Novel Film-Forming Spray: Advancing Shelf Life Extension and Post-Harvest Loss Reduction in Eggs
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Samples
2.2. Preparation of Film-Forming Spray
2.3. Experimental Design
2.4. Evaluation of Physical Appearance Parameters of Film-Forming Spray
2.4.1. Water Washability Test
2.4.2. Cosmetic Appearance Analysis
2.4.3. Integrity Evaluation
2.4.4. Viscosity
- High viscosity: Many fibers adhered, indicating strong adhesiveness;
- Moderate viscosity: A moderate number of thin fibers attached;
- Low viscosity: Few or no fibers adhered, indicating low adhesiveness.
2.5. Qualitative Evaluation of Film-Forming Spray
2.5.1. pH Measurement
2.5.2. Evaporation Time
2.5.3. Drying Time Assessment
2.5.4. Thickness Measurement
2.5.5. Volume per Stroke
2.6. Physicochemical Characterization of Film-Forming Spray
2.6.1. Measurement of Zeta Size and Potential
2.6.2. FTIR Analysis
2.6.3. Scanning Electron Microscope Analysis
2.7. Evaluation of Effect of Film-Forming Spray on External Egg Quality Parameter
2.7.1. Egg Weight Loss (%)
2.7.2. Air Cell Diameter
2.7.3. Specific Gravity
2.7.4. Shape Index
2.7.5. Eggshell Thickness
2.8. Evaluation of Effect of Film-Forming Spray on Internal Egg Quality Parameter
2.8.1. pH of Albumen, Yolk, and Whole Egg
2.8.2. Haugh Unit, Albumen Height and Weight
2.8.3. Yolk’s Weight (%), Index, and Color
2.9. Evaluation of Effect of Film-Forming Spray on Microbial Quality
2.10. Data Analysis
3. Results
3.1. Formulation and Optimization of Film-Forming Spray
3.2. Physicochemical Characterization
3.2.1. Measurement of Zeta Size and Potential
3.2.2. FTIR Analysis
3.2.3. SEM Analysis
3.3. Effect of Phyto-Biotic Spray on External Parameters of Egg Quality During Storage
3.3.1. Egg Weight Loss (%)
3.3.2. Air Cell Diameter and Specific Gravity
3.3.3. Shape Index
3.3.4. Effect of Film-Forming Spray on Egg Shell Thickness
3.4. Effect of Film-Forming Spray on Internal Parameters of Egg Quality During Storage
3.4.1. Albumen, Yolk, and Whole Egg pH
3.4.2. Haugh Unit, Albumen Height and Weight%
3.4.3. Yolk Weight (%), Index and Color
3.5. Microbial Load
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Process 2019, 7, 36. [Google Scholar] [CrossRef]
- Rokade, J.; Champati, A.; Sonale, N.; Wadajkar, P.; Madheshwaran, M.; Bhaisare, D.; Tiwari, A.K. The Cage-Free Egg Sector: Perspectives of Indian Poultry Producers. Front. Vet. Sci. 2024, 11, 1442580. [Google Scholar] [CrossRef] [PubMed]
- Bannor, R.K.; Ibrahim, N.; Amrago, E.C. Examining the Influence of Commercialisation and Postharvest Losses on the Choice of Marketing Outlet among Poultry Farmers. Sci. Afr. 2021, 12, e00792. [Google Scholar] [CrossRef]
- Shahbazi, F.; Shahbazi, S.; Zare, D. Losses in Agricultural Produce: Causes and Effects on Food Security. Food Energy Secur. 2025, 14, e70086. [Google Scholar] [CrossRef]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of Climate Change on the Livestock Food Supply Chain; a Review of the Evidence. Glob. Food Sec. 2021, 28, 100488. [Google Scholar] [CrossRef]
- Payal, A.; Sandeep, G.D.S.; Bammidi, M.; Narayandas, A.; Syed, I.; Rao, M.V. Recent Advances in Plant Protein-Based Edible Coatings for Shelf-Life Enhancement of Perishable and High Nutritive Value Foods—A Review. Food Packag. Shelf Life 2025, 48, 101465. [Google Scholar] [CrossRef]
- Wahbeh, S.; Anastasiadis, F.; Sundarakani, B.; Manikas, I. Exploration of Food Security Challenges towards More Sustainable Food Production: A Systematic Literature Review of the Major Drivers and Policies. Foods 2022, 11, 3804. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef]
- Guinebretière, M.; Puterflam, J.; Keïta, A.; Réhault-Godbert, S.; Thomas, R.; Chartrin, P.; Cailleau-Audouin, E.; Coudert, E.; Collin, A. Storage Temperature or Thermal Treatments During Long Egg Storage Duration Influences Hatching Performance and Chick Quality. Front. Physiol. 2022, 13, 852733. [Google Scholar] [CrossRef]
- Parmak, Z.A.; Aygün, A. Effects of Different Viol Types on Egg Qualities in Table Eggs at Different Storage Temperatures. J. Poult. Res. 2023, 20, 19–24. [Google Scholar] [CrossRef]
- Gabriela da Silva Pires, P.; Daniela da Silva Pires, P.; Cardinal, K.M.; Bavaresco, C. The Use of Coatings in Eggs: A Systematic Review. Trends Food Sci. Technol. 2020, 106, 312–321. [Google Scholar] [CrossRef]
- Moeini, A.; Pedram, P.; Fattahi, E.; Cerruti, P.; Santagata, G. Edible Polymers and Secondary Bioactive Compounds for Food Packaging Applications: Antimicrobial, Mechanical, and Gas Barrier Properties. Polymers 2022, 14, 2395. [Google Scholar] [CrossRef]
- Yüceer, M. Characterization of Pasteurized and Sonicated Whole Shell Egg and Evaluating Egg’s Interior Quality during Storage Period. J. Food Process Eng. 2022, 46, e14194. [Google Scholar] [CrossRef]
- Shurmasti, D.K.; Kermani, P.R.; Sarvarian, M.; Awuchi, C.G. Egg Shelf Life Can Be Extended Using Varied Proportions of Polyvinyl Alcohol/Chitosan Composite Coatings. Food Sci. Nutr. 2023, 11, 5041–5049. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Homsaard, N.; Kodsangma, A.; Leksawasdi, N.; Phimolsiripol, Y.; Phongthai, S.; Khemacheewakul, J.; Seesuriyachan, P.; Chaiyaso, T.; Chotinan, S.; et al. Effect of Egg-Coating Material Properties by Blending Cassava Starch with Methyl Celluloses and Waxes on Egg Quality. Polymers 2021, 13, 3787. [Google Scholar] [CrossRef] [PubMed]
- Buaphuen, P.; Makcharoen, W.; Vittayakorn, W. The Enhancement of Polymer Composite Coating by Using a Waste Glass Powder as Alternative Reinforcement. Ferroelectrics 2022, 601, 151–163. [Google Scholar] [CrossRef]
- Almeida e Silva, T.; Gorup, L.F.; de Araújo, R.P.; Fonseca, G.G.; Martelli, S.M.; de Oliveira, K.M.P.; Faraoni, L.H.; de Arruda, E.G.R.; Gomes, R.A.B.; da Silva, C.H.M.; et al. Synergy of Biodegradable Polymer Coatings with Quaternary Ammonium Salts Mediating Barrier Function Against Bacterial Contamination and Dehydration of Eggs. Food Bioprocess Technol. 2020, 13, 2065–2081. [Google Scholar] [CrossRef]
- Paradkar, M.; Thakkar, V.; Soni, T.; Gandhi, T.; Gohel, M. Formulation and Evaluation of Clotrimazole Transdermal Spray. Drug Dev. Ind. Pharm. 2015, 41, 1718–1725. [Google Scholar] [CrossRef]
- Mohite, P.; Patel, H.; Patel, M.; Shah, C.; Upadhyay, U. Film Forming Spray: A Comprehensive Review I. Definition and Mechanism of a Film-Forming Spray [1-4]. Int. J. Innov. Sci. Res. Technol. 2022, 7, 1163–1171. [Google Scholar]
- Umar, A.K.; Butarbutar, M.; Sriwidodo, S.; Wathoni, N. Film-Forming Sprays for Topical Drug Delivery. Drug Des. Devel. Ther. 2020, 14, 2909. [Google Scholar] [CrossRef] [PubMed]
- Niharika, K.; Neelima, K.; Bhargavi, G.; Nazma, S.; Rekha, M.S. Formulation and Evaluation of Cinnamon Oil Sticks, Roll-Ons for Analgesic, Anti-InflammaTory and Anti-Arthritis Effect. Int. Res. J. Pharm. 2018, 9, 136–139. [Google Scholar] [CrossRef]
- Deshmukh, S.N.; Gade, V.; Garud, A.; Dumbre, R.; Warude, B.; Maharaj, S.; Girme, S.; Shewalkar, S. Novel Film Forming Spray from Tea Tree Leaves with Special Emphasis on Development, Formulation and Evaluation. J. Posit. Sch. Psychol. 2022, 2022, 5179–5184. [Google Scholar]
- Gabriela da Silva Pires, P.; Bavaresco, C.; Daniela da Silva Pires, P.; Cardinal, K.M.; Rodrigues Leuven, A.F.; Andretta, I. Development of an Innovative Green Coating to Reduce Egg Losses. Clean. Eng. Technol. 2021, 2, 100065. [Google Scholar] [CrossRef]
- Stadelman, W.J.; Cotterill, O.J. Egg Science and Technology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 608. [Google Scholar] [CrossRef]
- Stadelman, W.J. Quality Identification of Shell Eggs; CRC Press: Boca Raton, FL, USA, 2017; pp. 39–66. [Google Scholar] [CrossRef]
- Çelik, Ş.; Eyduran, E.; Şengül, A.Y.; Şengül, T. Relationship among Egg Quality Traits in Japanese Quails and Prediction of Egg Weight and Color Using Data Mining Algorithms. Trop. Anim. Health Prod. 2021, 53, 382. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, G.C.; Canogullari, S.; Baylan, M.; Alasahan, S. Determination of Some External and Internal Quality Traits of Japanese Quail (Coturnix Coturnix Japonica) Eggs on the Basis of Eggshell Color and Spot Color. Eurasian J. Vet. Sci. 2015, 31, 235–241. [Google Scholar] [CrossRef]
- Narushin, V.G. Egg Geometry Calculation Using the Measurements of Length and Breadth. Poult. Sci. 2005, 84, 482–484. [Google Scholar] [CrossRef]
- Narushin, V.G.; Romanov, M.N.; Griffin, D.K. Non-Destructive Measurement of Chicken Egg Characteristics: Improved Formulae for Calculating Egg Volume and Surface Area. Biosyst. Eng. 2021, 201, 42–49. [Google Scholar] [CrossRef]
- Khaliduzzaman, A.; Konagaya, K.; Suzuki, T.; Kashimori, A.; Kondo, N.; Ogawa, Y. A Nondestructive Eggshell Thickness Measurement Technique Using Terahertz Waves. Sci. Rep. 2020, 10, 1052. [Google Scholar] [CrossRef]
- Malfatti, L.H.; Zampar, A.; Galvão, A.C.; da Silva Robazza, W.; Boiago, M.M. Evaluating and Predicting Egg Quality Indicators through Principal Component Analysis and Artificial Neural Networks. LWT 2021, 148, 111720. [Google Scholar] [CrossRef]
- Samli, H.E.; Agma, A.; Senkoylu, N. Effects of Storage Time and Temperature on Egg Quality in Old Laying Hens. J. Appl. Poult. Res. 2005, 14, 548–553. [Google Scholar] [CrossRef]
- Eisen, E.J.; Bohren, B.B.; McKean, H.E. The Haugh unit as a measure of egg albumen quality. Poult. Sci. 1962, 41, 1461–1468. [Google Scholar] [CrossRef]
- Haugh, R.R. The Haugh Unit for Measuring Egg Quality. United States Egg Poult. Mag. 1937, 43, 552–555. [Google Scholar]
- Narushin, V.G.; Romanov, M.N.; Griffin, D.K. A Novel Egg Quality Index as an Alternative to Haugh Unit Score. J. Food Eng. 2021, 289, 110176. [Google Scholar] [CrossRef]
- Rath, P.K.; Mishra, P.K.; Mallick, B.K.; Behura, N.C. Evaluation of Different Egg Quality Traits and Interpretation of Their Mode of Inheritance in White Leghorns. Vet. World 2015, 8, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.A.; Rai, R.; Nair, S.S. Review on Development of Assigned Value Microbiological Reference Materials Used in Food Testing. Food Microbiol. 2022, 102, 103904. [Google Scholar] [CrossRef]
- Damena, A.; Mikru, A.; Adane, M.; Dobo, B. Microbial Profile and Safety of Chicken Eggs from a Poultry Farm and Small-Scale Vendors in Hawassa, Southern Ethiopia. J. Food Qual. 2022, 2022, 7483253. [Google Scholar] [CrossRef]
- Wang, W.; Yu, Z.; Alsammarraie, F.K.; Kong, F.; Lin, M.; Mustapha, A. Properties and Antimicrobial Activity of Polyvinyl Alcohol-Modified Bacterial Nanocellulose Packaging Films Incorporated with Silver Nanoparticles. Food Hydrocoll. 2020, 100, 105411. [Google Scholar] [CrossRef]
- Vega, A.F.; Medina-Torres, L.; Calderas, F.; Gracia-Mora, J.; Bernad-Bernad, M.J. Closantel Nano-Encapsulated Polyvinyl Alcohol (PVA) Solutions. Pharm. Dev. Technol. 2016, 21, 636–641. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, J.; Rasane, P.; Gupta, P.; Kaur, S.; Sharma, N.; Sowdhanya, D. Natural Additives as Active Components in Edible Films and Coatings. Food Biosci. 2023, 53, 102689. [Google Scholar] [CrossRef]
- Harjo, B.; Wibowo, C.; Ng, K.M. Development of Natural Product Manufacturing Processes: Phytochemicals. Chem. Eng. Res. Des. 2004, 82, 1010–1028. [Google Scholar] [CrossRef]
- Monton, C.; Settharaksa, S.; Suksaeree, J.; Chankana, N.; Charoenchai, L. Optimization of Plant Compositions of Trisattakula to Maximize Antibacterial Activity and Formulation Development of Film-Forming Polymeric Solution Containing Nigella Sativa Ethanolic Extract. Adv. Tradit. Med. 2021, 22, 371–382. [Google Scholar] [CrossRef]
- Maruddin, F.; Malaka, R.; Baba, S.; Amqam, H.; Taufik, M.; Sabil, S. Brightness, Elongation and Thickness of Edible Film with Caseinate Sodium Using a Type of Plasticizer. IOP Conf. Ser. Earth Environ. Sci. 2020, 492, 012043. [Google Scholar] [CrossRef]
- Panda, D.S.; Choudhury, N.S.K.; Yedukondalu, M.; Si, S.; Gupta, R. Evaluation of Film-Forming Potential of a Natural Gum. Asian J. Pharm. 2008, 2. [Google Scholar] [CrossRef]
- Jeong, J.P.; Yoon, I.; Kim, K.; Jung, S. Structural and Physiochemical Properties of Polyvinyl Alcohol–Succinoglycan Biodegradable Films. Polymers 2024, 16, 1783. [Google Scholar] [CrossRef]
- Abdullah, Z.W.; Dong, Y.; Davies, I.J.; Barbhuiya, S. PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application. Polym.-Plast. Technol. Eng. 2017, 56, 1307–1344. [Google Scholar] [CrossRef]
- Agarwal, A.; Shaida, B.; Rastogi, M.; Singh, N.B. Food Packaging Materials with Special Reference to Biopolymers-Properties and Applications. Chem. Afr. 2023, 6, 117–144. [Google Scholar] [CrossRef]
- Parra, A.G.; Clavijo, C.; Castillo, A.; Ortega-Toro, R. Polymeric Coatings with Electrolyzed Acidic Water: A Novel Approach to Extending Egg Shelf Life and Quality. Polymers 2024, 17, 84. [Google Scholar] [CrossRef]
- Jurko, L.; Makuc, D.; Štern, A.; Plavec, J.; Žegura, B.; Bošković, P.; Kargl, R. Cytotoxicity and Antibacterial Efficacy of Betaine- and Choline-Substituted Polymers. ACS Appl. Polym. Mater. 2023, 5, 5270–5279. [Google Scholar] [CrossRef]
- Grassiri, B.; Mezzetta, A.; Maisetta, G.; Migone, C.; Fabiano, A.; Esin, S.; Guazzelli, L.; Zambito, Y.; Batoni, G.; Piras, A.M. Betaine- and L-Carnitine-Based Ionic Liquids as Solubilising and Stabilising Agents for the Formulation of Antimicrobial Eye Drops Containing Diacerein. Int. J. Mol. Sci. 2023, 24, 2714. [Google Scholar] [CrossRef]
- Luo, W.; Xue, H.; Xiong, C.; Li, J.; Tu, Y.; Zhao, Y. Effects of Temperature on Quality of Preserved Eggs during Storage. Poult. Sci. 2020, 99, 3144. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Homsaard, N.; Kodsangma, A.; Phongthai, S.; Leksawasdi, N.; Phimolsiripol, Y.; Seesuriyachan, P.; Chaiyaso, T.; Chotinan, S.; Jantrawut, P.; et al. Effects of Storage Temperature on the Quality of Eggs Coated by Cassava Starch Blended with Carboxymethyl Cellulose and Paraffin Wax. Poult. Sci. 2021, 101, 101509. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.d.S.; dos Santos, V.M.; Rodrigues, J.C.; Santana, Â.P. Conservation of the Internal Quality of Eggs Using a Biodegradable Coating. Poult. Sci. 2020, 99, 7207–7213. [Google Scholar] [CrossRef] [PubMed]
- Ruesga-Gutiérrez, E.; Ruvalcaba-Gómez, J.M.; Gómez-Godínez, L.J.; Villagrán, Z.; Gómez-Rodríguez, V.M.; Heredia-Nava, D.; Ramírez-Vega, H.; Arteaga-Garibay, R.I. Allium-Based Phytobiotic for Laying Hens’ Supplementation: Effects on Productivity, Egg Quality, and Fecal Microbiota. Microorganisms 2022, 10, 117. [Google Scholar] [CrossRef] [PubMed]
Formulation | Water Washability | Cosmetic Appearance | Integrity | Viscosity |
---|---|---|---|---|
F1 | 1 | 2 | 2 | 1 |
F2 | 1 | 2 | 2 | 1 |
F3 | 2 | 2 | 3 | 1 |
F4 | 2 | 2 | 3 | 2 |
F5 | 3 | 3 | 3 | 2 |
Grading | 1: Easily washable | 1: Shiny and transparent | 1: Crack | 1: Water-like |
2: Moderately washable | 2: Shiny and translucent | 2: Flaking | 2: Glycerol-like | |
3: Poorly washable | 3: Dull and opaque | 3: Intact | 3: Syrup-like |
Formulation | Evaporation Time | Drying Time | pH | Volume Per Spray | Thickness |
---|---|---|---|---|---|
(Min: Sec) | (Min) | (mL) | (mm) | ||
F1 | 30 | 1.31 | 5.78 | 0.1 | 0.03 |
F2 | 31 | 3.37 | 5.87 | 0.1 | 0.07 |
F3 | 34 | 2.54 | 5.57 | 0.1 | 0.07 |
F4 | 38 | 2.06 | 5.62 | 0.1 | 0.09 |
F5 | 55 | 2.13 | 5.65 | 0.1 | 0.11 |
F6 | 51 | 2.42 | 5.72 | 0.1 | 0.12 |
Duration/ Temperature | 6th Day | 12nd Day | 18th Day | 24th Day | 30th Day | 36th Day | 42nd Day | p Value |
---|---|---|---|---|---|---|---|---|
T1 (28 °C) | 2.81 ± 0.62 A | 5.69 ± 0.64 bB | 7.4 ± 0.62 B | 9.58 ± 0.73 cC | 12.25 ± 0.73 cC | 14.73 ± 0.83 cD | 15.58 ± 0.82 cE | 0.000 |
T2 (2–8 °C) | 1.66 ± 0.81 A | 2.25 ± 0.27 bAB | 3.29 ± 0.7 AB | 3.79 ± 0.29 abB | 5.02 ± 0.77 abB | 6.06 ± 0.48 bBC | 6.99 ± 0.48 bBC | 0.000 |
T3 (28 °C) + Spray | 1.09 ± 0.72 A | 2.4 ± 0.42 bAB | 3.63 ± 0.36 AB | 4.86 ± 0.4 bAB | 7.64 ± 2.76 bcB | 8.56 ±0.52 bBC | 8.87 ± 0.52 bC | 0.000 |
T4 (2–8 °C) + Spray | 0.8 ± 0.52 A | 1.33 ± 0.25 aAB | 1.36 ± 0.36 aAB | 2.01 ± 0.29 AB | 2.29 ± 0.33 aB | 3.55 ± 0.34 aB | 4.52 ± 0.33 aBC | 0.000 |
p Value | 0.164 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Air Cell Diameter | |||||||||
---|---|---|---|---|---|---|---|---|---|
Duration/ Temperature | 0th Day | 6th Day | 12nd Day | 18th Day | 24th Day | 30th Day | 36th Day | 42nd Day | p Value |
T1 (28 °C) | 16.48 ± 0.21 A | 23.47 ± 0.24 cB | 26.88 ± 0.23 dB | 28.97 ± 0.29 dBC | 30.35 ± 0.29 cC | 31.89 ± 0.27 cCD | 33.02 ± 0.31 cD | 33.68 ± 0.32 cDE | 0.000 |
T2 (2–8 °C) | 17.86 ± 0.15 A | 20.45 ± 0.14 bB | 22.27 ± 0.18 bB | 24.44 ± 0.2 bBC | 25.57 ± 0.19 bBC | 26.24 ± 0.17 bC | 27.87 ± 0.25 bC | 28.63 ± 0.33 bCD | 0.000 |
T3 (28 °C) + Spray | 17.48 ± 0.18 A | 20.64 ± 0.26 bB | 23.51 ± 0.3 cB | 25.29 ± 0.32 cB | 27.04 ± 0.33 bBC | 28.59 ± 0.35 bC | 29.27 ± 0.37 bCD | 29.85 ± 0.38 bCD | 0.000 |
T4 (2–8 °C) + Spray | 16.73 ± 0.22 A | 19.12 ± 0.2 aB | 21.07 ± 0.33 aB | 21.9 ± 0.34 aB | 23.15 ± 0.26 aB | 24.54 ± 0.33 aBC | 24.94 ± 0.32 aBC | 25.44 ± 0.32 aC | 0.023 |
p Value | 0.245 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Specific gravity | |||||||||
T1 (28 °C) | 1.092 ± 0.001 A | 1.067 ± 0.001 bcB | 1.055 ± 0.001 bcC | 1.048 ± 0.01 bD | 1.045 ± 0.003 cE | 1.044 ± 0.00 cF | 1.043 ± 0.00 cG | 1.04 ± 0.00 cH | 0.000 |
T2 (2–8 °C) | 1.094 ± 0.002 A | 1.081 ± 0.001 aAB | 1.072 ± 0.001 abB | 1.066 ± 0.002 abBC | 1.061 ± 0.001 abC | 1.06 ± 0.001 abC | 1.059 ± 0.001 abC | 1.056 ± 0.001 abCD | 0.000 |
T3 (28 °C) + Spray | 1.094 ± 0.001 A | 1.075 ± 0.001 bB | 1.066 ± 0.002 bC | 1.061 ± 0.001 abCD | 1.056 ± 0.001 bDE | 1.055 ± 0.001 bDE | 1.054 ± 0.002 bDE | 1.051 ± 0.001 bDE | 0.000 |
T4 (2–8 °C) + Spray | 1.094 ± 0.001 A | 1.091 ± 0.003 aAB | 1.082 ± 0.001 aB | 1.076 ± 0.001 aBC | 1.071 ± 0.001 aBC | 1.07 ± 0.002 aBC | 1.069 ± 0.001 aC | 1.066 ± 0.001 aC | 0.000 |
p Value | 0.245 | 0.003 | 0.006 | 0.001 | 0.002 | 0.000 | 0.000 | 0.000 | |
Albumen pH | |||||||||
T1 (28 °C) | 7.86 ± 0.16 A | 8.01 ± 0.17 B | 8.18 ± 0.17 C | 8.46 ± 0.17 D | 8.78 ± 0.18 Ea | 9.12 ± 0.19 Fa | 9.46 ± 0.20 Ga | 9.82 ± 0.20 Ha | 0.015 |
T2 (2–8 °C) | 7.87 ± 0.16 A | 7.89 ± 0.16 A | 7.93 ± 0.16 A | 7.99 ± 0.17 A | 8.04 ± 0.17 ABb | 8.09 ± 0.17 Abb | 8.13 ± 0.17 Bc | 8.20 ± 0.17 Cc | 0.039 |
T3 (28 °C) + Spray | 7.88 ± 0.16 A | 7.97 ± 0.16 AB | 8.07 ± 0.17 BC | 8.17 ± 0.17 CD | 8.26 ± 0.17 Dab | 8.36 ± 0.17 Eab | 8.46 ± 0.18 Eb | 8.53 ± 0.18 Fb | 0.014 |
T4 (2–8 °C) + Spray | 7.88 ± 0.16 A | 7.91 ± 0.16 A | 7.92 ± 0.16 A | 7.94 ± 0.16 A | 7.95 ± 0.16 ABb | 7.97 ± 0.16 ABc | 7.98 ± 0.16 Bcd | 8.00 ± 0.16 Bd | 0.048 |
p Value | 0.998 | 0.948 | 0.659 | 0.138 | 0.007 | 0.06 | 0.000 | 0.000 | |
Yolk pH | |||||||||
T1 (28 °C) | 6.41 ± 0.07 A | 6.54 ± 0.08 B | 6.67 ± 0.08 C | 6.80 ± 0.08 D | 6.94 ± 0.08 E | 7.07 ± 0.08 Fa | 7.20 ± 0.08 Ga | 7.34 ± 0.09 Ha | 0.000 |
T2 (2–8 °C) | 6.44 ± 0.13 A | 6.46 ± 0.13 A | 6.49 ± 0.13 A | 6.54 ± 0.13 AB | 6.58 ± 0.14 AB | 6.62 ± 0.14 ABb | 6.66 ± 0.14 ABb | 6.71 ± 0.14 Bc | 0.023 |
T3 (28 °C) + Spray | 6.48 ± 0.06 A | 6.55 ± 0.06 AB | 6.61 ± 0.06 BC | 6.65 ± 0.06 CD | 6.70 ± 0.06 D | 6.74 ± 0.06 Dab | 6.77 ± 0.06 DEab | 6.82 ± 0.06 Eb | 0.011 |
T4 (2–8 °C) + Spray | 6.46 ± 0.04 A | 6.47 ± 0.04 A | 6.49 ± 0.04 A | 6.51 ± 0.04 A | 6.53 ± 0.04 AB | 6.55 ± 0.05 ABb | 6.57 ± 0.05 ABc | 6.59 ± 0.05 Bc | 0.080 |
p Value | 0.946 | 0.855 | 0.855 | 0.388 | 0.099 | 0.012 | 0.001 | 0.000 | |
Whole Egg pH | |||||||||
T1 (28 °C) | 7.07 ± 0.04 A | 7.21 ± 0.04 B | 7.35 ± 0.04 Ca | 7.50 ± 0.04 Da | 7.65 ± 0.04 Ea | 7.79 ± 0.05 Fa | 7.94 ± 0.05 Ga | 8.09 ± 0.05 Ha | 0.000 |
T2 (2–8 °C) | 7.09 ± 0.04 A | 7.11 ± 0.04 A | 7.15 ± 0.04 Abb | 7.20 ± 0.04 ABa | 7.24 ± 0.04 ABb | 7.29 ± 0.04 Bb | 7.32 ± 0.04 ab | 7.38 ± 0.04 Cb | 0.037 |
T3 (28 °C) + Spray | 7.08 ± 0.03 A | 7.16 ± 0.03 B | 7.23 ± 0.03 BCa | 7.27 ± 0.03 CDab | 7.32 ± 0.03 Dbc | 7.37 ± 0.03 Dc | 7.40 ± 0.03 DEb | 7.46 ± 0.03 Eb | 0.014 |
T4 (2–8 °C) + Spray | 7.08 ± 0.05 A | 7.10 ± 0.05 A | 7.12 ± 0.05 Aab | 7.14 ± 0.05 Ab | 7.16 ± 0.05 ABc | 7.18 ± 0.05 Bd | 7.21 ± 0.05 BCc | 7.23 ± 0.05 Cc | 0.056 |
p Value | 0.982 | 0.157 | 0.002 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 |
Haugh Unit | |||||||||
---|---|---|---|---|---|---|---|---|---|
Duration/ Temperature | 0th Day | 6th Day | 12nd Day | 18th Day | 24th Day | 30th Day | 36th Day | 42nd Day | p Value |
T1 (28 °C) | 84.80 ± 0.76 A | 77.79 ± 1.43 bB | 70.72 ± 1.08 C | 59.74 ± 2.77 cD | 51.01 ± 3.16 cDE | 46.21 ± 3.16 cE | 33.26 ± 1.27 cF | 27.82 ± 1.17 dG | 0.000 |
T2 (2–8 °C) | 84.03 ± 0.81 A | 80.55 ± 1.04 aAB | 77.79 ± 1.54 aB | 73.08 ± 1.53 bB | 71.36 ± 1.84 bBC | 67.27 ± 2.08 bC | 64.81 ± 2.92 bC | 65.21 ± 2.19 bD | 0.014 |
T3 (28 °C) + Spray | 84.92 ± 0.81 A | 83.46 ± 0.86 aAB | 75.66 ± 0.76 aB | 71.14 ± 1.85 bCD | 66.80 ± 2.64 bD | 62.69 ± 4.71 bDE | 58.81 ± 3 bE | 49.19 ± 3.14 cEF | 0.000 |
T4 (2–8 °C) + Spray | 84.31 ± 1.25 A | 83.46 ± 1.22 aA | 80.28 ± 1.91 aB | 78.34 ± 1.29 aB | 77.30 ± 1.6 a | 75.90 ± 2.59 a | 74.11 ± 1.98 a | 70.72 ± 1.6 a | 0.002 |
p Value | 0.955 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Albumen height (mm) | |||||||||
T1 (28 °C) | 7.03 ± 0.16 A | 5.76 ± 0.13 cB | 4.72 ± 0.10 cC | 3.59 ± 0.08 dD | 2.73 ± 0.06 dE | 2.07 ± 0.05 dF | 1.58 ± 0.03 dG | 1.21 ± 0.03 dH | 0.000 |
T2 (2–8 °C) | 6.90 ± 0.15 A | 6.35 ± 0.14 aAB | 5.71 ± 0.13 bAB | 5.14 ± 0.11 bB | 4.73 ± 0.10 bBC | 4.35 ± 0.1 bC | 4.01 ± 0.09 bCD | 3.88 ± 0.09 bD | 0.018 |
T3 (28 °C) + Spray | 6.96 ± 0.12 A | 6.13 ± 0.10 abB | 5.39 ± 0.09 abAB | 4.75 ± 0.08 cB | 4.18 ± 0.07 cC | 3.67 ± 0.06 cD | 3.23 ± 0.05 cD | 2.85 ± 0.05 cDE | 0.000 |
T4 (2–8 °C) + Spray | 6.95 ± 0.13 A | 6.60 ± 0.12 aAB | 6.27 ± 0.11 aB | 5.96 ± 0.11 aBC | 5.66 ± 0.11 aBC | 5.38 ± 0.12 aC | 5.11 ± 0.09 aCD | 4.85 ± 0.09 aD | 0.048 |
p Value | 0.936 | 0.003 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Yolk Weight (%) | |||||||||
T1 (28 °C) | 29.65 ± 1.11 A | 28.47 ± 1.16 AB | 29.33 ± 1.2 AB | 30.21 ± 1.23 B | 31.11 ± 1.27 B | 32.05 ± 1.31 C | 33.01 ± 1.35 D | 34 ± 1.39 aE | 0.000 |
T2 (2–8 °C) | 28.92 ± 0.79 A | 28.22 ± 1.04 A | 28.57 ± 1.05 A | 28.92 ± 1.07 A | 29.29 ± 1.08 B | 29.65 ± 1.09 B | 29.73 ± 1.1 BC | 29.8 ± 1.1 bC | 0.024 |
T3 (28 °C) + Spray | 28.78 ± 0.68 A | 28.92 ± 0.97 A | 29.28 ± 0.99 A | 29.65 ± 1 AB | 30.02 ± 1.01 B | 30.39 ± 1.02 BC | 30.47 ± 1.03 C | 30.55 ± 1.03 abD | 0.004 |
T4 (2–8 °C) + Spray | 28.9 ± 0.72 | 28.92 ± 0.73 | 28.95 ± 0.73 | 28.97 ± 0.73 | 29 ± 0.73 | 29.03 ± 0.73 | 29.05 ± 0.73 | 29.08 ± 0.73 c | 0.329 |
p Value | 0.886 | 0.942 | 0.945 | 0.789 | 0.450 | 0.228 | 0.068 | 0.024 | |
Yolk Index | |||||||||
T1 (28 °C) | 0.444 ± 0.007 A | 0.398 ± 0.005 cB | 0.24 ± 0.006 cC | 0.18 ± 0.005 dD | 0.14 ± 0.009 dE | 0.091 ± 0.01 dF | 0.044 ± 0.007 dG | 0.020 ± 0.002 dH | 0.000 |
T2 (2–8 °C) | 0.44 ± 0.008 A | 0.427 ± 0.007 aA | 0.406 ± 0.007 aAB | 0.403 ± 0.011 aAB | 0.393 ± 0.006 aAB | 0.384 ± 0.009 aB | 0.356 ± 0.015 aC | 0.363 ± 0.01 aC | 0.032 |
T3 (28 °C) + Spray | 0.444 ± 0.007 A | 0.391 ± 0.007 bcB | 0.373 ± 0.006 bBC | 0.371 ± 0.01 bBC | 0.361 ± 0.006 bC | 0.353 ± 0.008 bC | 0.327 ± 0.014 bD | 0.334 ± 0.009 bD | 0.000 |
T4 (2–8 °C) + Spray | 0.444 ± 0.007 A | 0.428 ± 0.007 aA | 0.408 ± 0.007 aA | 0.406 ± 0.011 aA | 0.396 ± 0.006 aAB | 0.387 ± 0.009 aAB | 0.387 ± 0.009 aAB | 0.382 ± 0.007 aB | 0.021 |
p Value | 0.966 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Yolk color | |||||||||
T1 (28 °C) | 8 ± 0.18 A | 8 ± 0.17 A | 7 ± 0.36 Bb | 6 ± 0.24 Cc | 6 ± 0.26 Cc | 5 ± 0.32 Dc | 5 ± 0.28 Dd | 4 ± 0.22 Ed | 0.000 |
T2 (2–8 °C) | 8 ± 0.17 A | 8 ± 0.17 A | 8 ± 0.24 Aa | 8 ± 0.22 Aa | 8 ± 0.24 Aa | 8 ± 0.22 Aa | 7 ± 0.26 Bb | 6 ± 0.28 Bb | 0.057 |
T3 (28 °C) + Spray | 8 ± 0.16 A | 7 ± 0.20 B | 8 ± 0.14 Aa | 7 ± 0.28 Bb | 7 ± 0.22 Bb | 6 ± 0.22 Cb | 6 ± 0.23 Cc | 5 ± 0.09 Dc | 0.000 |
T4 (2–8 °C) + Spray | 8 ± 0.16 A | 8 ± 0.20 A | 8 ± 0.28 Ba | 8 ± 0.22 Aa | 8 ± 0.16 Aa | 8 ± 0.41 Ba | 8 ± 0.22 Aa | 7 ± 0.13 Ba | 0.098 |
p Value | 0.973 | 0.041 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
TPC (104 cfu/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Duration/ Temperature | 0th Day | 6th Day | 12nd Day | 18th Day | 24th Day | 30th Day | 36th Day | 42nd Day | p Value |
T1 (28 °C) | 3.82 ± 0.15 A | 4.42 ± 0.12 B | 4.83 ± 0.13 bBC | 5.43 ± 0.14 cC | 5.93 ± 0.16 cD | 6.33 ± 0.14 cE | 6.94 ± 0.18 cEF | 7.74 ± 0.15 dF | 0.000 |
T2 (2–8 °C) | 3.82 ± 0.10 A | 3.92 ± 0.08 A | 4.02 ± 0.11 aAB | 4.12 ± 0.09 abB | 4.22 ± 0.07 abB | 4.32 ± 0.08 abB | 4.52 ± 0.10 aBC | 4.73 ± 0.12 bC | 0.044 |
T3 (28 °C) + Spray | 3.82 ± 0.20 A | 4.22 ± 0.18 AB | 4.52 ± 0.17 bB | 4.93 ± 0.19 bBC | 5.43 ± 0.15 bC | 5.83 ± 0.20 bCD | 6.33 ± 0.21 bD | 6.74 ± 0.18 cE | 0.000 |
T4 (2–8 °C) + Spray | 3.82 ± 0.05 | 3.82 ± 0.07 | 3.92 ± 0.09 a | 4.02 ± 0.10 a | 4.12 ± 0.11 a | 4.19 ± 0.12 a | 4.22 ± 0.09 a | 4.32 ± 0.11 a | 0.067 |
p Value | 0.997 | 0.051 | 0.036 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
E. coli count (104 cfu/mL) | |||||||||
T1 (28 °C) | 0.23 ± 0.04 A | 0.82 ± 0.03 B | 1.68 ± 0.05 Cc | 2.36 ± 0.04 Dc | 2.8 ± 0.06 DEd | 3.79 ± 0.05 Ed | 4.25 ± 0.04 Fd | 4.50 ± 0.04 G | 0.000 |
T2 (2–8 °C) | 0.26 ± 0.03 A | 0.43 ± 0.04 A | 1.02 ± 0.03 ABa | 1.52 ± 0.05 ABab | 1.81 ± 0.04 Bb | 2.28 ± 0.05 Bb | 2.53 ± 0.03 BCb | 2.71 ± 0.05 Cb | 0.041 |
T3 (28 °C) + Spray | 0.24 ± 0.03 A | 0.53 ± 0.04 AB | 1.39 ± 0.05 B | 1.65 ± 0.04 Bb | 1.97 ± 0.05 BCbc | 2.62 ± 0.04 Cc | 2.98 ± 0.05 CDc | 3.38 ± 0.04 Dc | 0.035 |
T4 (2–8 °C) + Spray | 0.24 ± 0.04 | 0.40 ± 0.04 | 0.97 ± 0.03 ab | 1.26 ± 0.05 a | 1.48 ± 0.04 a | 1.95 ± 0.03 a | 2.13 ± 0.04 a | 2.28 ± 0.05 a | 0.059 |
p Value | 0.957 | 0.087 | 0.048 | 0.040 | 0.027 | 0.018 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonale, N.; Jaydip, R.J.; Kumar, A.; Madheswaran, M.; Kumar, R.; Wadajkar, P.; Tiwari, A.K. Novel Film-Forming Spray: Advancing Shelf Life Extension and Post-Harvest Loss Reduction in Eggs. Polymers 2025, 17, 2142. https://doi.org/10.3390/polym17152142
Sonale N, Jaydip RJ, Kumar A, Madheswaran M, Kumar R, Wadajkar P, Tiwari AK. Novel Film-Forming Spray: Advancing Shelf Life Extension and Post-Harvest Loss Reduction in Eggs. Polymers. 2025; 17(15):2142. https://doi.org/10.3390/polym17152142
Chicago/Turabian StyleSonale, Nagesh, Rokade J. Jaydip, Akhilesh Kumar, Monika Madheswaran, Rohit Kumar, Prasad Wadajkar, and Ashok Kumar Tiwari. 2025. "Novel Film-Forming Spray: Advancing Shelf Life Extension and Post-Harvest Loss Reduction in Eggs" Polymers 17, no. 15: 2142. https://doi.org/10.3390/polym17152142
APA StyleSonale, N., Jaydip, R. J., Kumar, A., Madheswaran, M., Kumar, R., Wadajkar, P., & Tiwari, A. K. (2025). Novel Film-Forming Spray: Advancing Shelf Life Extension and Post-Harvest Loss Reduction in Eggs. Polymers, 17(15), 2142. https://doi.org/10.3390/polym17152142