Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = transition metal phosphides (TMPs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 8864 KiB  
Article
Nickel Foam-Supported FeP Encapsulated in N, P Co-Doped Carbon Matrix for Efficient Electrocatalytic Hydrogen Evolution
by Jianguo Zhong, Ting Zhang, Jianqiang Tian, Wei Gao and Yuxin Wang
Inorganics 2024, 12(11), 291; https://doi.org/10.3390/inorganics12110291 - 7 Nov 2024
Viewed by 2555
Abstract
Transition metal phosphides (TMPs) show great potential as catalysts for the hydrogen evolution reaction (HER). FeP stands out as an efficient and cost-effective non-noble metal-based HER catalyst. However, FeP tends to aggregate and suffer from instability during the reaction. To tackle these challenges, [...] Read more.
Transition metal phosphides (TMPs) show great potential as catalysts for the hydrogen evolution reaction (HER). FeP stands out as an efficient and cost-effective non-noble metal-based HER catalyst. However, FeP tends to aggregate and suffer from instability during the reaction. To tackle these challenges, we developed an efficient and straightforward approach to load metal-organic framework-derived N/P co-doped carbon-encapsulated FeP nanoparticles onto a nickel foam substrate (FeP@NPC/NF-450). This catalyst exhibits exceptional HER activity in 0.5 M H2SO4 and 1.0 M KOH solutions, with overpotentials of 68.3 mV and 106.1 mV at a current density of 10 mA cm−2, respectively. Furthermore, it demonstrates excellent stability with negligible decay over 48 h in both acidic and alkaline solutions. The outstanding hydrogen evolution catalytic performance of FeP@NPC/NF-450 is mainly due to the N, P co-doped carbon matrix, which safeguards the FeP nanoparticles from aggregation and surface oxidation. Consequently, this enhances the availability of active sites during the hydrogen evolution reaction (HER), leading to improved stability. Moreover, introducing nickel foam offers a larger specific surface area and enhances charge transfer rates. This study provides a reference method for preparing stable and highly active electrocatalysts for hydrogen evolution. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2024)
Show Figures

Graphical abstract

27 pages, 4004 KiB  
Review
Catalytic Applications in the Production of Hydrotreated Vegetable Oil (HVO) as a Renewable Fuel: A Review
by Nur-Sultan Mussa, Kainaubek Toshtay and Mickael Capron
Catalysts 2024, 14(7), 452; https://doi.org/10.3390/catal14070452 - 14 Jul 2024
Cited by 9 | Viewed by 4365
Abstract
The significance and challenges of hydrotreatment processes for vegetable oils have recently become apparent, encompassing various reactions like decarbonylation, decarboxylation, and hydrogenation. Heterogeneous noble or transition metal catalysts play a crucial role in these reactions, offering high selectivity in removing oxygen and yielding [...] Read more.
The significance and challenges of hydrotreatment processes for vegetable oils have recently become apparent, encompassing various reactions like decarbonylation, decarboxylation, and hydrogenation. Heterogeneous noble or transition metal catalysts play a crucial role in these reactions, offering high selectivity in removing oxygen and yielding desired hydrocarbons. Notably, both sulphided and non-sulphided catalysts exhibit effectiveness, with the latter gaining attention due to health and toxicity concerns associated with sulphiding agents. Nickel-based catalysts, such as NiP and NiC, demonstrate specific properties and tendencies in deoxygenation reactions, while palladium supported on activated carbon catalysts shows superior activity in hydrodeoxygenation. Comparisons between the performances of different catalysts in various hydrotreatment processes underscore the need for tailored approaches. Transition metal phosphides (TMP) emerge as promising catalysts due to their cost-effectiveness and environmental friendliness. Ultimately, there is an ongoing pursuit of efficient catalysts and the importance of further advancements in catalysis for the future of vegetable oil hydrotreatment. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Figure 1

11 pages, 5061 KiB  
Article
Interface Engineering Induced N, P-Doped Carbon-Shell-Encapsulated FeP/NiP2/Ni5P4/NiP Nanoparticles for Highly Efficient Hydrogen Evolution Reaction
by Ting Zhang, Jianguo Zhong, Wei Gao and Yuxin Wang
Coatings 2024, 14(7), 817; https://doi.org/10.3390/coatings14070817 - 1 Jul 2024
Cited by 3 | Viewed by 1735
Abstract
Modifying the electronic structure of a catalyst through interface engineering is an effective strategy to enhance its activity in the hydrogen evolution reaction (HER). Interface engineering is a viable strategy to enhance the catalytic activity of transition metal phosphides (TMPs) in the HER [...] Read more.
Modifying the electronic structure of a catalyst through interface engineering is an effective strategy to enhance its activity in the hydrogen evolution reaction (HER). Interface engineering is a viable strategy to enhance the catalytic activity of transition metal phosphides (TMPs) in the HER process. The interface-engineered FeP/NiP2/Ni5P4/NiP multi-metallic phosphide nanoparticles confined in a N, P-doped carbon matrix was developed by a simple one-step low-temperature phosphorization treatment, which only requires 72 and 155 mV to receive the current density of 10 mA/cm2 in acid and alkaline electrolyte, respectively. This enhanced performance can be primarily attributed to the heterointerface of FeP/NiP2/Ni5P4/NiP multi-metallic phosphides, which promotes electron redistribution and optimizes the adsorption/desorption strength of H* on the active sites. Furthermore, the N, P-doped carbon framework that encapsulates the nanoparticles inhibits their aggregation, leading to an increased availability of active sites throughout the reaction. The results of this study open up a straightforward and innovative approach to developing high-performance catalysts for hydrogen production. Full article
Show Figures

Figure 1

14 pages, 5810 KiB  
Article
Electronic Structure Regulated Nickel-Cobalt Bimetal Phosphide Nanoneedles for Efficient Overall Water Splitting
by Heyang Xu, Xilin She, Haolin Li, Chuanhui Wang, Shuai Chen, Lipeng Diao, Ping Lu, Longwei Li, Liwen Tan, Jin Sun and Yihui Zou
Molecules 2024, 29(3), 657; https://doi.org/10.3390/molecules29030657 - 31 Jan 2024
Cited by 4 | Viewed by 1669
Abstract
Transition metal phosphides (TMPs) have been widely studied for water decomposition for their monocatalytic property for anodic or cathodic reactions. However, their bifunctional catalytic activity still remains a major challenge. Herein, hexagonal nickel-cobalt bimetallic phosphide nanoneedles with 1–3 μm length and 15–30 nm [...] Read more.
Transition metal phosphides (TMPs) have been widely studied for water decomposition for their monocatalytic property for anodic or cathodic reactions. However, their bifunctional catalytic activity still remains a major challenge. Herein, hexagonal nickel-cobalt bimetallic phosphide nanoneedles with 1–3 μm length and 15–30 nm diameter supported on NF (NixCo2−xP NDs/NF) with adjusted electron structure have been successfully prepared. The overall alkaline water electrolyzer composed of the optimal anode (Ni0.67Co1.33P NDs/NF) and cathode (Ni1.01Co0.99P NDs/NF) provide 100 mA cm−2 at 1.62 V. Gibbs Free Energy for reaction paths proves that the active site in the hydrogen evolution reaction (HER) is Ni and the oxygen evolution reaction (OER) is Co in NixCo2−xP, respectively. In the HER process, Co-doping can result in an apparent accumulation of charge around Ni active sites in favor of promoting HER activity of Ni sites, and ΔGH* of 0.19 eV is achieved. In the OER process, the abundant electron transfer around Co-active sites results in the excellent ability to adsorb and desorb *O and *OOH intermediates and an effectively reduced ∆GRDS of 0.37 eV. This research explains the regulation of electronic structure change on the active sites of bimetallic materials and provides an effective way to design a stable and effective electrocatalytic decomposition of alkaline water. Full article
(This article belongs to the Special Issue Battery Chemistry: Recent Advances and Future Opportunities)
Show Figures

Figure 1

10 pages, 2324 KiB  
Article
Synthesis of Black Phosphorene/P-Rich Transition Metal Phosphide NiP3 Heterostructure and Its Effect on the Stabilization of Black Phosphorene
by Tana Bao, Altan Bolag, Xiao Tian and Tegus Ojiyed
Crystals 2023, 13(11), 1571; https://doi.org/10.3390/cryst13111571 - 6 Nov 2023
Cited by 3 | Viewed by 1677
Abstract
Black phosphorus (BP), as a direct band gap semiconductor material with a two-dimensional layered structure, has a good application potential in many aspects, but the surface state of it is extremely unstable, especially that of single-layer black phosphorus. In this study, BP crystals [...] Read more.
Black phosphorus (BP), as a direct band gap semiconductor material with a two-dimensional layered structure, has a good application potential in many aspects, but the surface state of it is extremely unstable, especially that of single-layer black phosphorus. In this study, BP crystals and two-dimensional black phosphorus (2D BP) are prepared by a mechanical ball-milling–liquid-phase exfoliation method. The X-ray diffraction (XRD) spectrum and high-resolution transmission electron microscopy (HRTEM) results showed that red phosphorus (RP) successfully turned to BP by the mechanical ball-milling method. The spectrophotometric analysis has detected absorption peaks at 780 nm, 915 nm, and 1016 nm, corresponding to single, double, and three-layer BP bandgap emission. A simple solvothermal strategy is designed to synthesize in-plane BP/P-rich transition metal phosphide (TMP) heterostructures (BP/NiP3) by defect/edge-selective growth of NiP3 on the BP nanosheets. HRTEM analysis indicates that the metal ions are preferentially deposited on the defects of 2D BP such as edges and unsaturated sites, forming a 2D BP/NiP3 in-plane heterojunction. Full article
Show Figures

Figure 1

23 pages, 1996 KiB  
Review
Recent Trends in Transition Metal Phosphide (TMP)-Based Seawater Electrolysis for Hydrogen Evolution
by Walid Tahri, Xu Zhou, Rashid Khan and Muhammad Sajid
Sustainability 2023, 15(19), 14389; https://doi.org/10.3390/su151914389 - 29 Sep 2023
Cited by 10 | Viewed by 3275
Abstract
Large-scale hydrogen (H2) production is an essential gear in the future bioeconomy. Hydrogen production through electrocatalytic seawater splitting is a crucial technique and has gained considerable attention. The direct seawater electrolysis technique has been designed to use seawater in place of [...] Read more.
Large-scale hydrogen (H2) production is an essential gear in the future bioeconomy. Hydrogen production through electrocatalytic seawater splitting is a crucial technique and has gained considerable attention. The direct seawater electrolysis technique has been designed to use seawater in place of highly purified water, which is essential for electrolysis, since seawater is widely available. This paper offers a structured approach by briefly describing the chemical processes, such as competitive chloride evolution, anodic oxygen evolution, and cathodic hydrogen evolution, that govern seawater electrocatalytic reactions. In this review, advanced technologies in transition metal phosphide-based seawater electrolysis catalysts are briefly discussed, including transition metal doping with phosphorus, the nanosheet structure of phosphides, and structural engineering approaches. Application progress, catalytic process efficiency, opportunities, and problems related to transition metal phosphides are also highlighted in detail. Collectively, this review is a comprehensive summary of the topic, focusing on the challenges and opportunities. Full article
Show Figures

Figure 1

23 pages, 3432 KiB  
Review
Recent Tendency on Transition-Metal Phosphide Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Media
by Seo Jeong Yoon, Se Jung Lee, Min Hui Kim, Hui Ae Park, Hyo Seon Kang, Seo-Yoon Bae and In-Yup Jeon
Nanomaterials 2023, 13(18), 2613; https://doi.org/10.3390/nano13182613 - 21 Sep 2023
Cited by 10 | Viewed by 3362
Abstract
Hydrogen energy is regarded as an auspicious future substitute to replace fossil fuels, due to its environmentally friendly characteristics and high energy density. In the pursuit of clean hydrogen production, there has been a significant focus on the advancement of effective electrocatalysts for [...] Read more.
Hydrogen energy is regarded as an auspicious future substitute to replace fossil fuels, due to its environmentally friendly characteristics and high energy density. In the pursuit of clean hydrogen production, there has been a significant focus on the advancement of effective electrocatalysts for the process of water splitting. Although noble metals like Pt, Ru, Pd and Ir are superb electrocatalysts for the hydrogen evolution reaction (HER), they have limitations for large-scale applications, mainly high cost and low abundance. As a result, non-precious transition metals have emerged as promising candidates to replace their more expensive counterparts in various applications. This review focuses on recently developed transition metal phosphides (TMPs) electrocatalysts for the HER in alkaline media due to the cooperative effect between the phosphorus and transition metals. Finally, we discuss the challenges of TMPs for HER. Full article
Show Figures

Figure 1

8 pages, 2264 KiB  
Communication
A Green Synthesis Strategy for Cobalt Phosphide Deposited on N, P Co-Doped Graphene for Efficient Hydrogen Evolution
by Jingwen Ma, Jun Wang, Junbin Li, Ying Tian and Tianai Zhang
Materials 2023, 16(18), 6119; https://doi.org/10.3390/ma16186119 - 7 Sep 2023
Cited by 4 | Viewed by 1597
Abstract
The exploitation of electrocatalysts with high activity and durability for the hydrogen evolution reaction is significant but also challenging for future energy systems. Transition metal phosphides (TMPs) have attracted a lot of attention due to their effective activity for the hydrogen evolution reaction, [...] Read more.
The exploitation of electrocatalysts with high activity and durability for the hydrogen evolution reaction is significant but also challenging for future energy systems. Transition metal phosphides (TMPs) have attracted a lot of attention due to their effective activity for the hydrogen evolution reaction, but the complicated preparation of metal phosphides remains a bottleneck. In this study, a green fabrication method is designed and proposed to construct N, P co-doped graphene (NPG)-supported cobalt phosphide (Co2P) nanoparticles by using DNA as both N and P sources. Thanks to the synergistic effect of NPG and Co2P, the Co2P/NPG shows effective activity with a small overpotential of 144 mV and a low Tafel slope of 72 mV dec−1 for the hydrogen evolution reaction. This study describes a successful green synthesis strategy for the preparation of high-performance TMPs. Full article
Show Figures

Figure 1

13 pages, 3559 KiB  
Article
Hierarchical Design of Homologous NiCoP/NF from Layered Double Hydroxides as a Long-Term Stable Electrocatalyst for Hydrogen Evolution
by Shenglu Song, Ailing Song, Lei Bai, Manman Duanmu, Lixin Wang, Haifeng Dong, Xiujuan Qin and Guangjie Shao
Catalysts 2023, 13(9), 1232; https://doi.org/10.3390/catal13091232 - 23 Aug 2023
Cited by 6 | Viewed by 2052
Abstract
Ternary transition metal phosphides (TTMPs) with two-dimensional heterointerface and adjustable electronic structures have been widely studied in hydrogen evolution reactions (HER). However, single-phase TMPs often have inappropriate H* adsorption energy and electronic transfer efficiency in HER. Herein, we utilized the heterogeneity in the [...] Read more.
Ternary transition metal phosphides (TTMPs) with two-dimensional heterointerface and adjustable electronic structures have been widely studied in hydrogen evolution reactions (HER). However, single-phase TMPs often have inappropriate H* adsorption energy and electronic transfer efficiency in HER. Herein, we utilized the heterogeneity in the crystal structure to design an efficient and stable catalyst from the NiCoP nanowire@NiCoP nanosheet on nickel foam (NW-NiCoP@NS-NiCoP/NF) for HER. Layered double hydroxides (LDHs) with a heterogeneous matrix on crystal surfaces were grown under different reaction conditions, and non-metallic P was introduced by anion exchange to adjust the electronic structure of the transition metals. The hierarchical structure of homologous NiCoP/NF from the LDH allows for a larger surface area, which results in more active sites and improved gas diffusion. The optimized NW-NiCoP@NS-NiCoP/NF electrode exhibits excellent HER activity, with an overpotential of 144 mV, a Tafel slope of 84.2 mV dec−1 at a current density of 100 mA cm−2 and remarkable stability for more than 500 h in 1.0 M KOH electrolyte. This work provides ideas for elucidating the rational design of structural heterogeneity as an efficient electrocatalyst and the in situ construction of hierarchical structures. Full article
Show Figures

Graphical abstract

24 pages, 5617 KiB  
Review
Recent Advances in Transition Metal Phosphide Nanocatalysts for H2 Evolution and CO2 Reduction
by Saman Shaheen, Syed Asim Ali, Umar Farooq Mir, Iqra Sadiq and Tokeer Ahmad
Catalysts 2023, 13(7), 1046; https://doi.org/10.3390/catal13071046 - 28 Jun 2023
Cited by 26 | Viewed by 5189
Abstract
Green hydrogen energy has captivated researchers and is regarded as a feasible option for future energy-related aspirations. The emerging awareness of renewable energy-driven hydrogen generation and carbon dioxide reduction calls for the use of unconventional schematic tools in the fabrication of nanocatalyst systems. [...] Read more.
Green hydrogen energy has captivated researchers and is regarded as a feasible option for future energy-related aspirations. The emerging awareness of renewable energy-driven hydrogen generation and carbon dioxide reduction calls for the use of unconventional schematic tools in the fabrication of nanocatalyst systems. Transition metal phosphides are state-of-art, cost-effective, noble-metal-free materials that have been comprehensively examined for sustainable energy-driven applications. Recent reports on these advanced functional materials have cemented their candidature as high-performance catalytic systems for hydrogen production and for carbon dioxide conversion into value-added chemical feedstock. Bimetallic NiCoP (238.2 mmol g−1 h−1) exhibits top-notch catalytic competence toward photocatalytic HER that reveals the energy-driven application of a pristine class of TMPs, whereas heterostructured Ni2P/CdS was found to be fit for photochemical CO2 reduction, as well as for HER. On the other hand, pristine Ni2P was recently ascertained as an efficient electrocatalytic system for HER and CO2RR applications. A wide array of physicochemical modulations, such as compositional and structural engineering, defect generation, and facet control, have been used for improving the catalytic efficiency of transition metal phosphide nanostructures. In this review, we succinctly discuss the proficiency of transition metal phosphides in green hydrogen production and carbon dioxide conversion via photochemical and electrochemical pathways. We detail the significance of their structural properties and brief the readers about the synthetic advancements without deviating from our goal of summarizing the recent achievements in energy-driven applications. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts)
Show Figures

Figure 1

22 pages, 7638 KiB  
Review
Recent Advances in Transition Metal Tellurides (TMTs) and Phosphides (TMPs) for Hydrogen Evolution Electrocatalysis
by Syed Shoaib Ahmad Shah, Naseem Ahmad Khan, Muhammad Imran, Muhammad Rashid, Muhammad Khurram Tufail, Aziz ur Rehman, Georgia Balkourani, Manzar Sohail, Tayyaba Najam and Panagiotis Tsiakaras
Membranes 2023, 13(1), 113; https://doi.org/10.3390/membranes13010113 - 15 Jan 2023
Cited by 23 | Viewed by 4412
Abstract
The hydrogen evolution reaction (HER) is a developing and promising technology to deliver clean energy using renewable sources. Presently, electrocatalytic water (H2O) splitting is one of the low-cost, affordable, and reliable industrial-scale effective hydrogen (H2) production methods. Nevertheless, the [...] Read more.
The hydrogen evolution reaction (HER) is a developing and promising technology to deliver clean energy using renewable sources. Presently, electrocatalytic water (H2O) splitting is one of the low-cost, affordable, and reliable industrial-scale effective hydrogen (H2) production methods. Nevertheless, the most active platinum (Pt) metal-based catalysts for the HER are subject to high cost and substandard stability. Therefore, a highly efficient, low-cost, and stable HER electrocatalyst is urgently desired to substitute Pt-based catalysts. Due to their low cost, outstanding stability, low overpotential, strong electronic interactions, excellent conductivity, more active sites, and abundance, transition metal tellurides (TMTs) and transition metal phosphides (TMPs) have emerged as promising electrocatalysts. This brief review focuses on the progress made over the past decade in the use of TMTs and TMPs for efficient green hydrogen production. Combining experimental and theoretical results, a detailed summary of their development is described. This review article aspires to provide the state-of-the-art guidelines and strategies for the design and development of new highly performing electrocatalysts for the upcoming energy conversion and storage electrochemical technologies. Full article
Show Figures

Figure 1

9 pages, 2839 KiB  
Article
One-Step Construction of Co2P Nanoparticles Encapsulated into N-Doped Porous Carbon Sheets for Efficient Oxygen Evolution Reaction
by Ke Wang, Ruimin Zhang, Yun Guo, Yunjie Liu, Yu Tian, Xiaojun Wang, Peng Wang and Zhiming Liu
Energies 2023, 16(1), 478; https://doi.org/10.3390/en16010478 - 1 Jan 2023
Cited by 4 | Viewed by 2853
Abstract
It is critical and challenging to develop high performance transition metal phosphides (TMPs) electrocatalysts for oxygen evolution reaction (OER) to address fossil energy shortages. Herein, we report the synthesis of Co2P embedded in N-doped porous carbon (Co2P@N-C) via a [...] Read more.
It is critical and challenging to develop high performance transition metal phosphides (TMPs) electrocatalysts for oxygen evolution reaction (OER) to address fossil energy shortages. Herein, we report the synthesis of Co2P embedded in N-doped porous carbon (Co2P@N-C) via a facile one-step strategy. The obtained catalyst exhibits a lower overpotential of 352 mV for OER at a current density of 10 mA cm−2 and a small Tafel slope of 84.6 mV dec−1, with long-time reliable stability. The excellent electrocatalytic performance of Co2P@N-C can be mainly owed to the synergistic effect between the Co2P and highly conductive N-C substrate, which not only affords rich exposed active sites but also promotes faster charge transfer, thus significantly promoting OER process. This work presents a promising and industrially applicable synthetic strategy for the rational design of high performance nonnoble metal electrocatalysts with enhanced OER performance. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Energy Storage and Conversion)
Show Figures

Figure 1

15 pages, 4461 KiB  
Article
Preparation of a Honeycomb-like FeNi(OH/P) Nanosheet Array as a High-Performance Cathode for Hybrid Supercapacitors
by Chenliang Li, Ruizhi Li and Yingke Zhou
Energies 2022, 15(11), 3877; https://doi.org/10.3390/en15113877 - 24 May 2022
Cited by 8 | Viewed by 2180
Abstract
Polymetallic transition metal phosphides (TMPs) exhibit quasi-metallic properties and a high electrical conductivity, making them attractive for high-performance hybrid supercapacitors (HSCs). Herein, a nanohoneycomb (NHC)-like FeNi layered double hydroxide (LDH) array was grown in situ on 3D current collector nickel foam (NF), which [...] Read more.
Polymetallic transition metal phosphides (TMPs) exhibit quasi-metallic properties and a high electrical conductivity, making them attractive for high-performance hybrid supercapacitors (HSCs). Herein, a nanohoneycomb (NHC)-like FeNi layered double hydroxide (LDH) array was grown in situ on 3D current collector nickel foam (NF), which is also the nickel source during the hydrothermal process. By adjusting the amount of NaH2PO2, an incomplete phosphated FeNi(OH/P) nanosheet array was obtained. The optimized FeNi(OH/P) nanosheet array exhibited a high capacity up to 3.6 C cm−2 (408.3 mAh g−1) and an excellent long-term cycle performance (72.0% after 10,000 cycles), which was much better than FeNi LDH’s precursor. In addition, the hybrid supercapacitor (HSC) assembled with FeNi(OH/P) (cathode) and polypyrrole (PPy/C, anode) achieved an ultra-high energy density of 45 W h kg−1 at a power density of 581 W kg−1 and an excellent cycle stability (118.5%, 2000 cycles), indicating its great potential as an HSC with a high electrochemical performance. Full article
(This article belongs to the Topic Energy Storage and Conversion Systems)
Show Figures

Figure 1

33 pages, 6197 KiB  
Review
Transition Metal Phosphides (TMP) as a Versatile Class of Catalysts for the Hydrodeoxygenation Reaction (HDO) of Oil-Derived Compounds
by Latifa Ibrahim Al-Ali, Omer Elmutasim, Khalid Al Ali, Nirpendra Singh and Kyriaki Polychronopoulou
Nanomaterials 2022, 12(9), 1435; https://doi.org/10.3390/nano12091435 - 22 Apr 2022
Cited by 31 | Viewed by 4840
Abstract
Hydrodeoxygenation (HDO) reaction is a route with much to offer in the conversion and upgrading of bio-oils into fuels; the latter can potentially replace fossil fuels. The catalyst’s design and the feedstock play a critical role in the process metrics (activity, selectivity). Among [...] Read more.
Hydrodeoxygenation (HDO) reaction is a route with much to offer in the conversion and upgrading of bio-oils into fuels; the latter can potentially replace fossil fuels. The catalyst’s design and the feedstock play a critical role in the process metrics (activity, selectivity). Among the different classes of catalysts for the HDO reaction, the transition metal phosphides (TMP), e.g., binary (Ni2P, CoP, WP, MoP) and ternary Fe-Co-P, Fe-Ru-P, are chosen to be discussed in the present review article due to their chameleon type of structural and electronic features giving them superiority compared to the pure metals, apart from their cost advantage. Their active catalytic sites for the HDO reaction are discussed, while particular aspects of their structural, morphological, electronic, and bonding features are presented along with the corresponding characterization technique/tool. The HDO reaction is critically discussed for representative compounds on the TMP surfaces; model compounds from the lignin-derivatives, cellulose derivatives, and fatty acids, such as phenols and furans, are presented, and their reaction mechanisms are explained in terms of TMPs structure, stoichiometry, and reaction conditions. The deactivation of the TMP’s catalysts under HDO conditions is discussed. Insights of the HDO reaction from computational aspects over the TMPs are also presented. Future challenges and directions are proposed to understand the TMP-probe molecule interaction under HDO process conditions and advance the process to a mature level. Full article
Show Figures

Graphical abstract

18 pages, 25212 KiB  
Article
Implementation of Transition Metal Phosphides as Pt-Free Catalysts for PEM Water Electrolysis
by João Brito, João Restivo, Juliana P. S. Sousa, Natalia C. M. Spera, D. S. Falcão, Amadeu Rocha, A. M. F. R. Pinto, Manuel Fernando R. Pereira and Olívia Salomé G. P. Soares
Energies 2022, 15(5), 1821; https://doi.org/10.3390/en15051821 - 1 Mar 2022
Cited by 13 | Viewed by 4530
Abstract
Proton Exchange Membrane (PEM) water electrolysis (WE) produces H2 with a high degree of purity, requiring only water and energy. If the energy is provided from renewable energy sources, it releases “Green H2”, a CO2-free H2. [...] Read more.
Proton Exchange Membrane (PEM) water electrolysis (WE) produces H2 with a high degree of purity, requiring only water and energy. If the energy is provided from renewable energy sources, it releases “Green H2”, a CO2-free H2. PEMWE uses expensive and rare noble metal catalysts, which hinder their use at a large industrial scale. In this work, the electrocatalytic properties of Transition Metal Phosphides (TMP) catalysts supported on Carbon Black (CB) for Hydrogen Evolution Reaction (HER) were investigated as an alternative to Platinum Group Metals. The physico-chemical properties and catalytic performance of the synthesized catalysts were characterized. In the ex situ experiments, the 25% FeP/CB, 50% FeP/CB and 50% CoP/CB with overpotentials of −156.0, −165.9 and −158.5 mV for a current density of 100 mA cm−2 showed the best catalytic properties, thereby progressing to the PEMWE tests. In those tests, the 50% FeP/CB required an overpotential of 252 mV for a current density of 10 mA cm−2, quite close to the 220 mV of the Pt catalyst. This work provides a proper approach to the synthesis and characterization of TMP supported on carbon materials for the HER, paving the way for further research in order to replace the currently used PGM in PEMWE. Full article
Show Figures

Figure 1

Back to TopTop