Microstructure Controlling, Properties, and Thermodynamic Analysis of SiC Joints Brazed with Ni-Ti Fillers
Abstract
:1. Introduction
2. Research Methods
3. Results and Discussion
3.1. Microstructure of the SiC/Ni-Ti/SiC Joints with Different Filler Compositions
3.2. Mechanical Strength of the SiC/Ni-Ti/SiC Joints
3.3. Thermodynamic Analysis on the Interfacial Reaction Transformation Mechanism
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naslain, R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview. Compos. Sci. Technol. 2004, 64, 155–170. [Google Scholar] [CrossRef]
- Yvon, P.; Carré, F. Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 2009, 385, 217–222. [Google Scholar] [CrossRef]
- Katoh, Y.; Snead, L.L.; Henager, C.H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; De Vicente, S.M.G. Current status and recent research achievements in SiC/SiC composites. J. Nucl. Mater. 2014, 455, 387–397. [Google Scholar] [CrossRef]
- Terrani, K.A. Accident tolerant fuel cladding development: Promise, status, and challenges. J. Nucl. Mater. 2018, 501, 13–30. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Yang, J.; Qiao, G. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): Joining processes, joint strength, and interfacial behavior. J. Adv. Ceram. 2019, 8, 19–38. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Terrani, K.A.; Gehin, J.C.; Ott, L.J.; Snead, L.L. Accident tolerant fuels for LWRs: A perspective. J. Nucl. Mater. 2014, 448, 374–379. [Google Scholar] [CrossRef]
- Ma, Q.; Pu, J.; Li, S.G.; Chen, Y.W.; He, P. Introducing a 3D-SiO2-fiber interlayer for brazing SiC with TC4 by AgCuTi. J. Adv. Join. Process 2022, 5, 100082. [Google Scholar] [CrossRef]
- Way, M.; Willingham, J.; Goodall, R. Brazing filler metals. Int. Mater. Rev. 2020, 65, 257–285. [Google Scholar] [CrossRef]
- Akselsen, O.M. Advances in brazing of ceramics. J. Mater. Sci. 1992, 27, 1989–2000. [Google Scholar] [CrossRef]
- Guo, X.; Si, X.; Li, C.; Zhao, S.; Yang, B.; Qi, J.; Cao, J. Brazing C/C composites to DD3 alloy with a novel Ag–Cr active braze. Ceram. Int. 2022, 48, 15090–15097. [Google Scholar] [CrossRef]
- Wang, P.; Xu, Z.; Qin, B.; Lin, J.; Cao, J.; Feng, J.; Qi, J. Active brazing of high entropy ceramic and Nb metal: Interfacial microstructure and brazing mechanism. Vacuum 2022, 205, 111464. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, G.; Lv, M.; Li, G.; Liu, D. Nd: YAG pulsed laser brazing of cBN to steel matrix with Zr modified Ag–Cu–Ti active brazing alloy. Diam. Relat. Mater. 2020, 104, 107732. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Z.R.; Liu, X.J. Joining of sintered silicon carbide using ternary Ag–Cu–Ti active brazing alloy. Ceram. Int. 2009, 35, 3479–3484. [Google Scholar] [CrossRef]
- Cai, X.; Wang, D.; Wang, Y.; Yang, Z. Joining TiB2–TiC–SiC composite to Ta with a Ti/Ni/Ti interlayer: Interfacial microstructure and mechanical properties. J. Manuf. Process. 2021, 64, 1349–1358. [Google Scholar] [CrossRef]
- Yoon, D.; Reimanis, I.E. A review on the joining of SiC for high-temperature applications. J. Korean Ceram. Soc. 2020, 57, 246–270. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, G. Microstructure and shear strength of self-joined ZrB2 and ZrB2–SiC with pure Ni. Scr. Mater. 2011, 64, 17–20. [Google Scholar] [CrossRef]
- Hattali, M.L.; Valette, S.; Ropital, F.; Stremsdoerfer, G.; Mesrati, N.; Tréheux, D. Study of SiC-nickel alloy bonding for high temperature applications. J. Eur. Ceram. Soc. 2009, 29, 813–819. [Google Scholar] [CrossRef]
- Mao, Y.; Mombello, D.; Baroni, C. Wettability of Ni–Cr filler on SiC ceramic and interfacial reactions for the SiC/Ni–51Cr system. Scr. Mater. 2011, 64, 1087–1090. [Google Scholar] [CrossRef]
- Ma, Q.; Chen, Y.W.; Chen, S.J.; He, P.; Chen, X.J.; Jin, X.; Zheng, B. Microstructural and mechanical characterizations of SiC–304SS joints brazed with Cu–10TiH2 filler. J. Mater. Res. Technol. 2024, 28, 3076–3083. [Google Scholar] [CrossRef]
- Song, Y.; Liu, D.; Li, X.; Song, X.; Long, W.; Cao, J. Microstructure and mechanical properties of Cf/SiC composite/GH99 joints brazed with BNi2-Ti composite filler. J. Manuf. Process. 2020, 58, 905–913. [Google Scholar] [CrossRef]
- Cai, X.Q.; Wang, D.P.; Wang, Y.; Yang, Z.W. Microstructural evolution and mechanical properties of TiB2-TiC-SiC ceramics joint brazed using Ti-Ni composite foils. J. Eur. Ceram. Soc. 2020, 40, 3380–3390. [Google Scholar] [CrossRef]
- Song, Y.; Liu, D.; Song, X.; Hu, S.; Cao, J. In-situ synthesis of TiC nanoparticles during joining of SiC ceramic and GH99 superalloy. J. Am. Ceram. Soc. 2019, 102, 6529–6541. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Huang, J.; Ye, Z.; Yang, J.; Chen, S.; Zhao, X. Reaction-composite diffusion brazing of C-SiC composite and Ni-based superalloy using mixed (Cu-Ti)+C powder as an interlayer. J. Mater. Process. Technol. 2022, 300, 117419. [Google Scholar] [CrossRef]
- Yano, T.; Suematsu, H.; Iseki, T. High-resolution electron microscopy of a SiC/SiC joint brazed by a Ag–Cu–Ti alloy. J. Mater. Sci. 1988, 23, 3362–3366. [Google Scholar] [CrossRef]
- Du, Y.; Schuster, J.C.; Seifert, H.J.; Aldinger, F. Experimental Investigation and Thermodynamic Calculation of the TitaniumSiliconCarbon System. J. Am. Ceram. Soc. 2000, 83, 197–203. [Google Scholar] [CrossRef]
Filler | Point | Composition (at.%) | Possible Phases | |||
---|---|---|---|---|---|---|
Ni | Ti | Si | C | |||
Ni-15Ti | 1 | 37.0 | 0.3 | 18.6 | 44.1 | Ni2Si |
2 | 34.0 | 0.1 | 21.9 | 43.9 | Ni3Si2 | |
3 | 2.3 | 43.6 | 3.8 | 50.2 | TiC | |
G | 0.9 | 0.5 | 1.5 | 97.0 | Graphite | |
Ni-30Ti | 4 | 52.9 | 1.3 | 25.3 | 20.5 | Ni2Si |
5 | 50.1 | - | 29.9 | 20.0 | Ni3Si2 | |
6 | 1.6 | 45.0 | 0.9 | 52.6 | TiC | |
G | 0.9 | 0.5 | 1.5 | 97.0 | Graphite | |
7 | - | 44.8 | 1.4 | 53.8 | TiC | |
Ni-45Ti | 8 | 1.4 | 32.2 | 0.5 | 65.9 | TiC |
9 | 41.4 | 4.0 | 22.1 | 32.4 | Ni2Si |
Filler | Point | Compositions (at.%) | Possible Phases | |||
---|---|---|---|---|---|---|
Ni | Ti | Si | C | |||
Ni-45Ti | 10 | 41.3 | 1.3 | 21.3 | 36.2 | Ni2Si |
11 | 35.8 | 1.2 | 24.4 | 38.7 | Ni3Si2 | |
12 | 1.7 | 31.0 | 1.2 | 66.1 | TiC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Liu, Z.; Yan, J.; Shi, H.; Wu, J.; Li, R.; Peng, H.; Zhang, R.; Shang, J. Microstructure Controlling, Properties, and Thermodynamic Analysis of SiC Joints Brazed with Ni-Ti Fillers. Materials 2025, 18, 2816. https://doi.org/10.3390/ma18122816
Li M, Liu Z, Yan J, Shi H, Wu J, Li R, Peng H, Zhang R, Shang J. Microstructure Controlling, Properties, and Thermodynamic Analysis of SiC Joints Brazed with Ni-Ti Fillers. Materials. 2025; 18(12):2816. https://doi.org/10.3390/ma18122816
Chicago/Turabian StyleLi, Ming, Zihao Liu, Jiazhen Yan, Haojiang Shi, Jiang Wu, Renxin Li, Huabei Peng, Ruiqian Zhang, and Jiacheng Shang. 2025. "Microstructure Controlling, Properties, and Thermodynamic Analysis of SiC Joints Brazed with Ni-Ti Fillers" Materials 18, no. 12: 2816. https://doi.org/10.3390/ma18122816
APA StyleLi, M., Liu, Z., Yan, J., Shi, H., Wu, J., Li, R., Peng, H., Zhang, R., & Shang, J. (2025). Microstructure Controlling, Properties, and Thermodynamic Analysis of SiC Joints Brazed with Ni-Ti Fillers. Materials, 18(12), 2816. https://doi.org/10.3390/ma18122816