Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (174)

Search Parameters:
Keywords = transmission tower line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2167 KB  
Article
Analysis of Positive and Negative Lightning Impulse Discharge Characteristics in Long Air Gaps
by Ruifeng Zhu, Jianwen Nie, Yun Zhang, Zhenxin Zhong, Xinru Li, Yuxi Dong and Jiachen Gao
Energies 2025, 18(21), 5746; https://doi.org/10.3390/en18215746 - 31 Oct 2025
Viewed by 184
Abstract
Lightning is a common cause of failure in high-voltage transmission lines. This paper uses physical models of positive and negative discharges to analyze the differences in discharge characteristics between rod–plane and conductor–tower gaps. It also explores the influence of different tower structures on [...] Read more.
Lightning is a common cause of failure in high-voltage transmission lines. This paper uses physical models of positive and negative discharges to analyze the differences in discharge characteristics between rod–plane and conductor–tower gaps. It also explores the influence of different tower structures on the discharge process. The simulation results show that negative leaders develop in a stepped manner and progress rapidly, while positive leaders develop continuously and progress more slowly. Under the same lightning impulse voltage level, negative discharges exhibit higher breakdown voltages. The development speed of positive discharges is mainly influenced by the applied voltage, while negative discharges are less affected by the applied voltage. For the same gap distance, the 50% breakdown voltages in the conductor–tower model are significantly higher than those in the rod–plane model for both polarities. Additionally, under shorter gap conditions, negative discharges may not show distinct stepped characteristics. This study provides theoretical guidance and practical references for lightning protection design and engineering applications in high-voltage transmission lines. Full article
Show Figures

Figure 1

27 pages, 3406 KB  
Article
Simulation-Based Framework for Backflashover Rate Estimation in High-Voltage Transmission Lines Integrating Monte-Carlo, ATP-EMTP, and Leader Progression Model
by André T. Lobato, Liliana Arevalo, Rodolfo A. R. Moura, Marco Aurélio O. Schroeder and Vernon Cooray
Energies 2025, 18(21), 5670; https://doi.org/10.3390/en18215670 - 29 Oct 2025
Viewed by 371
Abstract
Lightning-induced backflashovers pose significant risks to high-voltage transmission systems, particularly in high lightning activity regions. Conventional backflashover rate (BFR) estimation methods rely on simplified empirical formulas that lack accuracy in complex scenarios. This paper presents a comprehensive simulation framework integrating (i) a Simulation-Based [...] Read more.
Lightning-induced backflashovers pose significant risks to high-voltage transmission systems, particularly in high lightning activity regions. Conventional backflashover rate (BFR) estimation methods rely on simplified empirical formulas that lack accuracy in complex scenarios. This paper presents a comprehensive simulation framework integrating (i) a Simulation-Based Leader Progression Model (SB-LPM) implemented in COMSOL Multiphysics–MATLAB to evaluate lightning attachment through detailed electrostatic field analysis and streamer-leader dynamics, (ii) ATP-EMTP electromagnetic transient simulations incorporating multi-component Heidler function current waveforms, calibrated to regional lightning measurements, and (iii) a Monte Carlo analysis for statistical assessment of backflashover susceptibility. Applied to a representative 138 kV transmission line in Minas Gerais, Brazil, the framework shows that BFR results are highly sensitive to tower-footing impedance and attachment model selection. The SB-LPM yields systematically different predictions compared to traditional electrogeometric models, yielding approximately 10% lower BFR estimates at 20 Ω grounding impedance relative to the widely used Eriksson model. The framework enables comprehensive lightning performance assessment by incorporating geometry-sensitive attachment modeling, realistic current waveform synthesis, and detailed system transient response, providing valuable insights for transmission line insulation coordination studies. Full article
(This article belongs to the Topic EMC and Reliability of Power Networks)
Show Figures

Figure 1

23 pages, 8095 KB  
Article
Three-Dimensional Measurement of Transmission Line Icing Based on a Rule-Based Stereo Vision Framework
by Nalini Rizkyta Nusantika, Jin Xiao and Xiaoguang Hu
Electronics 2025, 14(21), 4184; https://doi.org/10.3390/electronics14214184 - 27 Oct 2025
Viewed by 349
Abstract
The safety and reliability of modern power systems are increasingly challenged by adverse environmental conditions. (1) Background: Ice accumulation on power transmission lines is recognized as a severe threat to grid stability, as tower collapse, conductor breakage, and large-scale outages may be caused, [...] Read more.
The safety and reliability of modern power systems are increasingly challenged by adverse environmental conditions. (1) Background: Ice accumulation on power transmission lines is recognized as a severe threat to grid stability, as tower collapse, conductor breakage, and large-scale outages may be caused, thereby making accurate monitoring essential. (2) Methods: A rule-driven and interpretable stereo vision framework is proposed for three-dimensional (3D) detection and quantitative measurement of transmission line icing. The framework consists of three stages. First, adaptive preprocessing and segmentation are applied using multiscale Retinex with nonlinear color restoration, graph-based segmentation with structural constraints, and hybrid edge detection. Second, stereo feature extraction and matching are performed through entropy-based adaptive cropping, self-adaptive keypoint thresholding with circular descriptor analysis, and multi-level geometric validation. Third, 3D reconstruction is realized by fusing segmentation and stereo correspondences through triangulation with shape-constrained refinement, reaching millimeter-level accuracy. (3) Result: An accuracy of 98.35%, sensitivity of 91.63%, specificity of 99.42%, and precision of 96.03% were achieved in contour extraction, while a precision of 90%, recall of 82%, and an F1-score of 0.8594 with real-time efficiency (0.014–0.037 s) were obtained in stereo matching. Millimeter-level accuracy (Mean Absolute Error: 1.26 mm, Root Mean Square Error: 1.53 mm, Coefficient of Determination = 0.99) was further achieved in 3D reconstruction. (4) Conclusions: Superior accuracy, efficiency, and interpretability are demonstrated compared with two existing rule-based stereo vision methods (Method A: ROI Tracking and Geometric Validation Method and Method B: Rule-Based Segmentation with Adaptive Thresholding) that perform line icing identification and 3D reconstruction, highlighting the framework’s advantages under limited data conditions. The interpretability of the framework is ensured through rule-based operations and stepwise visual outputs, allowing each processing result, from segmentation to three-dimensional reconstruction, to be directly understood and verified by operators and engineers. This transparency facilitates practical deployment and informed decision making in real world grid monitoring systems. Full article
Show Figures

Figure 1

33 pages, 17635 KB  
Article
Stability Analysis of Transmission Towers in Mining-Affected Zones
by Bingchao Zhao, Yongsheng Tuo, Jingbin Wang, Yang Zhao, Xinyi Feng, Pan Chen, Haonan Chen and Feixiang Liu
Appl. Sci. 2025, 15(20), 11091; https://doi.org/10.3390/app152011091 - 16 Oct 2025
Viewed by 239
Abstract
Transmission towers located above mined-out areas may experience collapse or instability due to mining-induced ground subsidence and deformation, which poses significant risks to the safe operation of power transmission lines. To clearly evaluate the deformation resistance and failure threshold of transmission towers under [...] Read more.
Transmission towers located above mined-out areas may experience collapse or instability due to mining-induced ground subsidence and deformation, which poses significant risks to the safe operation of power transmission lines. To clearly evaluate the deformation resistance and failure threshold of transmission towers under mining-induced ground deformation, this article examines a typical 220 kV self-supporting transmission tower located in a mining area of Northern Shaanxi Province through a detailed three-dimensional finite element model constructed and simulated using ANSYS 2022. The mechanical response and failure process of the tower structure were systematically simulated under five typical deformation conditions: tilt, horizontal compression, horizontal tension, tilt–compression, and tilt–tension. The results indicate that under individual deformation conditions, the critical deformation values of the tower are 35 mm/m for tilt, 10 mm/m for horizontal compression, and 8 mm/m for horizontal tension, demonstrating that the structure is most sensitive to horizontal tensile deformation. Under combined deformation conditions, the critical deformation values for the combined tilt–compression and tilt–tension conditions exhibited a marked reduction, reaching 8 mm/m and 6 mm/m. Compared to individual deformation conditions, transmission towers demonstrate a significantly higher susceptibility to structural failure under combined deformation conditions. The displacement at the tower head and the tower tilt angle exhibit a linear positive correlation with the values of ground surface deformation. Under individual deformation conditions, the tilt of the tower was approximately 0.903 times the tilt deformation value and 0.089 times the values of horizontal compression and tension deformation, indicating that tilt deformation exerts a more pronounced influence on the inclination of the tower. Under combined deformation conditions, the tilt of the tower reached approximately 0.981 times that of the tilt–compression deformation value and 0.829 times that of the tilt–tension deformation value. Compared to the tower tilt induced individually by horizontal compression or tension deformation, the tilt under combined deformation conditions demonstrated a significantly greater value. Under mining-induced ground deformation, a redistribution of support reactions occurs, exhibiting either nonlinear or linear increasing trends depending on the type of deformation. The findings of this article provide a theoretical basis and data support for disaster prevention and control, safety evaluation, and structural design of transmission lines in mining areas. Full article
Show Figures

Figure 1

19 pages, 3740 KB  
Article
Fault Ride-Through Optimization Scheme for Hybrid AC/DC Transmission Systems on the Same Tower
by Xu Chu, Qi Liu, Letian Fu, Shaoshuai Yu and Weidong Wang
Sensors 2025, 25(19), 6216; https://doi.org/10.3390/s25196216 - 7 Oct 2025
Viewed by 364
Abstract
Sensors in power systems utilize the detection results of fault signals to guide subsequent fault handling procedures. However, the traditional phase-shift restart strategy exhibits limitations such as power interruptions, reactive power redundancy, and intersystem fault clearance failures when addressing faults in the hybrid [...] Read more.
Sensors in power systems utilize the detection results of fault signals to guide subsequent fault handling procedures. However, the traditional phase-shift restart strategy exhibits limitations such as power interruptions, reactive power redundancy, and intersystem fault clearance failures when addressing faults in the hybrid AC/DC transmission system. To address these shortcomings, a power compensation-based fault ride-through (FRT) scheme and a protection-control cooperation FRT scheme are proposed, taking into account the operational characteristics of the symmetric monopole LCC-HVDC (SM-LCC-HVDC). The power compensation-based FRT scheme actively compensates for power, mitigating the impact of reactive power redundancy on the AC-side bus during faults. The protection-control cooperation FRT scheme is activated after sufficient AC components are detected on the DC side. It leverages the adjustability of the DC system to proactively activate protection for AC transmission lines. An electromagnetic transient simulation model of the hybrid AC/DC same-tower transmission system was developed in PSCAD/EMTDC. Simulation results validate the effectiveness and superiority of the proposed methods. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 8271 KB  
Article
Asymmetric Structural Response Characteristics of Transmission Tower-Line Systems Under Cross-Fault Ground Motions Revealed by Shaking Table Tests
by Yu Wang, Xiaojun Li, Xiaohui Wang and Mianshui Rong
Symmetry 2025, 17(10), 1646; https://doi.org/10.3390/sym17101646 - 4 Oct 2025
Viewed by 361
Abstract
The long-distance high-voltage transmission tower-line system, frequently traversing active fault zones, is vulnerable to severe symmetry-breaking damage during earthquakes due to asymmetric permanent ground displacements. However, the seismic performance of such systems, particularly concerning symmetry-breaking effects caused by asymmetric fault displacements, remains inadequately [...] Read more.
The long-distance high-voltage transmission tower-line system, frequently traversing active fault zones, is vulnerable to severe symmetry-breaking damage during earthquakes due to asymmetric permanent ground displacements. However, the seismic performance of such systems, particularly concerning symmetry-breaking effects caused by asymmetric fault displacements, remains inadequately studied. This study investigates the symmetry degradation mechanisms in a 1:40 scaled 500 kV tower-line system subjected to cross-fault ground motions via shaking table tests. The testing protocol incorporates representative fault mechanisms—strike-slip and normal/reverse faults—to systematically evaluate their differential impacts on symmetry response. Measurements of acceleration, strain, and displacement reveal that while acceleration responses are spectrally controlled, structural damage is highly fault-type dependent and markedly asymmetric. The acceleration of towers without permanent displacement was 35–50% lower than that of towers with permanent displacement. Under identical permanent displacement conditions, peak displacements caused by normal/reverse motions exceeded those from strike-slip motions by 50–100%. Accordingly, a fault-type-specific amplification factor of 1.5 is proposed for the design of towers in dip-slip fault zones. These results offer novel experimental insights into symmetry violation under fault ruptures, including fault-specific correction factors and asymmetry-resistant design strategies. However, the conclusions are subject to limitations such as scale effects and the exclusion of vertical ground motion components. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

23 pages, 3209 KB  
Article
Research on Power Laser Inspection Technology Based on High-Precision Servo Control System
by Zhe An and Yuesheng Pei
Photonics 2025, 12(9), 944; https://doi.org/10.3390/photonics12090944 - 22 Sep 2025
Viewed by 583
Abstract
With the expansion of the scale of ultra-high-voltage transmission lines and the complexity of the corridor environment, the traditional manual inspection method faces serious challenges in terms of efficiency, cost, and safety. In this study, based on power laser inspection technology with a [...] Read more.
With the expansion of the scale of ultra-high-voltage transmission lines and the complexity of the corridor environment, the traditional manual inspection method faces serious challenges in terms of efficiency, cost, and safety. In this study, based on power laser inspection technology with a high-precision servo control system, a complete set of laser point cloud processing technology is proposed, covering three core aspects: transmission line extraction, scene recovery, and operation status monitoring. In transmission line extraction, combining the traditional clustering algorithm with the improved PointNet++ deep learning model, a classification accuracy of 92.3% is achieved in complex scenes; in scene recovery, 95.9% and 94.4% of the internal point retention rate of transmission lines and towers, respectively, and a vegetation denoising rate of 7.27% are achieved by RANSAC linear fitting and density filtering algorithms; in the condition monitoring segment, the risk detection of tree obstacles based on KD-Tree acceleration and the arc sag calculation of the hanging chain line model realize centimetre-level accuracy of hidden danger localisation and keep the arc sag error within 5%. Experiments show that this technology significantly improves the automation level and decision-making accuracy of transmission line inspection and provides effective support for intelligent operation and maintenance of the power grid. Full article
Show Figures

Figure 1

11 pages, 959 KB  
Article
The Effect of Conductor Sag on EMF Exposure Assessment for 400 kV Double-Bundle
by Kjani Guri, Gezim Hodolli, Sehad Kadiri, Arben Gjukaj and Labinot Kastrati
Appl. Sci. 2025, 15(17), 9789; https://doi.org/10.3390/app15179789 - 6 Sep 2025
Viewed by 779
Abstract
This study investigates the effect of seasonal conductor sag on electromagnetic field (EMF) exposure to near 400 kV double-bundle overhead transmission lines. The conductor sag study resulted in clearance values of 28.0 m for winter (−10 °C, sag ≈ 7.0 m) and 23.4 [...] Read more.
This study investigates the effect of seasonal conductor sag on electromagnetic field (EMF) exposure to near 400 kV double-bundle overhead transmission lines. The conductor sag study resulted in clearance values of 28.0 m for winter (−10 °C, sag ≈ 7.0 m) and 23.4 m for summer (+35 °C, sag ≈ 11.65 m). For both seasonal examples, the electric field strength and magnetic flux density were calculated at a pedestrian height of 1.5 m, and the image approach to account for ground effects. The winter setup resulted in maximum values of 1.35 kV/m (E) and 27.2 µT (B), while the summer configuration produced higher values of 1.96 kV/m and 38.5 µT, respectively. Autumn field measurements, representing intermediate seasonal circumstances, produced average values of 1.294 kV/m and 1.399 µT, with peaks of 8.39 kV/m and 6.85 µT for electric field and magnetic flux density, respectively. The electric field projections were nearly identical to measurements; however, the magnetic field predictions were significantly higher, most likely due to the model’s assumptions of balanced currents and ideal geometry. These findings suggest that seasonal conductor sag variation is a real and substantial factor in assessing EMF exposure, with the electric field being particularly sensitive to clearance changes. The findings emphasize the need to incorporate a large analysis into EMF compliance assessments, especially in cases where terrain relief between towers may further diminish clearance in mid-span regions. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

21 pages, 2987 KB  
Article
Random Wind Vibration Control of Transmission Tower-Line Systems Using Shape Memory Alloy Damper
by Mingjing Chang, Xibing Fang, Shanshan Zhang and Dingkun Xie
Buildings 2025, 15(17), 3091; https://doi.org/10.3390/buildings15173091 - 28 Aug 2025
Viewed by 549
Abstract
Shape memory alloy dampers (SMADs) are widely applied in structural vibration control due to their excellent superelastic properties. However, there has been no research on the random wind-induced vibration control of transmission tower-line (TTL) systems with added SMADs. To address this gap, this [...] Read more.
Shape memory alloy dampers (SMADs) are widely applied in structural vibration control due to their excellent superelastic properties. However, there has been no research on the random wind-induced vibration control of transmission tower-line (TTL) systems with added SMADs. To address this gap, this paper proposes an analytical framework for the wind-induced vibration control of TTL systems with SMADs under random wind loads. An analytical model for the coupled TTL system is developed. The constitutive relationship of the SMAD is derived using the statistical linearization method, and a vibration control approach for the TTL-coupled system with SMADs is proposed. The vibration response of the TTL–SMAD system under random wind loads is derived, and an extreme response analysis framework based on the first exceedance failure criterion is established. The results show that the optimal installation scheme for the SMAD achieves a vibration reduction of more than 30%. When the damper’s stiffness coefficient is approximately 1, the SMAD effectively controls the vibrations. Moreover, a service temperature of 0 °C is found to be the optimal control temperature for the SMAD. These findings provide important references for the application of SMADs in the vibration control of TTL systems. Full article
(This article belongs to the Special Issue Dynamic Response Analysis of Structures Under Wind and Seismic Loads)
Show Figures

Figure 1

23 pages, 3210 KB  
Article
Design and Optimization of Intelligent High-Altitude Operation Safety System Based on Sensor Fusion
by Bohan Liu, Tao Gong, Tianhua Lei, Yuxin Zhu, Yijun Huang, Kai Tang and Qingsong Zhou
Sensors 2025, 25(15), 4626; https://doi.org/10.3390/s25154626 - 25 Jul 2025
Viewed by 690
Abstract
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time [...] Read more.
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time monitoring of the safety status of the operators and is prone to serious consequences due to human negligence. This paper designs a new type of high-altitude operation safety device based on the STM32F103 microcontroller. This device integrates ultra-wideband (UWB) ranging technology, thin-film piezoresistive stress sensors, Beidou positioning, intelligent voice alarm, and intelligent safety lock. By fusing five modes, it realizes the functions of safety status detection and precise positioning. It can provide precise geographical coordinate positioning and vertical ground distance for the workers, ensuring the safety and standardization of the operation process. This safety device adopts multi-modal fusion high-altitude operation safety monitoring technology. The UWB module adopts a bidirectional ranging algorithm to achieve centimeter-level ranging accuracy. It can accurately determine dangerous heights of 2 m or more even in non-line-of-sight environments. The vertical ranging upper limit can reach 50 m, which can meet the maintenance height requirements of most transmission and distribution line towers. It uses a silicon carbide MEMS piezoresistive sensor innovatively, which is sensitive to stress detection and resistant to high temperatures and radiation. It builds a Beidou and Bluetooth cooperative positioning system, which can achieve centimeter-level positioning accuracy and an identification accuracy rate of over 99%. It can maintain meter-level positioning accuracy of geographical coordinates in complex environments. The development of this safety device can build a comprehensive and intelligent safety protection barrier for workers engaged in high-altitude operations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 4034 KB  
Article
Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems
by Yongjie Nie, Yihang Jiang, Pengju Wang, Daoyuan Chen, Yongsen Han, Jialiang Song, Yuanwei Zhu and Shengtao Li
Appl. Sci. 2025, 15(14), 7965; https://doi.org/10.3390/app15147965 - 17 Jul 2025
Viewed by 592
Abstract
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric [...] Read more.
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric field distribution-based techniques require complex instrumentation, limiting its applications in scenes of complex structures and atop tower climbing. To address these challenges, this study proposes an electroluminescent sensing strategy for zero-value insulator identification based on the electroluminescence of ZnS:Cu. Based on the stimulation of electrical stress, real-time monitoring of the health status of insulators was achieved by applying the composite of epoxy and ZnS:Cu onto the connection area between the insulator steel cap and the shed. Experimental results demonstrate that healthy insulators exhibit characteristic luminescence, whereas zero-value insulators show no luminescence due to a reduced drop in electrical potential. Compared with conventional detection methods requiring access of electric signals, such non-contact optical detection method offers high fault-recognition accuracy and real-time response capability within milliseconds. This work establishes a novel intelligent sensing paradigm for visualized condition monitoring of electrical equipment, demonstrating significant potential for fault diagnosis in advanced power systems. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

20 pages, 2412 KB  
Article
Influence of Ion Flow Field on the Design of Hybrid HVAC and HVDC Transmission Lines with Different Configurations
by Jinyuan Xing, Chenze Han, Jun Tian, Hao Wu and Tiebing Lu
Energies 2025, 18(14), 3657; https://doi.org/10.3390/en18143657 - 10 Jul 2025
Viewed by 574
Abstract
Due to the coupling of DC and AC components, the ion flow field of HVDC and HVAC transmission lines in the same corridor or even the same tower is complex and time-dependent. In order to effectively analyze the ground-level electric field of hybrid [...] Read more.
Due to the coupling of DC and AC components, the ion flow field of HVDC and HVAC transmission lines in the same corridor or even the same tower is complex and time-dependent. In order to effectively analyze the ground-level electric field of hybrid transmission lines, the Krylov subspace methods with pre-conditioning treatment are used to solve the discretization equations. By optimizing the coefficient matrix, the calculation efficiency of the iterative process of the electric field in the time domain is greatly increased. Based on the limit of electric field, radio interference and audible noise applied in China, the main factor influencing the design of hybrid transmission lines is determined in terms of electromagnetic environment. After the ground-level electric field of transmission lines with different configurations is analyzed, the minimum height and corridor width of double-circuit 500 kV HVAC lines and one-circuit ±800 kV HVDC lines in the same corridor are obtained. The research provides valuable practical recommendations for optimal tower configurations, minimum heights, and corridor widths under various electromagnetic constraints. Full article
Show Figures

Figure 1

15 pages, 4428 KB  
Article
Evaluation of the Influence of Wind-Induced Dune Movement on Transmission Tower Lines
by Shijun Wang, Wenyuan Bai, Yunfei Tian, Hailong Zhang and Hongchao Dun
Atmosphere 2025, 16(7), 779; https://doi.org/10.3390/atmos16070779 - 25 Jun 2025
Viewed by 581
Abstract
Thorough investigation into dune morphology is pivotal for grasping the intricacies of constructing and operating power transmission lines in desert terrains. However, there remains a notable gap in the quantitative analysis and assessment of how dune dynamics evolve under the influence of transmission [...] Read more.
Thorough investigation into dune morphology is pivotal for grasping the intricacies of constructing and operating power transmission lines in desert terrains. However, there remains a notable gap in the quantitative analysis and assessment of how dune dynamics evolve under the influence of transmission infrastructure. In this study, the Real-Space Cellular Automaton Laboratory is deployed to explore how transverse dunes evolve around transmission towers under diverse wind velocities and varying dune dimensions. The results reveal that, beyond the immediate vicinity of the transmission tower, the height of the transverse dune remains largely stable across broad spatial scales, unaffected by the transmission line. As wind velocities wane, the structural integrity of the transverse dunes is compromised, leading to an expansion in the size of the trail structures. Initially, the height of the dune surges, only to decline progressively over time, with the maximum fluctuation reaching nearly 1m. The height of larger dunes escalates gradually at first, peaks, and then subsides, with the pinnacle height nearing 6.5m. As a critical metric for safety evaluation, the height of the transmission line above ground initially plummets, then gradually rebounds, and shifts backward over time after hitting its nadir. Full article
Show Figures

Figure 1

13 pages, 2299 KB  
Article
Failure Analysis and Safety De-Icing Strategy of Local Transmission Tower-Line Structure System Based on Orthogonal Method in Power System
by Li Zhang, Xueming Zhou, Jiangjun Ruan, Zhiqiang Feng, Yu Shen and Yao Yao
Processes 2025, 13(6), 1782; https://doi.org/10.3390/pr13061782 - 4 Jun 2025
Cited by 2 | Viewed by 648
Abstract
The development of lightweight de-icing equipment for partial transmission lines in a microtopography area has become a hot research topic. However, the existing local line de-icing methods pay less attention to the mechanical damage caused by unequal tension on the tower, and there [...] Read more.
The development of lightweight de-icing equipment for partial transmission lines in a microtopography area has become a hot research topic. However, the existing local line de-icing methods pay less attention to the mechanical damage caused by unequal tension on the tower, and there is a lack of safe de-icing strategies. This study has proposed a methodology integrating an orthogonal experimental design and finite element mechanical analysis to assess the impact of localized line de-icing on the structural stability of transmission tower-line systems. Taking the ±800 kV transmission line as an example, the refined finite element model of the transmission tower-line system has been established, the influence of each conductor and ground wire defrosting on the tower has been analyzed, and a scientific de-icing strategy has been formulated. Thus, the critical ice thickness and wind speed curves for tower failure have been calculated. The research results show that the de-icing of conductor 1, 5, 6, and ground wires 11 and 12 has a higher impact on the failure of the entire tower-line system. Ice melting on the windward side and ice covering on the leeward side will cause the unbalanced tension of the tower to be greater. The findings provide actionable guidelines for the formulation of a transmission line de-icing strategy and reduce the damage caused by ice. Full article
Show Figures

Figure 1

20 pages, 7742 KB  
Article
Structural Response and Failure Analysis of Transmission Towers Under Foundation Sliding with Consideration of Wind Effects
by Weifeng Qin, Jianfeng Yao, Zhitong Liu, Yong Guo, Guohui Shen and Zhibin Tu
Energies 2025, 18(11), 2878; https://doi.org/10.3390/en18112878 - 30 May 2025
Cited by 1 | Viewed by 1269
Abstract
To investigate the failure evolution and structural response of transmission towers under the combined effects of foundation sliding and wind loads, this study used the foundation sliding incident of Tower No. 39 on the Xiaoxing transmission line as a case for numerical back-analysis. [...] Read more.
To investigate the failure evolution and structural response of transmission towers under the combined effects of foundation sliding and wind loads, this study used the foundation sliding incident of Tower No. 39 on the Xiaoxing transmission line as a case for numerical back-analysis. A transmission tower model was first developed based on the finite element method, and the simulation results were compared with field observations to validate the model, with particular focus on the consistency of typical failure modes such as leg bending and cross-bracing instability. On this basis, the structural response under the combined action of foundation lateral displacement, settlement, and wind loads was further simulated. The results indicate that foundation sliding significantly affects the structural stability of transmission towers, with single-foundation sliding being more destructive than the simultaneous sliding of multiple foundations on the same side. Moreover, the coupling of foundation sliding and wind load substantially reduces the critical displacement required to trigger structural failure. Finally, critical displacement thresholds are proposed, which can serve as reference criteria for damage assessment and engineering intervention when changes in foundation conditions occur. Full article
Show Figures

Figure 1

Back to TopTop