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Abstract: The exploitation of electrocatalysts with high activity and durability for the hydrogen evolu-
tion reaction is significant but also challenging for future energy systems. Transition metal phosphides
(TMPs) have attracted a lot of attention due to their effective activity for the hydrogen evolution reaction,
but the complicated preparation of metal phosphides remains a bottleneck. In this study, a green
fabrication method is designed and proposed to construct N, P co-doped graphene (NPG)-supported
cobalt phosphide (Co2P) nanoparticles by using DNA as both N and P sources. Thanks to the synergistic
effect of NPG and Co2P, the Co2P/NPG shows effective activity with a small overpotential of 144 mV
and a low Tafel slope of 72 mV dec−1 for the hydrogen evolution reaction. This study describes a
successful green synthesis strategy for the preparation of high-performance TMPs.

Keywords: cobalt phosphide; hydrogen evolution reaction; DNA; phosphorus source

1. Introduction

Hydrogen energy is regarded as the disruptive technological direction of the future
energy revolution. The hydrogen energy industry is now essential to the national energy
strategies of many countries. The question of how to obtain hydrogen in a large, cheap,
convenient, and green way is the primary problem facing the development of hydrogen
energy. Water electrolysis is considered to be a promising direction for future hydrogen
production, especially electrolyzing water through using renewable energy and abandoned
electricity [1–3]. Highly efficient catalysts are crucial for reducing the energy barrier for
the hydrogen evolution reaction (HER). It is well-known that, at present, platinum-based
catalysts are the most effective catalysts for the HER. However, their commercial application
is restricted by their expensive cost and insufficient supply. Therefore, the development
of non-noble metal-based electrocatalysts with high activity and stability is urgent for
practical applications.

Recently, various non-noble metal electrocatalysts, such as transition metal sulfides [4,5],
nitrides [6], and phosphides [7], have been developed for the hydrogen evolution reaction.
Among them, transition metal phosphides have attracted a lot of attention due to abundant
reserves and superior catalytic performance in the hydrogen evolution reaction [8–10]. Due
to the various forms of cobalt phosphides, such as CoP, Co2P, CoP2, CoP3, etc., the reported
synthesis methods are relatively limited. Meanwhile, the commonly used method for
synthesizing phosphides is the gas–solid strategy, and the main precursor of the phosphorus
used is sodium hypophosphite, which may release highly toxic phosphine (PH3) [11,12].
Graphene has an extremely large specific surface area and excellent conductivity, making it
a rational carrier for hydrogen evolution catalysts [13–15]. In recent years, it has been found
that doped graphene can activate adjacent carbon atoms to promote hydrogen evolution
due to the difference in electronegativity and size between the doped heteroatoms and
carbon atoms. Qiao et al. [16] obtained N, Co co-doped graphene by using melamine as a
nitrogen source and triphenylphosphine as a phosphorus source and calcining it in an argon
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atmosphere. Nitrogen and phosphorus heteroatoms affect the valence orbital energy levels
of graphene, resulting in better catalytic activity for the hydrogen evolution by affecting
nearby carbon atoms on the inactive graphene. The reaction steps for the preparation of
metal phosphides and N, P co-doped graphene are generally complicated and usually
include a high-temperature carbonization and a phosphating process. Therefore, it is
necessary to find a simple and feasible method that can obtain NPG and directly synthesize
cobalt phosphide at the same time to simplify the reaction. Deoxyribonucleic acid (DNA)
is a biomolecule composed of four types of deoxyribonucleotides. Deoxyribonucleotides
generally consist of one molecule of a nitrogenous base, one molecule of deoxyribose, and
one molecule of phosphate [17]. From their composition, they can provide nitrogen and
phosphorus for composite materials [18,19].

In this study, we describe the synthesis of a N, P co-doped graphene-supported
cobalt phosphide composite (Co2P/NPG), which was synthesized through a hydrothermal
reaction and a subsequent carbonization process. The biomolecule DNA was the nitrogen
and phosphorus source for the preparation of NPG and Co2P, also acting as the chelating
sites for metal ions. The as-prepared Co2P/NPG shows superior activity for the hydrogen
evolution reaction.

2. Materials and Methods

Preparation of Co2P/NPG: First, graphene oxide (GO) was prepared using Hummers’
method. For this, 20 mg GO and 30 mL deionized water were added into a 100 mL flask;
this was followed by ultrasonication for 30 min to obtain a dilute solution of GO. Then,
100 mg deoxyribonucleic acid (DNA) was added to the GO solution, and the mixture
was ultrasonicated for two hours to obtain a uniformly dispersed solution. Then, the
above-mentioned mixture was heated to 95 ◦C in an oil bath and maintained for 30 min
via magnetic stirring to obtain DNA-modified GO (DNA-GO). A total of 100 mg cobalt
acetate hexahydrate was dissolved in the DNA-GO solution, and 0.25 mL ammonia solution
was added drop by drop into the above-mentioned mixture. After continuous magnetic
stirring for 3 h, the solution was transferred into a stainless-steel reactor and maintained at
180 ◦C in a vacuum drying oven for 3 h. The intermediate product (Co3O4/DNA-GO) was
obtained after being centrifuged and washed several times. Finally, the Co3O4/DNA-GO
was placed in a quartz boat in a tubular furnace and heated to 800 ◦C at a heating rate of
5 ◦C min−1 in an Ar atmosphere before being kept for 2 h. After washing and filtering with
deionized water, the Co2P/NPG composite was obtained by vacuum drying overnight. For
comparison, samples with different cobalt acetate contents (50 mg and 200 mg) were also
synthesized (labeled as Co2P/NPG-2 and Co2P/NPG-3).

Electrochemical measurements: All electrochemical experiments were performed on
the CHI760E electrochemical workstation. Specifically, Co2P/NPG was used as the working
electrode; a Ag/AgCl electrode and a graphite rod were used as the reference electrode and
the counter electrode, respectively. In 0.5 M H2SO4, the linear scanning voltammetry curve
was recorded at a scanning speed of 5 mV s−1. Electrochemical stability measurements
were performed via 1000 CV cycles.

3. Results and Discussion

The fabrication process of Co2P/NPG is shown in Figure 1. Firstly, DNA-modified GO
(DNA-GO) is coupled through the π–π stacking between DNA and GO. Negatively charged
phosphate groups on DNA could provide binding sites for Co2+. During the preparation
process, the Co2+ can bind to the DNA-GO due to the strong electrostatic interaction
between the metal cations and the negatively charged phosphate groups on DNA. After
a hydrothermal reaction, Co3O4/DNA-GO was obtained. Sufficient N and P elements in
DNA enable the fabrication of Co2P and NPG without the need for an additional N and P
source. Therefore, after carbonization, a Co2P/NPG composite is fabricated.
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Figure 1. Schematic illustration of the synthesis of the Co2P/NPG composite.

X-ray powder diffraction (XRD) was utilized to analyze the crystalline structure of the
synthesized Co2P/NPG. As depicted in Figure 2, the red vertical line is the standard card
for Co2P (PDF#32-0306). The XRD pattern showed five characteristic peaks located at 40.7◦,
41◦, 43.3◦, 44.1◦, 51.5◦, and 52◦, corresponding to the (121), (201), (211), (130), (131), and
(002) crystal planes of Co2P, respectively. There are no peaks of metallic cobalt, cobalt oxide,
or other forms of cobalt phosphide (CoP, CoP2, etc.), thus proving the high purity of our
product. The control sample of Co2P was also detected via XRD, as shown in Figure S2,
confirming the successful preparation of Co2P.
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Figure 2. XRD pattern of Co2P/NPG. The vertical lines at the base of the XRD pattern represent the
standard diffractions of Co2P.

Transmission electron microscopy (TEM) was utilized to detect the morphology of
the as-prepared Co2P/NPG. As clearly shown in Figure 3a, the Co2P nanoparticles are
uniformly dispersed on the graphene sheet. The high-resolution TEM (HRTEM) image of
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Co2P nanoparticles (Figure 3b) presents clear lattice planes of 0.22 nm, which corresponded
to the (121) plane of Co2P [20–22]. It is worth noting that the sample underwent long-term
ultrasonication during the preparation process of the TEM sample, but no free cobalt
phosphide particles were found during the testing process, thus proving the close binding
between cobalt phosphide and N, P co-doped graphene. The energy-dispersive X-ray
spectrum (EDS) results shown in Figure 3c in the region further illustrate the presence of C,
N, O, Co, and P elements. The atomic ratio of Co and P derived from the EDS result was
approximately 1.4:1, which is lower than the stoichiometric ratio of Co2P, indicating the
successful doping of P onto the graphene sheet. In order to further verify the distribution
of C, N, Co, and P elements in the composite, HAADF-STEM element mapping analysis
was employed. Figure 3d is a STEM image of Co2P/NPG, and the distribution of C,
N, Co, and P elements was analyzed based on this. As shown in Figure 3e,f, it can be
found that the distribution of N and C elements is consistent, indicating that nitrogen was
successfully doped onto graphene. The distribution of Co and P elements (Figure 3g,h)
on the particles is basically consistent, which proves the successful preparation of cobalt
phosphide nanoparticles.
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Figure 3. TEM (a) and HRTEM (b) images of Co2P/NPG. (c) EDS spectrum of Co2P/NPG. HAADF-
STEM (d) image and the corresponding EDS mappings of C (e), N (f), Co (g), and P (h) elements
for Co2P/NPG.

The surface elemental composition and chemical states of Co2P/NPG were detected
through using X-ray photoelectron spectroscopy (XPS) characterization technology. Firstly,
the chemical states of the elements for N, P co-doped carbon (NPC), which was synthesized
via the carbonization of DNA, were detected through XPS. The results shown in Figure S1
confirm the successful preparation of NPC. As displayed in Figure 4a, the peaks can be
divided into four peaks at 284.7, 286, 287.1, and 289.3 eV, contributing to the C-C, C-P,
C-N, and C-O, respectively. The high-resolution spectrum of N 1s (Figure 4b) can be
deconvoluted into two peaks, which can be ascribed to pyridinic N (398.2 eV) and graphitic
N (400.6 eV), indicating the successful doping of N to the graphene sheet [23]. Figure 4c
is the high-resolution spectrum of Co 2p, in which two peaks at 778.3 and 793.4 eV can
be ascribed to Co 2p1/2 and 2p3/2 in Co2P [24]. The peaks at 781.2 and 797.2 eV may
be due to the oxidation of cobalt ions on the surface of cobalt phosphide. The peaks at
786.0 and 802.9 eV are the satellite peaks, which can be found in transition metal-based
materials. Figure 4d shows the high-resolution pattern of P 2p, which can be deconvoluted
into four peaks: the two peaks at 129.5 and 130.3 eV corresponding to the P 2p3/2 and
P 2p1/2 in Co2P, and the other two peaks located at 132.3 and 133.2 eV can be ascribed
to P-C and P-O species [24,25]. The appearance of the P-C bond indicated the successful
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doping of phosphorus onto the graphene sheet. The peak of the P-O bond is due to the
surface oxidation of Co2P after air exposure. It should be noted that the P 2p3/2 shows a
negative shift of 0.6 eV compared with the elemental P (130.1 eV) [26]. While, compared
with the energy level of the zero valent state of the metal cobalt (778 eV) [23], the binding
energy of Co 2p1/2 in the composite shows a slightly positive shift of 0.3 eV, indicating the
transfer of electrons from cobalt to P. All of the above characterizations imply the successful
fabrication of Co2P/NPG.
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Hydrogen evolution reaction activity was detected through using linear sweep voltam-
metry (LSV) with a scan rate of 5 mV s−1 in 0.5 M H2SO4. For comparison, commercial Pt/C
(20%), Co2P, and NPG were also detected. As depicted in Figure 5a, the commercial Pt/C
(20%) shows the best activity, with an overpotential of 34 mV, yielding a current density
of 10 mA cm−2. The obtained Co2P/NPG exhibits an overpotential of 144 mV, which
is much lower than that of Co2P (266 mV) and NPG (467 mV). The Co2P/NPG exhibits
superior activity than many of the recently reported non-noble metal electrocatalysts listed
in Table S1. In order to optimize the synthetic conditions, catalysts with different contents
of cobalt acetate (50 mg and 200 mg) were also synthesized (labeled as Co2P/NPG-2 and
Co2P/NPG-3). As shown in Figure S3, Co2P/NPG shows the best activity with the lowest
overpotential. In addition, the HER reaction kinetic activities were estimated via Tafel slope
(Figure 5b). The Tafel slope of Co2P/NPG is about 72 mV dec−1, indicating that the reaction
kinetics of Co2P/NPG follows the Volmer–Heyrovsky mechanism. For comparison, the
Tafel slope of the 20% Pt/C was also tested (29 mV dec−1), which is consistent with the
results reported in previous publications [27,28]. It can be observed that the Tafel slope for
Co2P/NPG is drastically lower than that of Co2P (114 mV dec−1) and NPG (196 mV dec−1).
A lower Tafel slope typically suggests more favorable HER kinetics, further demonstrating
the synergistic contribution of the Co2P and NPG.
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Electrocatalytic stability is a key factor for evaluating the performance of the elec-
trocatalysts, especially for further utilization in practical applications. Continuous cyclic
voltammetry (CV) sweeps were conducted at a sweep rate of 100 mV s−1. As shown in
Figure 5c, after continuous detection for 1000 cycles, the polarization curves were almost
consistent with the initial test, indicating the excellent stability of Co2P/NPG. Moreover,
a TEM image of the Co2P/NPG after the stability test was also test. As shown in Figure
S4, after the stability test, the morphology of the sample does not show obvious changes,
and the nanoparticles are evenly dispersed on the graphene sheet, further confirming the
stability of the catalysts.

4. Conclusions

In summary, a green strategy for the preparation of N, P co-doped graphene-supported
Co2P nanoparticles has been proposed in this study. In this strategy, the purpose of
DNA is three-fold: (1) providing loading sites for catching Co2+; (2) acting as a green
phosphorus source for the preparation of Co2P; and (3) acting as a N and P source for N,
P doping in graphene. Due to the synergistic effect of NPG and Co2P, the as-prepared
Co2P/NPG exhibits high activity, with a low overpotential (144 mV) and a small Tafel
slope (72 mV dec−1). This study provides a successful green synthesis strategy for the
preparation of high-performance TMPs.
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