Evaluation of the Influence of Wind-Induced Dune Movement on Transmission Tower Lines
Abstract
1. Introduction
2. Numerical Simulation Method
2.1. Real-Space Cellular Automaton Laboratory
2.2. Study Site and Model Parameter Configuration and Validation
3. Results and Discussion
3.1. Impact of the Presence and Absence of a Transmission Tower Line System on Dune Migration
3.2. Effects of Different Wind Velocities on Dune Movement
3.3. Influence of Dune Size on Dune Movement
3.4. Change in the Height of Transmission Lines from the Ground
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Xu, Y. Solar updraft tower power generation. Solar Energy 2016, 128, 95–125. [Google Scholar] [CrossRef]
- Qin, J.; Hu, E.; Nathan, G.J.; Chen, L. Concentrating or non-concentrating solar collectors for solar Aided Power Generation? Energy Convers. Manag. 2017, 152, 281–290. [Google Scholar] [CrossRef]
- Cui, C.; Li, Z. Improvement of power quality stability control method in solar power generation. Int. J. Crit. Infrastruct. 2021, 17, 289–297. [Google Scholar] [CrossRef]
- Dai, W.; Shi, B.; Li, T.; Goh, H.; Li, J. Power flow analysis considering solar road generation. Energy Rep. 2022, 8, 531–536. [Google Scholar] [CrossRef]
- The Installed Capacity of Wind Power and Photovoltaic Power Generation in China Exceeds That of Coal Power. 2024. Available online: https://www.nea.gov.cn/2024-08/02/c_1310783697.htm (accessed on 31 July 2024).
- Hongnan, L.I.; Haifeng, B. High-voltage transmission tower-line system subjected to disaster loads. Prog. Nat. Sci. Mater. Int. 2006, 16, 899–911. [Google Scholar] [CrossRef]
- Shao, Y.; Wyrwoll, K.H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Zhang, J.; Teng, Z.; Huang, N.; Guo, L.; Shao, Y. Surface renewal as a significant mechanism for dust emission. Atmos. Chem. Phys. 2016, 16, 15517–15528. [Google Scholar] [CrossRef]
- Dun, H.; Huang, N.; Zhang, J.; He, W. Effects of Shape and Rotation of Sand Particles in Saltation. J. Geophys.-Res.-Atmos. 2018, 123, 13462–13471. [Google Scholar] [CrossRef]
- Dun, H.; Huang, N.; Zhang, J. Optimization designs of artificial facilities in deserts based on computational simulation. J. Arid. Land 2021, 13, 290–302. [Google Scholar] [CrossRef]
- Dun, H.; Yue, P.; Huang, N.; Zhang, J. Discrete Element Simulation on Sand-Bed Collision Considering Surface Moisture Content. Processes 2022, 10, 52. [Google Scholar] [CrossRef]
- Okamura, T.; Ohkuma, T.; Hongo, E.; Okada, H. Wind response analysis of a transmission tower in a mountainous area. J. Wind. Eng. Ind. Aerodyn. 2003, 91, 53–63. [Google Scholar] [CrossRef]
- Ezami, N.; El Damatty, A.; Hamada, A.; Hangan, H. Aeroelastic testing of a self-supported transmission tower under laboratory simulated tornado-like vortices. Wind. Struct. 2022, 34, 199–213. [Google Scholar] [CrossRef]
- Gani, F.; Legeron, F. Dynamic response of transmission lines guyed towers under wind loading. Can. J. Civ. Eng. 2010, 37, 450–464. [Google Scholar] [CrossRef]
- Alminhana, F.; Mason, M.; Albermani, F. A compact nonlinear dynamic analysis technique for transmission line cascades. Eng. Struct. 2018, 158, 164–174. [Google Scholar] [CrossRef]
- Bhowmik, C.; Chakraborti, P. Analytical and Experimental Modal Analysis of Electrical Transmission Tower to Study the Dynamic Characteristics and Behaviors. KSCE J. Civ. Eng. 2020, 24, 931–942. [Google Scholar] [CrossRef]
- Nezamolmolki, D.; Shooshtari, A. The Effect of Nonlinear Behavior of Bolted Connections on Dynamic Analysis of Steel Transmission Towers. Int. J. Steel Struct. 2021, 21, 634–649. [Google Scholar] [CrossRef]
- Ma, L.; Khazaali, M.; Bocchini, P. Component-based fragility analysis of transmission towers subjected to hurricane wind load. Eng. Struct. 2021, 242, 112586. [Google Scholar] [CrossRef]
- Herrmann, H.; Kroy, K.; Sauermann, G. Saturation transients in saltation and their implications on dune shapes. Phys. A-Stat. Mech. Its Appl. 2001, 302, 244–254. [Google Scholar] [CrossRef]
- Bourke, M.C.; Goudie, A.S. Varieties of barchan form in the Namib Desert and on Mars. Aeolian Res. 2009, 1, 45–54. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E. Real barchan dune collisions and ejections. Geophys. Res. Lett. 2012, 39, L02306. [Google Scholar] [CrossRef]
- Bo, T.L.; Zheng, X.J. Numerical simulation of the evolution and propagation of aeolian dune fields toward a desert-oasis zone. Geomorphology 2013, 180, 24–32. [Google Scholar] [CrossRef]
- Endo, N.; Kubo, H.; Sunamura, T. Barchan-shaped ripple marks in a wave flume. Earth Surf. Process. Landforms 2004, 29, 31–42. [Google Scholar] [CrossRef]
- Parteli, E.J.R.; Andrade, J.S., Jr.; Herrmann, H.J. Transverse Instability of Dunes. Phys. Rev. Lett. 2011, 107, 188001. [Google Scholar] [CrossRef]
- Wasson, R.J.; Hyde, R. Factors determining desert dune type (reply). Nature 1984, 309, 92. [Google Scholar] [CrossRef]
- Bo, T.L.; Zheng, X.J. The formation and evolution of aeolian dune fields under unidirectional wind - ScienceDirect. Geomorphology 2011, 134, 408–416. [Google Scholar] [CrossRef]
- “Hand in Hand” with the Sun, New Green Grows in the Depths of the Desert. 2023. Available online: http://www.news.cn/2023-06/04/c_1129668592.htm (accessed on 4 June 2023).
- Xiao, X.; Liu, H.; Zheng, X. Temporal Evolution of Dune Number Density in a Barchan Dune Field. J. Geophys.-Res.-Earth Surf. 2023, 128, e2022JF007036. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, H.; Zheng, X. Coherent structure and energy distribution of atmospheric surface layer turbulent flow over a barchan dune in Minqin, China. Atmos. Res. 2024, 307, 107503. [Google Scholar] [CrossRef]
- Parteli, E.; Herrmann, H. A simple model for a transverse dune field. Phys. A-Stat. Mech. Its Appl. 2003, 327, 554–562. [Google Scholar] [CrossRef]
- Diniega, S.; Glasner, K.; Byrne, S. Long-time evolution of models of aeolian sand dune fields: Influence of dune formation and collision. Geomorphology 2010, 121, 55–68. [Google Scholar] [CrossRef]
- Anderson, R. The attraction of sand dunes. Nature 1996, 379, 24–25. [Google Scholar] [CrossRef]
- Narteau, C.; Zhang, D.; Rozier, O.; Claudin, P. Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms. J. Geophys. Res. Earth Surf. 2009, 114, F03006. [Google Scholar] [CrossRef]
- Lu, P.; Dong, Z.; Rozier, O. The Combined Effect of Sediment Availability and Wind Regime on the Morphology of Aeolian Sand Dunes. J. Geophys.-Res.-Earth Surf. 2018, 123, 2878–2886. [Google Scholar] [CrossRef]
- Rozier, O.; Narteau, C. A real-space cellular automaton laboratory. Earth Surf. Process. Landforms 2013, 39, 98–109. [Google Scholar] [CrossRef]
- Gunn, A.; Casasanta, G.; Liberto, L.D.; Falcini, F.; Lancaster, N.; Jerolmack, D.J. What sets aeolian dune height? Nat. Commun. 2022, 13, 2401. [Google Scholar] [CrossRef]
- Andreotti, B.; Claudin, P.; Pouliquen, O. Measurements of the aeolian sand transport saturation length. Geomorphology 2010, 123, 343–348. [Google Scholar] [CrossRef]
- Iversen, J.D.; Rasmussen, K.R. The effect of wind speed and bed slope on sand transport. Sedimentology 1999, 46, 723–731. [Google Scholar] [CrossRef]
- Iversen, J.D.; Greeley, R.; Marshall, J.R.; Pollack, J.B. Aeolian saltation threshold: The effect of density ratio. Sedimentology 1987, 34, 699–706. [Google Scholar] [CrossRef]
- Gulayisaimu, A.; Zhang, F.; Wu, F.; Wu, S.; Zhang, J.; Sun, T. Grain size characteristics of dune sands and spatial variation in the Tengger Desert. J. Desert Res. 2022, 42, 133. [Google Scholar] [CrossRef]
- Dun, H.; Xin, G.; Huang, N.; Shi, G.; Zhang, J. Wind-Tunnel Studies on Sand Sedimentation Around Wind-Break Walls of Lanxin High-Speed Railway II and Its Prevention. Appl. Sci. 2021, 11, 5989. [Google Scholar] [CrossRef]
- Lin, Y.; Guan, K.; Zhang, Y.; Gao, X.; Yang, B.; He, N. The impact of inter-dune space and volume ratio on barchan dune collision patterns: A numerical simulation study. Phys. Fluids 2024, 36, 011703. [Google Scholar] [CrossRef]
- Wang, S.; Bai, W.; Tian, Y.; Zhang, H.; Fu, Y. Numerical Simulation of Barchan Dune Movement and Burial Around Transmission Tower. In Application and Development of Data Simulation and Mechanical Analysis in Civil Engineering; Feng, G., Zhang, B., Wang, X.Y., Zhao, J., Almerich-Chulia, A., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 241–253. [Google Scholar]
- Sauermann, G.; Rognon, P.; Poliakov, A.; Herrmann, H. The shape of the barchan dunes of Southern Morocco. Geomorphology 2000, 36, 47–62. [Google Scholar] [CrossRef]
- Cornish, V. Limits of Form and Magnitude in Desert Dunes. Nature 1928, 121, 620–622. [Google Scholar] [CrossRef]
- Andreotti, B.; Claudin, P.; Douady, S. Selection of dune shapes and velocities—Part 1: Dynamics of sand, wind and barchans. Eur. Phys. J. B 2002, 28, 321–339. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, X.; Lei, J. Vortex core regions of nebkhas and their implications on shadow dune formation. Aeolian Res. 2024, 67–69, 100926. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Y.; Cheng, J.; Zhang, R.; Jiang, Z. Characteristics and Prevention Measures of Wind-Sand Disaster Along the Transmission Corridor in Desert Areas. Land Degrad. Dev. 2025, 1–17. [Google Scholar] [CrossRef]
- Hou, J.; Sun, Z.; Wu, X. Simulation of Turbulent Wind Velocity for Transmission Tower Based on Linear Filter Method. In Proceedings of the 2010 International Conference on E-Product E-Service and E-Entertainment, Zhengzhou, China, 7–9 November 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, P.; Xu, J.; Meng, X.; Yang, H.; He, B. Paradigm of Numerical Simulation of Spatial Wind Field for Disaster Prevention of Transmission Tower Lines. Struct. Durab. Health Monit. 2023, 17, 521–539. [Google Scholar] [CrossRef]
Variable | Description | Values |
---|---|---|
Critical threshold stress for motion initiation | ,, | |
Unit length | ||
Unit time | ||
L | System length | |
H | System width | |
D | System height | |
Transmission tower dimensions | ||
Air density | ||
Sand density | ||
Aerodynamic roughness | ||
g | Gravitational acceleration | |
k | von Karman constant | |
d | Sand particle diameter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Bai, W.; Tian, Y.; Zhang, H.; Dun, H. Evaluation of the Influence of Wind-Induced Dune Movement on Transmission Tower Lines. Atmosphere 2025, 16, 779. https://doi.org/10.3390/atmos16070779
Wang S, Bai W, Tian Y, Zhang H, Dun H. Evaluation of the Influence of Wind-Induced Dune Movement on Transmission Tower Lines. Atmosphere. 2025; 16(7):779. https://doi.org/10.3390/atmos16070779
Chicago/Turabian StyleWang, Shijun, Wenyuan Bai, Yunfei Tian, Hailong Zhang, and Hongchao Dun. 2025. "Evaluation of the Influence of Wind-Induced Dune Movement on Transmission Tower Lines" Atmosphere 16, no. 7: 779. https://doi.org/10.3390/atmos16070779
APA StyleWang, S., Bai, W., Tian, Y., Zhang, H., & Dun, H. (2025). Evaluation of the Influence of Wind-Induced Dune Movement on Transmission Tower Lines. Atmosphere, 16(7), 779. https://doi.org/10.3390/atmos16070779