Electronic Structure Regulated Nickel-Cobalt Bimetal Phosphide Nanoneedles for Efficient Overall Water Splitting
Abstract
:1. Introduction
2. Results
2.1. Preparation and Structure Characterization of NixCo2−xP NDs/NF
2.2. Electrocatalytic Activity for HER and OER
2.3. Overall Water Splitting Electrocatalytic Activity
2.4. DFT Calculations
3. Experimental Section
3.1. Materials
3.2. Materials Preparation
3.3. Material Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, D.; Xu, G.; Yang, H.; Wang, H.; Xia, B.Y. Rational Design of Transition Metal Phosphide-Based Electrocatalysts for Hydrogen Evolution. Adv. Funct. Mater. 2022, 33, 2208358. [Google Scholar] [CrossRef]
- Zang, Y.; Lu, D.-Q.; Wang, K.; Li, B.; Peng, P.; Lan, Y.-Q.; Zang, S.-Q. A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting. Nat. Commun. 2023, 14, 1792. [Google Scholar] [CrossRef]
- Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J.; et al. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Chen, D.; Bai, H.; Zhu, J.; Wu, C.; Zhao, H.; Wu, D.; Jiao, J.; Ji, P.; Mu, S. Multiscale Hierarchical Structured NiCoP Enabling Ampere-Level Water Splitting for Multi-Scenarios Green Energy-to-Hydrogen Systems. Adv. Energy Mater. 2023, 13, 2200499. [Google Scholar] [CrossRef]
- Gultom, N.S.; Chen, T.-S.; Silitonga, M.Z.; Kuo, D.-H. Overall water splitting realized by overall sputtering thin-film technology for a bifunctional MoNiFe electrode: A green technology for green hydrogen. Appl. Catal. B Environ. 2023, 322, 122103. [Google Scholar] [CrossRef]
- Ma, G.; Ye, J.; Qin, M.; Sun, T.; Tan, W.; Fan, Z.; Huang, L.; Xin, X. Mn-doped NiCoP nanopin arrays as high-performance bifunctional electrocatalysts for sustainable hydrogen production via overall water splitting. Nano Energy 2023, 115, 108679. [Google Scholar] [CrossRef]
- Wu, L.; Yu, L.; Zhang, F.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting. Adv. Funct. Mater. 2020, 31, 2006484. [Google Scholar] [CrossRef]
- Liu, M.; Yao, Z.; Gu, J.; Li, C.; Huang, X.; Zhang, L.; Huang, Z.; Fan, M. Issues and opportunities facing hydrolytic hydrogen production materials. Chem. Eng. J. 2023, 461, 141918. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, X.L.; Lv, H.G.; Yu, H.Q.; Yu, Y. Bimetallic-Based Electrocatalysts for Oxygen Evolution Reaction. Adv. Funct. Mater. 2022, 33, 2212160. [Google Scholar] [CrossRef]
- He, X.; Han, X.; Zhou, X.; Chen, J.; Wang, J.; Chen, Y.; Yu, L.; Zhang, N.; Li, J.; Wang, S.; et al. Electronic modulation with Pt-incorporated NiFe layered double hydroxide for ultrastable overall water splitting at 1000 mA cm−2. Appl. Catal. B Environ. 2023, 331, 122683. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, J.; Xu, Z.; Wang, Q.; Wu, J.; Zhang, E.; Dou, S.; Sun, W.; Wang, D.; Li, Y. Ru–Co Pair Sites Catalyst Boosts the Energetics for the Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2022, 61, e202205946. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, S.; Ma, J.; Dou, M.; Wang, F. Surface engineering of MOFs as a route to cobalt phosphide electrocatalysts for efficient oxygen evolution reaction. Nano Energy 2022, 98, 107315. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, P.; Zhang, G.; Wu, S.; Chen, Z.; Ranganathan, H.; Sun, S.; Shi, Z. Mn-doped nickel-iron phosphide heterointerface nanoflowers for efficient alkaline freshwater/seawater splitting at high current densities. Chem. Eng. J. 2023, 454, 140061. [Google Scholar] [CrossRef]
- Huang, C.-J.; Xu, H.-M.; Shuai, T.-Y.; Zhan, Q.-N.; Zhang, Z.-J.; Li, G.-R. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Appl. Catal. B Environ. 2023, 325, 122313. [Google Scholar] [CrossRef]
- Ray, A.; Sultana, S.; Paramanik, L.; Parida, K.M. Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. J. Mater. Chem. A 2020, 8, 19196–19245. [Google Scholar] [CrossRef]
- Yin, H.; Rong, F.; Xie, Y. A review of typical transition metal phosphides electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 2024, 52, 350–375. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, X.; Huang, Z.; Fan, J.; Li, L.; Zhang, M. One-dimensional nickel-cobalt bimetallic phosphide nanostructures for the oxygen evolution reaction. Sustain. Energy Fuels. 2024, 8, 159–165. [Google Scholar] [CrossRef]
- Wen, F.; Li, C.; Zhang, T.; Pang, L.; Liu, H.; Huang, X. Nickel-cobalt bimetal phosphide integrated in nitrogen-doped carbon being a novel chainmail electrocatalyst for oxygen evolution. Int. J. Hydrogen Energy 2024, 54, 1487–1494. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, X.; Han, J.; Zhong, J.; Zhang, T.; Yao, T.; Xu, C.; Cao, T.; Xi, S.; Liang, C. Phase-Junction Electrocatalysts towards Enhanced Hydrogen Evolution Reaction in Alkaline Media. Angew. Chem. Int. Ed. 2021, 133, 263–271. [Google Scholar] [CrossRef]
- Gao, P.; Gao, M.; Lei, T.; Ren, Z.; Luo, J.; Huang, Z.; Wu, A. Hollow urchin-like FeP as highly efficient hydrogen evolution catalyst. Inorg. Chem. Commun. 2023, 156, 111143. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, L.; Bukhvalow, D.; Chen, Z.; Zou, Z.; Shang, L.; Yang, X.; Yan, D.; Han, F.; Zhang, T. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy 2020, 70, 104445. [Google Scholar] [CrossRef]
- Shuai, C.; Mo, Z.; Niu, X.; Zhao, P.; Dong, Q.; Chen, Y.; Liu, N.; Guo, R. Nickel/cobalt bimetallic phosphides derived metal-organic frameworks as bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. J. Alloys Compd. 2020, 847, 156514. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Zhang, L.; Xia, Y.; Wang, H.; Liu, H.; Ge, S.; Yu, J. Manipulating the d-band centers of transition metal phosphides through dual metal doping towards robust overall water splitting. J. Mater. Chem. A 2022, 10, 22125–22134. [Google Scholar] [CrossRef]
- Wen, S.; Huang, J.; Li, T.; Chen, W.; Chen, G.; Zhang, Q.; Zhang, X.; Qian, Q.; Ostrikov, K. Multiphase nanosheet-nanowire cerium oxide and nickel-cobalt phosphide for highly-efficient electrocatalytic overall water splitting. Appl. Catal. B Environ. 2022, 316, 121678. [Google Scholar] [CrossRef]
- Yang, N.; Tian, S.; Feng, Y.; Hu, Z.; Liu, H.; Tian, X.; Xu, L.; Hu, C.; Yang, J. Introducing High-Valence Iridium Single Atoms into Bimetal Phosphides toward High-Efficiency Oxygen Evolution and Overall Water Splitting. Small 2023, 19, 2207253. [Google Scholar] [CrossRef]
- Jo, C.; Surendran, S.; Kim, M.-C.; An, T.-Y.; Lim, Y.; Choi, H.; Janani, G.; Cyril Jesudass, S.; Jun Moon, D.; Kim, J.; et al. Meticulous integration of N and C active sites in Ni2P electrocatalyst for sustainable ammonia oxidation and efficient hydrogen production. Chem. Eng. J. 2023, 463, 142314. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Zhao, Z.; Zhang, Q.-H.; Huang, L.-B.; Gu, L.; Lu, G.; Hu, J.-S.; Wan, L.-J. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. Natl. Sci. Rev. 2020, 7, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Sun, M.; Wu, S.; Huang, B.; Lee, C.S.; Zhang, W. Oxygen-Incorporated NiMoP Nanotube Arrays as Efficient Bifunctional Electrocatalysts For Urea-Assisted Energy-Saving Hydrogen Production in Alkaline Electrolyte. Adv. Funct. Mater. 2021, 31, 2104951. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, F.; Wang, D.; Li, Z.; Wang, X.; Wang, C.; Zhang, K.; Du, Y. Amorphous/Crystalline Heterostructure Transition-Metal-based Catalysts for High-Performance Water Splitting. Coord. Chem. Rev. 2023, 475, 214916. [Google Scholar] [CrossRef]
- Zhang, W.; Han, N.; Luo, J.; Han, X.; Feng, S.; Guo, W.; Xie, S.; Zhou, Z.; Subramanian, P.; Wan, K.; et al. Critical Role of Phosphorus in Hollow Structures Cobalt-Based Phosphides as Bifunctional Catalysts for Water Splitting. Small 2021, 18, 2103561. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, P.; Cao, S.; Chen, H.; Zhou, S.; Liu, H.; Wang, H.; Zhang, J.; Liu, S.; Wei, S.; et al. Contemporaneous inverse manipulation of the valence configuration to preferred Co2+ and Ni3+ for enhanced overall water electrocatalysis. Appl. Catal. B Environ. 2021, 284, 119725. [Google Scholar] [CrossRef]
- Zeng, Z.; Xu, R.; Zhao, H.; Zhang, H.; Liu, L.; Lei, Y. Exploration of nanowire- and nanotube-based electrocatalysts for oxygen reduction and oxygen evolution reaction. Mater. Today Nano 2018, 3, 54–68. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Zhang, Y.; Ge, R.; Yang, J.; Li, Y.; Zhang, J.; Zhu, M.; Li, S.; Liu, B.; et al. Boosted water electrolysis capability of NixCoyP via charge redistribution and surface activation. Chem. Eng. J. 2023, 473, 145397. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Ge, R.; Cairney, J.M.; Zheng, R.; Khan, A.; Li, S.; Liu, B.; Dai, L.; Li, W. Tailoring the electronic structure of Ni5P4/Ni2P catalyst by Co2P for efficient overall water electrolysis. Appl. Energy 2023, 349, 121582. [Google Scholar] [CrossRef]
- Oyama, S.T.; Gott, T.; Zhao, H.; Lee, Y.-K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107. [Google Scholar] [CrossRef]
- Lan, X.; Li, G.; Jin, R.; Li, X.; Zheng, J. Carbon coated nickel cobalt phosphide with sea urchin-like structure by low temperature plasma processing for hydrogen evolution and urea oxidation. Chem. Eng. J. 2022, 450, 138225. [Google Scholar] [CrossRef]
- Du, C.; Yang, L.; Yang, F.; Cheng, G.; Luo, W. Nest-like NiCoP for Highly Efficient Overall Water Splitting. ACS Catal. 2017, 7, 4131–4137. [Google Scholar] [CrossRef]
- Hu, R.; Jiao, L.; Liang, H.; Feng, Z.; Gao, B.; Wang, X.F.; Song, X.Z.; Liu, L.Z.; Tan, Z. Engineering Interfacial Built-in Electric Field in Polymetallic Phosphide Heterostructures for Superior Supercapacitors and Electrocatalytic Hydrogen Evolution. Small 2023, 19, 2304132. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, H.; Liu, P.; Shen, Y.; Cheng, C.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ. Sci. 2016, 9, 2257–2261. [Google Scholar] [CrossRef]
- Li, J.; Wei, G.; Zhu, Y.; Xi, Y.; Pan, X.; Ji, Y.; Zatovsky, I.V.; Han, W. Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2017, 5, 14828–14837. [Google Scholar] [CrossRef]
- Lu, B.; Zang, J.; Li, W.; Li, J.; Zou, Q.; Zhou, Y.; Wang, Y. Co-doped NixPy loading on Co3O4 embedded in Ni foam as a hierarchically porous self-supported electrode for overall water splitting. Chem. Eng. J. 2021, 422, 130062. [Google Scholar] [CrossRef]
- Lin, J.; Yan, Y.; Li, C.; Si, X.; Wang, H.; Qi, J.; Cao, J.; Zhong, Z.; Fei, W.; Feng, J. Bifunctional Electrocatalysts Based on Mo-Doped NiCoP Nanosheet Arrays for Overall Water Splitting. Nano-Micro Lett. 2019, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Biemolt, J.; Zhao, K.; Zhao, Y.; Cao, X.; Yang, Y.; Wu, X.; Rothenberg, G.; Yan, N. A membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Xie, Y.; Sun, B.; Jiang, J.; Jiang, W.-J.; Xi, S.; Yang, H.Y.; Yan, K.; Wang, S.; et al. Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Lett. 2021, 21, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.F.; Zhang, S.L.; Sim, W.L.; Gao, S.; Lou, X.W. Phosphorized CoNi2S4 Yolk-Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angew. Chem. Int. Ed. 2021, 60, 22885–22891. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wen, M.; Tian, Y.; Wu, Q.; Fu, Y. A novel structure of quasi-monolayered NiCo-bimetal-phosphide for superior electrochemical performance. J. Energy Chem. 2022, 74, 203–211. [Google Scholar] [CrossRef]
- Qi, B.; Chang, W.; Xu, Q.; Jiang, L.; An, S.; Chu, J.-F.; Song, Y.-F. Regulating Hollow Carbon Cage Supported NiCo Alloy Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution Reaction. ACS Appl. Mater. Inter. 2023, 15, 12078–12087. [Google Scholar] [CrossRef]
- Wang, X.; Le, J.B.; Fei, Y.; Gao, R.; Jing, M.; Yuan, W.; Li, C.M. Self-assembled ultrasmall mixed Co–W phosphide nanoparticles on pristine graphene with remarkable synergistic effects as highly efficient electrocatalysts for hydrogen evolution. J. Mater. Chem. A 2022, 10, 7694–7704. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S.L.; Maijenburg, A.W.; Wehrspohn, R.B. Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting. Adv. Funct. Mater. 2018, 28, 1706847. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; He, H.; Chen, Y.; Gao, Z.; Ma, N.; Wang, B.; Zheng, L.; Li, R.; Wei, Y.; et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995. [Google Scholar] [CrossRef]
- Quan, Q.; Zhang, Y.; Wang, F.; Bu, X.; Wang, W.; Meng, Y.; Xie, P.; Chen, D.; Wang, W.; Li, D.; et al. Topochemical domain engineering to construct 2D mosaic heterostructure with internal electric field for high-performance overall water splitting. Nano Energy 2022, 101, 107566. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Gao, H.; Huang, Z.; Hao, Q.; Liu, B. Interface-induced contraction of core–shell Prussian blue analogues toward hollow Ni-Co-Fe phosphide nanoboxes for efficient oxygen evolution electrocatalysis. Chem. Eng. J 2023, 451, 138515. [Google Scholar] [CrossRef]
- Huang, Y.; Song, X.; Chen, S.; Zhang, J.; Gao, H.; Liao, J.; Ge, C.; Sun, W. Multi layer Architecture of Novel Sea Urchin like Co Hopeite to Boosting Overall Alkaline Water Splitting. Adv. Mater. Interfaces 2023, 10, 2202349. [Google Scholar] [CrossRef]
- Yu, J.; Cao, Q.; Li, Y.; Long, X.; Yang, S.; Clark, J.; Nakabayashi, M.; Shibata, N.; Delaunay, J. Defect-rich NiCeOx electrocatalyst with ultrahigh stability and low overpotential for water oxidation. ACS Catal. 2019, 9, 1605–1611. [Google Scholar] [CrossRef]
- Chen, K.; Cao, Y.; Wang, W.; Diao, J.; Park, J.; Dao, V.; Kim, G.-C.; Qu, Y.; Lee, I.-H. Effectively enhanced activity for overall water splitting through interfacially strong P-Co–O tetrahedral coupling interaction on CoO/CoP heterostructure hollow-nanoneedles. J. Mater. Chem. A 2023, 11, 3136–3147. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, S.; Zhu, S.; Gao, H.; Hui, K.S.; Yuan, C.-Z.; Yin, H.; Bin, F.; Wu, X.-L.; Mai, W.; et al. Iron-modulated nickel cobalt phosphide embedded in carbon to boost power density of hybrid sodium–air battery. Appl. Catal. B Environ. 2021, 285, 119786. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Zhao, S.; Zhou, W.; Dai, R.; Zhao, X.; Chen, Z.; Sun, T.; Zhang, H.; Chen, A. Mo-doped NiCoP nanowire array grown in situ on Ni foam as a high-performance bifunctional electrocatalyst for overall water splitting. J. Alloys Compd. 2022, 918, 165802. [Google Scholar] [CrossRef]
- Liu, H.; Jin, M.; Zhan, D.; Wang, J.; Cai, X.; Qiu, Y.; Lai, L. Stacking faults triggered strain engineering of ZIF-67 derived Ni-Co bimetal phosphide for enhanced overall water splitting. Appl. Catal. B Environ. 2020, 272, 118951. [Google Scholar] [CrossRef]
- Hu, H.-S.; Li, Y.; Shao, Y.-R.; Li, K.-X.; Deng, G.; Wang, C.-B.; Feng, Y.-Y. NiCoP nanorod arrays as high-performance bifunctional electrocatalyst for overall water splitting at high current densities. J. Power Source 2021, 484, 229269. [Google Scholar] [CrossRef]
- Narasimman, R.; Jnanapriya, G.; Sujatha, S.; Ilangovan, S.A. Vertically aligned nickel-iron-phosphide nanosheets on three-dimensional porous nickel foam for overall water splitting. J. Alloys Compd. 2023, 947, 169474. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; She, X.; Li, H.; Wang, C.; Chen, S.; Diao, L.; Lu, P.; Li, L.; Tan, L.; Sun, J.; et al. Electronic Structure Regulated Nickel-Cobalt Bimetal Phosphide Nanoneedles for Efficient Overall Water Splitting. Molecules 2024, 29, 657. https://doi.org/10.3390/molecules29030657
Xu H, She X, Li H, Wang C, Chen S, Diao L, Lu P, Li L, Tan L, Sun J, et al. Electronic Structure Regulated Nickel-Cobalt Bimetal Phosphide Nanoneedles for Efficient Overall Water Splitting. Molecules. 2024; 29(3):657. https://doi.org/10.3390/molecules29030657
Chicago/Turabian StyleXu, Heyang, Xilin She, Haolin Li, Chuanhui Wang, Shuai Chen, Lipeng Diao, Ping Lu, Longwei Li, Liwen Tan, Jin Sun, and et al. 2024. "Electronic Structure Regulated Nickel-Cobalt Bimetal Phosphide Nanoneedles for Efficient Overall Water Splitting" Molecules 29, no. 3: 657. https://doi.org/10.3390/molecules29030657
APA StyleXu, H., She, X., Li, H., Wang, C., Chen, S., Diao, L., Lu, P., Li, L., Tan, L., Sun, J., & Zou, Y. (2024). Electronic Structure Regulated Nickel-Cobalt Bimetal Phosphide Nanoneedles for Efficient Overall Water Splitting. Molecules, 29(3), 657. https://doi.org/10.3390/molecules29030657