric property of the multilayers varies with the adjustment in structural parameters. The ZnS/Cu/Ag/TiO2 samples demonstrate a more uniform surface morphology and better optical and electrical properties than the TiO2/Cu/Ag/ZnS counterparts. The optimal sheet resistance and average transmittance of the ZnS/Cu/Ag/TiO2 films are 5.56 Ω/sq and 88.46% in the visible spectrum, with the corresponding figure of merit reaching 52.76 × 10−3 Ω−1. The bottom ZnS layer reveals superior percolation function for the bimetallic layer, forming with good continuity and homogeneity, although the original surface roughness is higher than that of TiO2. The top TiO2 layer demonstrates a smooth morphology and dense structure, beneficial to the high transparency and stability of the multilayer. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

Back to TopTop