Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (342)

Search Parameters:
Keywords = transition carbide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 (registering DOI) - 1 Aug 2025
Viewed by 234
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

18 pages, 4119 KiB  
Article
Structural Mechanics Calculations of SiC/Mo-Re Composites with Improved High Temperature Creep Properties
by Ke Li, Egor Kashkarov, Hailiang Ma, Ping Fan, Qiaoli Zhang, Andrey Lider and Daqing Yuan
Materials 2025, 18(15), 3459; https://doi.org/10.3390/ma18153459 - 23 Jul 2025
Viewed by 205
Abstract
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is [...] Read more.
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is investigated by finite element simulation based on scale separation. The results of the study showed that the incorporation of gradient transition layers between the metallic and ceramic phases effectively mitigates thermally induced local stresses arising from mismatches in coefficients of thermal expansion. By optimizing the composition of the gradient transition layers, the stress distribution within the composite under operating conditions has been adjusted. As a result, the stress experienced by the alloy phase is significantly reduced, potentially extending the high-temperature creep rupture life. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

20 pages, 4241 KiB  
Article
Strontium-Doped Ti3C2Tx MXene Coatings on Titanium Surfaces: Synergistic Osteogenesis Enhancement and Antibacterial Activity Evaluation
by Yancheng Lai and Anchun Mo
Coatings 2025, 15(7), 847; https://doi.org/10.3390/coatings15070847 - 19 Jul 2025
Viewed by 363
Abstract
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations [...] Read more.
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations endow high hydrophilicity and bioactivity. The coating was fabricated via anodic electrophoretic deposition (40 V, 2 min) of Ti3C2Tx nanosheets, followed by SrCl2 immersion to incorporate Sr2+. The coating morphology, phase composition, chemistry, hydrophilicity, mechanical stability, and Sr2+ release were characterized. In vitro bioactivity was assessed with rat bone marrow mesenchymal stem cells (BMSCs)—with respect to viability, proliferation, migration, alkaline phosphatase (ALP) staining, and Alizarin Red S mineralization—while the antibacterial efficacy was evaluated against Staphylococcus aureus (S. aureus) via live/dead staining, colony-forming-unit enumeration, and AlamarBlue assays. The Sr-doped MXene coating formed a uniform lamellar structure, lowered the water-contact angle to ~69°, and sustained Sr2+ release (0.36–1.37 ppm). Compared to undoped MXene, MXene/Sr enhanced BMSC proliferation on day 5, migration by 51%, ALP activity and mineralization by 47%, and reduced S. aureus viability by 49% within 24 h. Greater BMSCs activity accelerates early bone integration, whereas rapid bacterial suppression mitigates peri-implant infection—two critical requirements for implant success. Sr-doped Ti3C2Tx MXene thus offers a simple, dual-function surface-engineering strategy for dental and orthopedic implants. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

21 pages, 4856 KiB  
Article
Mechanical Properties of Recycled Concrete with Carbide Slag Slurry Pre-Immersed and Carbonated Recycled Aggregate
by Xiangfei Wang, Guoliang Guo, Jinglei Liu, Chun Lv and Mingyan Bi
Materials 2025, 18(14), 3281; https://doi.org/10.3390/ma18143281 - 11 Jul 2025
Viewed by 262
Abstract
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded [...] Read more.
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded mortar of recycled coarse aggregate by pre-impregnating it with carbide slag slurry (CSS). This approach enhances the subsequent carbonation effect and thus the properties of recycled aggregates. The experimental results showed that the method significantly improved the water absorption, crushing value, and apparent density of the recycled aggregate. Additionally, it enhanced the compressive strength, split tensile strength, and flexural strength of the recycled concrete produced using the aggregate improved by this method. Microanalysis revealed that CO2 reacts with calcium hydroxide and hydrated calcium silicate (C-S-H) to produce calcite-type calcium carbonate and amorphous silica gel. These reaction products fill microcracks and pores on the aggregate and densify the aggregate–paste interfacial transition zone (ITZ), thereby improving the properties of recycled concrete. This study presents a practical approach for the high-value utilization of construction waste and the production of low-carbon building materials by enhancing the quality of recycled concrete. Additionally, carbon sequestration demonstrates broad promise for engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

12 pages, 2279 KiB  
Article
Electrostatic Self-Assembly of Heterostructured In2O3/Ti3C2Tx Nanocomposite for High-Selectivity NO2 Gas Sensing at Room Temperature
by Yongjing Guo, Zhengxin Zhang, Hangshuo Feng, Qingfu Dai, Qiuni Zhao, Zaihua Duan, Shenghui Guo, Li Yang, Ming Hou and Yi Xia
Chemosensors 2025, 13(7), 249; https://doi.org/10.3390/chemosensors13070249 - 10 Jul 2025
Viewed by 364
Abstract
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O [...] Read more.
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O3) decorated on titanium carbide (Ti3C2Tx) nanosheets by electrostatic self-assembly and develop it for high-selectivity NO2 gas sensing at room temperature. Self-assembly formation of multiple heterojunctions in the In2O3/Ti3C2Tx composite provide abundant NO2 gas adsorption sites and high electron transfer activity, which is conducive to improving the gas-sensing response of the In2O3/Ti3C2Tx gas sensor. Assisted by rich adsorption sites and hetero interface, the as-fabricated In2O3/Ti3C2Tx gas sensor exhibits the highest response to NO2 among various interference gases. Meanwhile, a detection limit of 0.3 ppm, and response/recovery time (197.62/93.84 s) is displayed at room temperature. Finally, a NO2 sensing mechanism of In2O3/Ti3C2Tx gas sensor is constructed based on PN heterojunction enhancement and molecular adsorption. This work not only expands the gas-sensing application of MXenes, but also demonstrates an avenue for the rational design and construction of NO2-sensing materials. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

20 pages, 4646 KiB  
Review
Vanadium-Based MXenes: Types, Synthesis, and Recent Advances in Supercapacitor Applications
by Zhiwei Gao, Donghu Shi, Jiawei Xu, Te Hai, Yao Zhao, Meng Qin and Jian Li
Nanomaterials 2025, 15(13), 1038; https://doi.org/10.3390/nano15131038 - 4 Jul 2025
Viewed by 446
Abstract
Since the discovery of two-dimensional transition metal carbides and nitrides (MXenes), MXenes have attracted widespread research in the academic community due to their advantages, such as adjustable interlayer spacing, excellent hydrophilicity, conductivity, compositional diversity, and rich surface chemical composition. More than 100 different [...] Read more.
Since the discovery of two-dimensional transition metal carbides and nitrides (MXenes), MXenes have attracted widespread research in the academic community due to their advantages, such as adjustable interlayer spacing, excellent hydrophilicity, conductivity, compositional diversity, and rich surface chemical composition. More than 100 different MXene combinations can be calculated theoretically, but only more than 40 have been successfully synthesized through experiments. Among the many synthesized and reported MXene materials, vanadium-based carbide MXenes, represented by V2CTx and V4C3Tx, show excellent application prospects in energy storage and have become the focus of researchers. In this review, we mainly discuss the structure, characteristics, and preparation methods of vanadium-based MXene precursors in the MAX phase and their applications in supercapacitors. Finally, we propose the main challenges existing at the current stage of vanadium-based materials and their heterostructures and provide a perspective on future research directions. Full article
Show Figures

Figure 1

31 pages, 4803 KiB  
Review
Advanced HVOF-Sprayed Carbide Cermet Coatings as Environmentally Friendly Solutions for Tribological Applications: Research Progress and Current Limitations
by Basma Ben Difallah, Yamina Mebdoua, Chaker Serdani, Mohamed Kharrat and Maher Dammak
Technologies 2025, 13(7), 281; https://doi.org/10.3390/technologies13070281 - 3 Jul 2025
Viewed by 526
Abstract
Thermally sprayed carbide cermet coatings, particularly those based on tungsten carbide (WC) and chromium carbide (Cr3C2) and produced with the high velocity oxygen fuel (HVOF) process, are used in tribological applications as environmentally friendly alternatives to electroplated hard chrome [...] Read more.
Thermally sprayed carbide cermet coatings, particularly those based on tungsten carbide (WC) and chromium carbide (Cr3C2) and produced with the high velocity oxygen fuel (HVOF) process, are used in tribological applications as environmentally friendly alternatives to electroplated hard chrome coatings. These functional coatings are especially prevalent in the automotive industry, offering excellent wear resistance. However, their mechanical and tribological performances are highly dependent on factors such as feedstock powders, spray parameters, and service conditions. This review aims to gain deeper insights into the above elements. It also outlines emerging advancements in HVOF technology—including in situ powder mixing, laser treatment, artificial intelligence integration, and the use of novel materials such as rare earth elements or transition metals—which can further enhance coating performance and broaden their applications to sectors such as the aerospace and hydro-machinery industries. Finally, this literature review focuses on process optimization and sustainability, including environmental and health impacts, critical material use, and operational limitations. It uses a life cycle assessment (LCA) as a tool for evaluating ecological performance and addresses current challenges such as exposure risks, process control constraints, and the push toward safer, more sustainable alternatives to traditional WC and Cr3C2 cermet coatings. Full article
Show Figures

Figure 1

28 pages, 63037 KiB  
Review
Advances in 2D Photodetectors: Materials, Mechanisms, and Applications
by Ambali Alade Odebowale, Andergachew Mekonnen Berhe, Dinelka Somaweera, Han Wang, Wen Lei, Andrey E. Miroshnichenko and Haroldo T. Hattori
Micromachines 2025, 16(7), 776; https://doi.org/10.3390/mi16070776 - 30 Jun 2025
Cited by 1 | Viewed by 844
Abstract
Two-dimensional (2D) materials have revolutionized the field of optoelectronics by offering exceptional properties such as atomically thin structures, high carrier mobility, tunable bandgaps, and strong light–matter interactions. These attributes make them ideal candidates for next-generation photodetectors operating across a broad spectral range—from ultraviolet [...] Read more.
Two-dimensional (2D) materials have revolutionized the field of optoelectronics by offering exceptional properties such as atomically thin structures, high carrier mobility, tunable bandgaps, and strong light–matter interactions. These attributes make them ideal candidates for next-generation photodetectors operating across a broad spectral range—from ultraviolet to mid-infrared. This review comprehensively examines the recent progress in 2D material-based photodetectors, highlighting key material classes including graphene, transition metal dichalcogenides (TMDCs), black phosphorus (BP), MXenes, chalcogenides, and carbides. We explore their photodetection mechanisms—such as photovoltaic, photoconductive, photothermoelectric, bolometric, and plasmon-enhanced effects—and discuss their impact on critical performance metrics like responsivity, detectivity, and response time. Emphasis is placed on material integration strategies, heterostructure engineering, and plasmonic enhancements that have enabled improved sensitivity and spectral tunability. The review also addresses the remaining challenges related to environmental stability, scalability, and device architecture. Finally, we outline future directions for the development of high-performance, broadband, and flexible 2D photodetectors for diverse applications in sensing, imaging, and communication technologies. Full article
Show Figures

Figure 1

17 pages, 5848 KiB  
Article
Highly Reliable Power Circuit Configuration with SiC Chopper Module for Hybrid Fuel Cell and Battery Power System for Urban Air Mobility (UAM) Applications
by Moon-Seop Choi and Chong-Eun Kim
Energies 2025, 18(12), 3197; https://doi.org/10.3390/en18123197 - 18 Jun 2025
Viewed by 312
Abstract
This paper proposes a high-reliability power conversion system optimized for Urban Air Mobility (UAM) applications, which utilizes silicon carbide (SiC) chopper modules within a hybrid fuel cell and battery structure. The system features a redundant power configuration that employs both a main and [...] Read more.
This paper proposes a high-reliability power conversion system optimized for Urban Air Mobility (UAM) applications, which utilizes silicon carbide (SiC) chopper modules within a hybrid fuel cell and battery structure. The system features a redundant power configuration that employs both a main and an auxiliary battery to ensure continuous and stable power supply, even under emergency or fault conditions. By integrating SiC-based power converters, the proposed system achieves high efficiency, low switching losses, and enhanced thermal performance, which are crucial for the space- and weight-constrained environment of UAM platforms. Furthermore, a robust control strategy is implemented to enable smooth transitions between multiple power sources, maintaining operational stability and safety. System-level simulations were conducted using PowerSIM to validate the performance and reliability of the proposed architecture. The results demonstrate its effectiveness, making it a strong candidate for future UAM power systems requiring lightweight, efficient, and fault-tolerant power solutions. Full article
Show Figures

Figure 1

22 pages, 9227 KiB  
Review
Review: The Application of MXene in Thermal Energy Storage Materials for Efficient Solar Energy Utilization
by Han Sun, Yingai Jin and Firoz Alam
Materials 2025, 18(12), 2839; https://doi.org/10.3390/ma18122839 - 16 Jun 2025
Viewed by 466
Abstract
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of [...] Read more.
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of the growing interest in MXenes, there are relatively few studies on their applications in phase-change materials for enhancing thermal conductivity and weak photo-responsiveness between 0 °C and 150 °C. Thus, this study aims to provide a current overview of recent developments, to examine how MXenes are made, and to outline the combined effects of different processes that can convert light into heat. This study illustrates the mechanisms that include enhanced broadband photon harvesting through localized surface plasmon resonance, electron–phonon coupling-mediated nonradiative relaxation, and interlayer phonon transport that optimizes thermal diffusion pathways. This study emphasizes that MXene-engineered 3D thermal networks can greatly improve energy storage and heat conversion, solving important problems with phase-change materials (PCMs), like poor heat conductivity and low responsiveness to light. This study also highlights the real-world issues of making MXene-based materials on a large scale, and suggests future research directions for using them in smart thermal management systems and solar thermal grid technologies. Full article
Show Figures

Figure 1

15 pages, 4039 KiB  
Article
Evolution of Microstructure and Mechanical Properties of Steam Generator Material After Long-Term Operation in Nuclear Power Plant
by David Slnek, Mária Dománková, Marek Adamech, Jana Petzová, Katarína Bártová, Marek Kudláč and Matúš Gavalec
Metals 2025, 15(6), 667; https://doi.org/10.3390/met15060667 - 16 Jun 2025
Viewed by 236
Abstract
The microstructural evolution and mechanical properties of WWER 440 steam generator steel GOST 22K after long-term operation were thoroughly examined in this study. The samples were taken directly from a steam generator using the small punch test method. The uniqueness of these samples [...] Read more.
The microstructural evolution and mechanical properties of WWER 440 steam generator steel GOST 22K after long-term operation were thoroughly examined in this study. The samples were taken directly from a steam generator using the small punch test method. The uniqueness of these samples lies in the fact that they were real operating materials used in a nuclear power plant with different years of operation. The microstructure was characterized using optical microscopy and transmission electron microscopy supplemented by selective electron diffraction and semi-quantitative chemical microanalysis. It was found that with the prolongation of the operation time of the steam generator, the density of carbides increased slightly, which was reflected in a decrease in the mean distance between particles, but these differences were very small, which indicates the microstructural stability of GOST 22K steel. The stability of this steel was also confirmed by measuring its mechanical properties, which changed only minimally depending on the years of operation. The tensile strength values were in the range of 508 to 579 MPa. In the case of the ductile-to-brittle transition temperature (DBTT), a slight increase was found after 6 years of operation. The DBTT did not change significantly with subsequent operation. Full article
Show Figures

Graphical abstract

11 pages, 3670 KiB  
Communication
Microstructure Controlling, Properties, and Thermodynamic Analysis of SiC Joints Brazed with Ni-Ti Fillers
by Ming Li, Zihao Liu, Jiazhen Yan, Haojiang Shi, Jiang Wu, Renxin Li, Huabei Peng, Ruiqian Zhang and Jiacheng Shang
Materials 2025, 18(12), 2816; https://doi.org/10.3390/ma18122816 - 16 Jun 2025
Viewed by 297
Abstract
Silicon carbide (SiC) ceramics were brazed with Ni-Ti fillers at 1350 °C for 10 min. The experimental results show that with the increase in Ti content in the fillers, the interface layer composed of Ni2Si, Ni3Si2, graphite, [...] Read more.
Silicon carbide (SiC) ceramics were brazed with Ni-Ti fillers at 1350 °C for 10 min. The experimental results show that with the increase in Ti content in the fillers, the interface layer composed of Ni2Si, Ni3Si2, graphite, and TiC becomes thinner due to the inhibition of the Ti/SiC reaction on the Ni/SiC reaction. When Ni-45Ti filler is used, TiC becomes the only phase of the interface layer in the brazing seam. The elimination of graphite improves the mechanical property of the joints. The shear strength of the SiC joints brazed by Ni-15Ti, Ni-30Ti, and Ni-45Ti fillers is 33 MPa, 92 MPa, and 125 MPa, respectively. From the point of thermodynamics, the calculated component point of the Ni/SiC reaction transition to the Ti/SiC reaction is xTi = 31 at.%. When the Ti content is higher than 31 at.%, the ΔGNi/SiC > ΔGTi/SiC, and TiC will be preferentially generated at the interface. Therefore, the Ni/SiC reaction is inhibited and the harmful graphite is eliminated. Full article
Show Figures

Figure 1

18 pages, 8696 KiB  
Article
In Situ Ceramic Phase Reinforcement via Short-Pulsed Laser Cladding for Enhanced Tribo-Mechanical Behavior of Metal Matrix Composite FeNiCr-B4C (5 and 7 wt.%) Coatings
by Artem Okulov, Olga Iusupova, Alexander Stepchenkov, Vladimir Zavalishin, Elena Marchenkova, Kun Liu, Jie Li, Tushar Sonar, Aleksey Makarov, Yury Korobov, Evgeny Kharanzhevskiy, Ivan Zhidkov, Yulia Korkh, Tatyana Kuznetsova, Pei Wang and Yuefei Jia
Technologies 2025, 13(6), 231; https://doi.org/10.3390/technologies13060231 - 4 Jun 2025
Viewed by 422
Abstract
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced [...] Read more.
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced X-ray diffraction/Raman spectroscopy techniques, provided a comprehensive characterization of the coatings’ behavior under mechanical and scratch testing, shedding light on the mechanisms governing their wear resistance. Specifically, microstructural analysis revealed uniform coatings with a columnar structure and controlled defect density, showcasing an average thickness of 250 ± 20 μm and a transition zone of 80 ± 10 μm. X-ray diffraction and Raman spectroscopy confirmed the presence of α-Fe (Im-3m), γ-FeNiCr (Fm-3m), Fe2B (I-42m), and B4C (R-3m) phases, highlighting the successful incorporation of B4C reinforcement. The addition of 5 and 7 wt.% B4C significantly increased microhardness, showing enhancements up to 201% compared to the B4C-free FeNiCr coating and up to 351% relative to the AISI 1040 steel substrate, respectively. Boron carbide addition promoted a synergistic strengthening effect between the in situ formed Fe2B and the retained B4C phases. Furthermore, scratch test analysis clarified improved wear resistance, excellent adhesion, and a tailored hardness gradient. These findings demonstrated that optimized short-pulsed laser cladding, combined with moderate B4C reinforcement, is a promising route for creating robust, high-strength FeNiCr-B4C MMC coatings suitable for demanding engineering applications. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

32 pages, 6287 KiB  
Article
A Study of the Thermodynamic Properties of Nd-C and Ce-C TRISO Fission Product Binary Systems
by Ryan Varga, Steven J. Cavazos, Elizabeth S. Sooby, Markus H. A. Piro and Bernard W. N. Fitzpatrick
Appl. Sci. 2025, 15(11), 6229; https://doi.org/10.3390/app15116229 - 1 Jun 2025
Viewed by 2103
Abstract
TRISO fuels are proposed for portable and modular power reactor technologies. Expansion is dependent upon improvements to safety through a thorough understanding of fission product behavior as related to functional containment design philosophies. Significant knowledge gaps exist in the thermodynamic behavior of neodymium [...] Read more.
TRISO fuels are proposed for portable and modular power reactor technologies. Expansion is dependent upon improvements to safety through a thorough understanding of fission product behavior as related to functional containment design philosophies. Significant knowledge gaps exist in the thermodynamic behavior of neodymium and cerium fission products solubility in graphite, which play a role in the qualification of TRISO fuels. DSC measurements were conducted on Nd-C and Ce-C carbide fission products to expand upon calculated phase equilibria. Various crucible tests, calibrant experimentation, sample generation and sample preparation techniques, and new thermodynamic measurements have been performed. New phase equilibria were produced to improve Nd-C and Ce-C phase diagrams and further inform models of fission product behavior within TRISO fuels. The following phase transition temperatures are reported for Nd-C, with an error of ±32.7 °C: 10 mol%C—844.6 °C, 891.2 °C, and 911.2 °C; 16 mol%C—724.1 °C and 771.2 °C; 20 mol%C—731.8 °C; 25 mol%C—726.1 °C and 762.2 °C; 30 mol%C—718.5 °C and 976.4 °C; 35 mol%C—825.1 °C and 995.3 °C; 40 mol%C—1274.6 °C. The following phase transition temperatures are reported for Ce-C with an error of ±32.7 °C: 20 mol%C—878.6 °C; 32 mol%C—714.7 °C and 857 °C; 67 mol%C—1138.7 °C. Full article
Show Figures

Figure 1

29 pages, 4463 KiB  
Review
Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy
by Sunčica Sukur and Václav Ranc
Materials 2025, 18(11), 2570; https://doi.org/10.3390/ma18112570 - 30 May 2025
Viewed by 619
Abstract
Severe systemic toxicity and poor targeting efficiency remain major limitations of traditional chemotherapy, emphasising the need for smarter drug delivery systems. Magnetic 2D transition-metal-based nanomaterials offer a promising approach, as they can be designed to combine high drug loading, precise targeting, and controlled [...] Read more.
Severe systemic toxicity and poor targeting efficiency remain major limitations of traditional chemotherapy, emphasising the need for smarter drug delivery systems. Magnetic 2D transition-metal-based nanomaterials offer a promising approach, as they can be designed to combine high drug loading, precise targeting, and controlled release. The key material classes—transition metal dichalcogenides, transition metal carbides/nitrides, transition metal oxides, and metal–organic frameworks—share important physicochemical properties. These include high surface-to-volume ratios, tuneable functionalities, and efficient intracellular uptake. Incorporating magnetic nanoparticles into these 2D structures broadens their potential beyond drug delivery, through enabling multimodal therapeutic strategies such as hyperthermia induction, real-time imaging, and photothermal or photodynamic therapy. This review outlines the potential of magnetic 2D transition-metal-based nanomaterials for biomedical applications by evaluating their therapeutic performance and biological response. In parallel, it offers a critical analysis of how differences in physicochemical properties influence their potential for specific cancer treatment applications, highlighting the most promising uses of each in bionanomedicine. Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery in Cancer Treatment)
Show Figures

Graphical abstract

Back to TopTop